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1 Introduction

Let D denote the open unit disc of the complex plane C and H(D)
denotes the space of all analytic functions on D. Let u, v ∈ H(D), ϕ be
an analytic self-map of D (ϕ(D) ⊆ D) and m ∈ N0 = {0, 1, 2, ...}. In
[11] Stević and co-authors defined a new product-type operator Tmu,v,ϕ
as follows

Tmu,v,ϕg(z) = u(z)g(m)(ϕ(z)) + v(z)g(m+1)(ϕ(z)), g ∈ H(D), z ∈ D.

When m = 0, we obtain the Stević-Sharma type operator and for v ≡ 0,
we get the generalized weighted composition operators Dm

u,ϕ. For more

Received: September 2020; Accepted: March 2021

1



2 E. ABBASI

details about product-type operators, we refer the interested reader to
[7, 8, 13].

Let dA(z) be the normalized area measure on D and 1 < p < ∞.
The Besov space Bp consists of all g ∈ H(D) such that

bp(g) =
(∫

D
|g′(z)|p(1− |z|2)p−2dA(z)

) 1
p
<∞.

Bp is a Banach space with ‖g‖Bp = |g(0)| + bp(g) and it is a Möbius
invariant space in the sense that bp(goψ) = bp(g) for all g ∈ Bp and
ψ ∈ Aut(D), the Möbius group of D (see [15, 17]).

Let n ∈ N0 and µ(z) be a weight, positive and continuous function
on D. The nth weighted type space Wn

µ (D) = Wn
µ , was introduced by

Stević in [9], consists of all g ∈ H(D) such that

bWn
µ

(g) = sup
z∈D

µ(z)|g(n)(z)| <∞.

This space is a Banach space with the following norm

‖g‖Wn
µ

=
n−1∑
i=0

|g(i)(0)|+ bWn
µ

(g).

Let α > 0. ThenW(0)
(1−|z|2)α = H−α(growth space),W(1)

(1−|z|2)α = Bα(Bloch

type space) and W(2)
(1−|z|2)α = Zα(Zygmund type space). Also W(0)

µ =

Hµ(weighted-type space), W(1)
µ = Bµ(weighted Bloch space), W(2)

µ =

Zµ(weighted Zygmund space) and W(1)

(1−|z|2) log 2
1−|z|2

coincides with the

logarithmic Bloch space Blog. More information about nth weighted
type spaces can be found in [1, 2, 3, 9, 10, 12, 18].

Lemma 1.1 ([16], Proposition 8). For any g ∈ B and n ∈ N,

‖g‖B ≈
n−1∑
i=0

|g(i)(0)|+ sup
z∈D

(1− |z|2)n|g(n)(z)|.

Lemma 1.2 ([6], Lemma 2.1). The sequence {zj}∞1 is bounded in B and

lim
j→∞

‖zj‖B =
2

e
.



THE PRODUCT-TYPE OPERATORS ... 3

Lemma 1.3 ([4]). Let 1 < p <∞. Then for any g ∈ Bp

‖g‖B � ‖g‖Bp .

For n, k ∈ N0 with k ≤ n, the partial Bell polynomials are defined
by

Bn,k(y1, y2, ..., yn−k+1) =∑ n!

j1!j2!...jn−k+1!
(
y1
1!

)j1(
y2
2!

)j2 ...(
yn−k+1

(n− k + 1)!
)jn−k+1 ,

where j1, j2, ..., jn−k+1 ∈ N0 such that

j1 + 2j2 + ...+ (n− k + 1)jn−k+1 = n and j1 + j2 + ...+ jn−k+1 = k.

More information about Bell polynomials can be found in [[5], pp 134].
From Lemma 4 of [10], we have the next lemma.

Lemma 1.4. Let g, ϕ, u, v ∈ H(D). Then for any m,n ∈ N0,

(Tmu,v,ϕg)(n)(z) =

n∑
i=0

g(m+i)(ϕ(z))

n∑
l=i

(
n

l

)
u(n−l)(z)Bl,i(ϕ

′(z), ..., ϕ(l−i+1)(z))

+

n∑
i=0

g(m+1+i)(ϕ(z))

n∑
l=i

(
n

l

)
v(n−l)(z)Bl,i(ϕ

′(z), ..., ϕ(l−i+1)(z)).

For simplicity in calculation, we set

In,ui,ϕ (z) :=

{ ∑n
l=i

(
n
l

)
u(n−l)(z)Bl,i(ϕ

′(z), ..., ϕ(l−i+1)(z)) i, n ∈ N0 and i ≤ n
0 otherwise

By applying the above notion, we can rewrite the previous lemma as
follows

(Tmu,v,ϕg)(n)(z) =

n+1∑
i=0

g(m+i)(ϕ(z))(In,ui,ϕ + In,vi−1,ϕ)(z). (1)

Recently, Liu and Yu in [8] studied the boundedness and compact-
ness of operator Tmu,v,ϕ from the Logarithmic Bloch spaces to Zygmund
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type spaces. Also Zhu and the author of this paper, have found some
characterizations for boundedness and compactness of T 0

u,v,ϕ : Bp → B
in [19]. Motivated by previous works, in this paper some characteriza-
tions for boundedness and compactness of operator Tmu,v,ϕ : Bp → Wn

µ

are given. As application some new characterizations for the bounded-
ness, compactness of generalized weighted composition operators from
Besov spaces into nth weighted type spaces are found.

Throughout this paper, if there exists a constant c such that a ≤ cb
we use the notation a � b. The symbol a ≈ b means that a � b � a.

2 Boundedness

In this section, some equivalent conditions for boundedness of the oper-
ator Tmu,v,ϕ : Bp →Wn

µ are obtained.

Lemma 2.1 ([19], Lemma 2.5). Let 1 < p < ∞. For any a ∈ D and
j ∈ {1, ..., k}, set

fj,a(z) =
(1− |a|2

1− āz

)j
, z ∈ D. (2)

Then fj,a ∈ Bp and supa∈D ‖fj,a‖Bp <∞.

By using the functions defined in (2), we get the next lemma. Since
the proof of it resembles to the proof of Lemma 2.1 [1], hence it is
omitted.

Lemma 2.2. Let δik be Kronecker delta. For any 0 6= a ∈ D, m ∈ N
and i ∈ {0, 1, ..., n+ 1} there exists a function gi,a ∈ Bp such that

g
(m+k)
i,a (a) =

δikā
m+k

(1− | a |2)m+k
.

In this case gi,a(z) =
∑n+2

j=1 c
i
jfj,a(z), where fj,a are defined in (2) and

cij are independent of the choice of a.

Theorem 2.3. Let m,n ∈ N, 1 < p < ∞, µ be a weight, u, v ∈ H(D)
and ϕ be an analytic self-map of D. The following assertions are pairwise
equivalent.
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(a) The operator Tmu,v,ϕ : Bp →Wn
µ is bounded.

(b) If pj(z) = zj then supj≥1 ‖Tmu,v,ϕpj‖Wn
µ
<∞.

(c) For each i ∈ {0, ..., n+ 1},

sup
a∈D
‖Tmu,v,ϕfi+1,a‖Wn

µ
<∞, sup

z∈D
µ(z)|(In,ui,ϕ + In,vi−1,ϕ)(z)| <∞,

where fi,a are defined in (2).

(d) For each i ∈ {0, 1, ..., n+ 1},

sup
z∈D

µ(z)|(In,ui,ϕ + In,vi−1,ϕ)(z)|
(1− |ϕ(z)|2)i+m

<∞.

Proof. (b)⇒ (c) For any i ∈ {0, 1, ..., n+ 1} and a ∈ D

fi+1,a(z) = (1− |a|2)i+1
∞∑
j=0

(
i+ j

j

)
ājzj .

So,

‖Tmu,v,ϕfi+1,a‖Wn
µ
≤ (1− |a|2)i+1

∞∑
j=0

(
i+ j

j

)
|ā|j‖Tmu,v,ϕpj‖Wn

µ

≤ 2i+1 sup
j≥1
‖Tmu,v,ϕpj‖Wn

µ
.

Therefore, supa∈D ‖Tmu,v,ϕfi+1,a‖Wn
µ
<∞.

Applying the operator Tmu,v,ϕ for pm(z) = zm, so by employing (1),
we obtain

sup
z∈D

µ(z)|In,u0,ϕ (z)| = 1

m!
sup
z∈D

µ(z)|(Tmu,v,ϕpm)(n)(z)| <∞.

Now suppose that the following inequalities hold for 0 ≤ i ≤ j − 1,

sup
z∈D

µ(z)|(In,ui,ϕ + In,vi−1,ϕ)(z)| <∞,
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where j ≤ n+ 1. Applying the operator Tmu,v,ϕ for pm+j(z) = zm+j and
using (1), we have

sup
z∈D

µ(z)
∣∣∣(m+ j)!

j!
ϕj(z)In0 (z) +

j∑
k=1

(m+ j)!

(j − k)!
(ϕ(z))j−k (In,uk,ϕ + In,vk−1,ϕ)(z)

∣∣∣
≤ ‖Tmu,v,ϕpm+j‖Wn

µ
<∞.

Since ϕ(D) ⊂ D, we obtain

sup
z∈D

µ(z)|(In,uj,ϕ + In,vj−1,ϕ)(z)| <∞.

(c)⇒ (d) For any ϕ(a) 6= 0 and i ∈ {0, ..., n+ 1}, employing (1) and
Lemma 2.2, we obtain

µ(a)|ϕ(a)|m+i|(In,ui,ϕ + In,vi−1,ϕ)(a)|
(1− |ϕ(a)|2)m+i

≤ sup
a∈D
‖Tmu,v,ϕgi,ϕ(a)‖Wn

µ

≤
n+2∑
j=1

|cij | sup
a∈D
‖Tmu,v,ϕfj,a‖Wn

µ
<∞.

From the last inequality,

sup
|ϕ(a)|> 1

2

µ(a)|(In,ui,ϕ + In,vi−1,ϕ)(a)|
(1− |ϕ(a)|2)m+i

<∞,

and from (c)

sup
|ϕ(a)|≤ 1

2

µ(a)|(In,ui,ϕ + In,vi−1,ϕ)(a)|
(1− |ϕ(a)|2)m+i

� sup
|ϕ(a)|≤ 1

2

µ(a)|(In,ui,ϕ + In,vi−1,ϕ)(a)| <∞.

So, for any i ∈ {0, ..., n+ 1},

sup
z∈D

µ(z)|(In,ui,ϕ + In,vi−1,ϕ)(z)|
(1− |ϕ(z)|2)m+i

<∞.
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(d) ⇒ (b) Setting g(z) = pj(z) = zj(j ≥ m + n + 1) in (1), so from
Lemmas 1.1 and 1.2, we obtain

µ(z)|(Tmu,v,ϕpj)(n)(z)| ≤

µ(z)

n+1∑
i=0

j!

(j −m− i)!
(1− |ϕ(z)|2)i+m|ϕ(z)|j−m−i

|(In,ui,ϕ + In,vi−1,ϕ)(z)|
(1− |ϕ(z)|2)i+m

�

‖zj‖B
n+1∑
i=0

sup
z∈D

µ(z)|(In,ui,ϕ + In,vi−1,ϕ)(z)|
(1− |ϕ(z)|2)i+m

�

2

e

n+1∑
i=0

sup
z∈D

µ(z)|(In,ui,ϕ + In,vi−1,ϕ)(z)|
(1− |ϕ(z)|2)i+m

. (3)

On the other hand, for any k < n, we get

|(Tmu,v,ϕpj)(k)(0)| ≤
k+1∑
i=0

j!

(j −m− i)!
(1− |ϕ(0)|2)i+m|ϕ(0)|j−m−i

|(Ik,ui,ϕ + Ik,vi−1,ϕ)(0)|
(1− |ϕ(0)|2)i+m

� 2

e

k+1∑
i=0

|(Ik,ui,ϕ + Ik,vi−1,ϕ)(0)|
(1− |ϕ(0)|2)i+m

. (4)

Hence, by using (3) and (4), we get (b).
(d)⇒ (a) From (1) and Lemmas 1.2, 1.3, we have

µ(z)|(Tmu,v,ϕf)(n)(z)| ≤

µ(z)
n+1∑
i=0

(1− |ϕ(z)|2)m+i|f (m+i)(ϕ(z))|
|(In,ui,ϕ + In,vi−1,ϕ)(z)|
(1− |ϕ(z)|2)m+i

�

‖f‖Bp
n+1∑
i=0

sup
z∈D

µ(z)|(In,ui,ϕ + In,vi−1,ϕ)(z)|
(1− |ϕ(z)|2)m+i

. (5)

Also for any k < n, with similar calculation in the (4), we obtain

|(Tmu,v,ϕf)(k)(0)| � ‖f‖Bp
k+1∑
i=0

|(Ik,ui,ϕ + Ik,vi−1,ϕ)(0)|
(1− |ϕ(0)|2)i+m

. (6)
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From (5) and (6), we get (a).
(a)⇒ (c) For each i ∈ {0, 1, ..., n+ 1}, from Lemma 2.1, we obtain

sup
a∈D
‖Tmu,v,ϕfi+1,a‖Wn

µ
≤ ‖Tmu,v,ϕ‖Bp→Wn

µ
sup
a∈D
‖fi+1,a‖Bp <∞.

For any j ∈ N, zj ∈ Bp. So, the proof of the second part resembles to
the proof of second part of (b)⇒ (c) and hence it is dropped. The proof
is completed. �

3 Compactness

In this section, some new characterizations for compactness of the op-
erator Tmu,v,ϕ : Bp → Wn

µ are given. The proof of the following lemma
resembles to the proof of Lemma 2.10 [14], therefore it is dropped.

Lemma 3.1. Let 1 < p < ∞, µ be a weight and S : Bp → Wn
µ be

bounded. Then S is compact if and only if whenever {fk} is bounded in
Bp and fk → 0 uniformly on compact subsets of D,

lim
k→∞

‖Sfk‖Wn
µ

= 0.

Theorem 3.2. Let m,n ∈ N, 1 < p < ∞, µ be a weight, u, v ∈ H(D)
and ϕ be an analytic self-map of D. Let the operator Tmu,v,ϕ : Bp →Wn

µ

be bounded then the following assertions are pairwise equivalent.

(a) The operator Tmu,v,ϕ : Bp →Wn
µ is compact.

(b) If pj(z) = zj then limj→∞ ‖Tmu,v,ϕpj‖Wn
µ

= 0.

(c) For each i ∈ {0, ..., n+ 1},

lim
|a|→1

‖Tmu,v,ϕfi+1,a‖Wn
µ

= 0,

where fi,a are defined in (2).

(d) For each i ∈ {0, 1, ..., n+ 1},

lim sup
|ϕ(z)|→1

µ(z)|(In,ui,ϕ + In,vi−1,ϕ)(z)|
(1− |ϕ(z)|2)i+m

= 0.
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Proof. (b)⇒ (c) For given ε, there exists M ∈ N such that for j ≥M ,

‖Tmu,v,ϕpj‖Wn
µ
< ε.

Hence, for each i ∈ {0, ..., n+ 1}

fi+1,a(z) = (1− |a|2)i+1
(M−1∑
k=0

(
i+ k

k

)
+
∞∑

k=M

(
i+ k

k

))
akzk.

So,

‖Tmu,v,ϕfi+1,a‖Wn
µ
≤

2 max{‖Tmu,v,ϕpj‖Wn
µ
}M−1j=0 (1− |a|2)i(1− |a|M )

(
i+M − 1

M − 1

)
+ 2i+1ε.

Hence,
lim sup
|a|→1

‖Tmu,v,ϕfi+1,a‖Wn
µ
≤ ε.

Since ε is arbitrary, so lim sup|a|→1 ‖Tmu,v,ϕfi+1,a‖Wn
µ

= 0.
(c)⇒ (d) Let {ak} be any sequence in D, such that limk→1 |ϕ(ak)| =

1. For each i ∈ {0, ..., n+ 1}, applying (1) and Lemma 2.2, we have

µ(ak)|ϕ(ak)|m+i|(In,ui,ϕ + In,vi−1,ϕ)(ak)|
(1− |ϕ(ak)|2)m+i

≤ sup
ϕ(ak)∈D

‖Tmu,v,ϕgi,ϕ(ak)‖Wn
µ
≤

n+2∑
j=1

|cij | sup
ϕ(ak)∈D

‖Tmu,v,ϕfj,ϕ(ak)‖Wn
µ
.

Taking the limit when k →∞, we get

lim
|ϕ(a)|→1

µ(a)|(In,ui,ϕ + In,vi−1,ϕ)(a)|
(1− |ϕ(a)|2)m+i

≤
n+2∑
j=1

|cij | lim sup
|ϕ(a)|→1

‖Tmu,v,ϕfj,ϕ(a)‖Wn
µ

= 0.

(d)⇒ (b) For given ε, there exists a 0 < δ < 1 such that

sup
δ<|ϕ(z)|<1

µ(z)|(In,ui,ϕ + In,vi−1,ϕ)(z)|
(1− |ϕ(z)|2)m+i

< ε, i ∈ {0, 1, ..., n+ 1}. (7)
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Let pj(z) = zj(j ≥ m + n + 1). So from (1) and Lemmas 1.1, 1.2, we
obtain

µ(z)|(Tmu,v,ϕpj)(n)(z)| ≤ (8)

µ(z)

m+n+1∑
i=m

j!

(j − i)!
|ϕ(z)|j−i|(In,ui−m,ϕ + In,vi−m−1,ϕ)(z)| ≤

n+1∑
i=0

sup
|ϕ(z)|≤δ

µ(z)
j!

(j −m− i)!
(1− |ϕ(z)|2)i+m|ϕ(z)|j−m−i

|(In,ui,ϕ + In,vi−1,ϕ)(z)|
(1− |ϕ(z)|2)i+m︸ ︷︷ ︸

Fi

+

n+1∑
i=0

sup
|ϕ(z)|>δ

µ(z)
j!

(j −m− i)!
(1− |ϕ(z)|2)i+m|ϕ(z)|j−m−i

|(In,ui,ϕ + In,vi−1,ϕ)(z)|
(1− |ϕ(z)|2)i+m︸ ︷︷ ︸

Ei

.

Since {pj} converges to 0 uniformly on compact subsets of D, so {p(t)j }
converges to zero uniformly on compact subsets of D, hence from The-
orem 2.3, we get

lim sup
j→∞

Fi = 0. (9)

From Lemmas 1.1, 1.2, 1.3 and (7)

Ei � ‖zj‖B
n+1∑
i=0

sup
|ϕ(z)|>δ

µ(z)|(In,ui,ϕ + In,vi−1,ϕ)(z)|
(1− |ϕ(z)|2)i+m

� 2(n+ 2)

e
ε.

Since ε is arbitrary, so

lim sup
j→∞

Ei = 0. (10)

Also by simple calculation for each k < n, we have

lim sup
j→∞

|(Tmu,v,ϕpj)(k)(0)| = 0. (11)

Therefore from (8), (9), (10) and (11), we obtain (b).
(d)⇒ (a) For given ε, there exists a 0 < δ < 1 such that

sup
δ<|ϕ(z)|<1

µ(z)|(In,ui,ϕ + In,vi−1,ϕ)(z)|
(1− |ϕ(z)|2)m+i

< ε, i ∈ {0, 1, ..., n+ 1}. (12)
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Let {fk} be any bounded sequence in Bp such that converges to 0
uniformly on compact subsets of D.

µ(z)
∣∣∣(Tmu,v,ϕfk)(n)(z)∣∣∣ ≤ µ(z)

n+1∑
i=0

|f (i+m)
k (z)||(In,ui,ϕ + In,vi−1,ϕ)(z)| (13)

≤
n+1∑
i=0

sup
|ϕ(z)|≤δ

µ(z)|f (i+m)
k (z)||(In,ui,ϕ + In,vi−1,ϕ)(z)|︸ ︷︷ ︸

Hi

+

n+1∑
i=0

sup
|ϕ(z)|>δ

µ(z)|f (i+m)
k (z)||(In,ui,ϕ + In,vi−1,ϕ)(z)|︸ ︷︷ ︸

Li

Since fk → 0 converge to 0 uniformly on compact subsets of D, so

f
(t)
k → 0 converge to zero uniformly on compact subsets of D. Hence,

from the boundedness of Tmu,v,ϕ : Bp →Wn
µ and Theorem 2.3, we obtain

lim sup
k→∞

Hi = 0, i ∈ {0, ..., n+ 1}. (14)

Also by using Lemmas 1.1, 1.3 and (12), for any i ∈ {0, ..., n + 1}, we
have

Li = sup
|ϕ(z)|>δ

µ(z)(1− |ϕ(z)|2)m+i|f (i+m)
k (z)|

|(In,ui,ϕ + In,vi−1,ϕ)(z)|
(1− |ϕ(z)|2)m+i

� ε‖fk‖Bp

Therefore,

lim sup
k→∞

Li = 0, i ∈ {0, ..., n+ 1}. (15)

For any j < n, we get

|(Tmu,v,ϕfk)(j)(0)| ≤
j+1∑
i=0

|f (i+m)
k (ϕ(0))||(Ik,ui,ϕ + Ik,vi−1,ϕ)(0)|.
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Since limk→∞ f
(i+m)
k (ϕ(0)) = 0, so

lim sup
k→∞

|(Tmu,v,ϕfk)(j)(0)| = 0. (16)

Therefore, from (13), (14), (15), (16) and Lemma 3.1, we have (a).

(a)⇒ (c) Let {ak} be arbitrary sequence such that limk→1 |ak| = 1.
It is obvious that for each i ∈ {0, 1, ..., n + 1}, fi+1,ak → 0 converge to
0 uniformly on compact subsets of D. So by using Lemmas 2.1 and 3.1,
we get

lim
|ak|→1

‖Tmu,v,ϕfi+1,ak‖Wn
µ

= 0.

The proof is completed. �

Remark 3.3. Setting µ(z) = (1−|z|2)α and n = 1(n = 2) in Theorems
2.3 and 3.2, some equivalent conditions for boundedness and compact-
ness of operator Tmu,v,ϕ : Bp → Bα(Tmu,v,ϕ : Bp → Zα) are obtained.

Remark 3.4. Putting n = 1 and µ(z) = (1−|z|2) log 2
1−|z|2 in Theorems

2.3 and 3.2, similar results are given for operator Tmu,v,ϕ : Bp → Blog.

Remark 3.5. Setting v ≡ 0 in Theorems 2.3 and 3.2, we have similar
results for operator Dm

u,ϕ : Bp →Wn
µ .
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ant Banach space, PhD dissertation, Michigan State university,
(1996).

[15] K. Zhu, Analytic Besov spaces. J. Math. Anal. Appl., 157(2) (1991),
318–336.

[16] K. Zhu, Bloch type spaces of analytic functions, Rocky Mountain
J. Math., 23(3) (1993), 1143–1177.

[17] K. Zhu, Operator Theory in Function Spaces, Amer. Math. Soc.,
second edition, (2007)

[18] X. Zhu, Weighted composition operators from the minimal möbius
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