
Journal of Mathematical Extension
Vol. 16, No. 2, (2022) (8)1-34
URL: https://doi.org/10.30495/JME.2022.1773
ISSN: 1735-8299
Original Research Paper

A Hyperstructures Approach to the Direct
Limit and Tensor Product for Left(right) G-sets

on Hypergroups

N. Rakhsh Khorshid
Department of Mathematics,University of Hormozgan , Bandar Abbas, Iran.

S. Ostadhadi-Dehkordi∗

Department of Mathematics,University of Hormozgan , Bandar Abbas, Iran.

Abstract. In this paper, we introduce the concept of left(right)-G sets
by external hyperoperations and some examples presented. We con-
struct quotient left(right)-G sets by regular (strongly) regular relations.
Also, we consider fundamental relation as a smallest strongly regular
relations and by complete parts concepts introduce an equivalence re-
lation that is coincide with fundamental relation. The main purpose of
this paper is to introduce the concepts of tensor product and direct limit
on G-sets of n-ary semihypergroups that are non-additive modification
of classical construction in module theory. This concept is crucially
important in homological algebra and several properties are found and
examples are presented.

AMS Subject Classification: 20N15.

Keywords and Phrases: n-ary semihypergroup, G-set, direct system,
direct limit, Tensor product.

Received:August 2020; Accepted: February 2020.
∗Corresponding Author

1



2 N. Rakhsh Khorshid and S. Ostadhadi-Dehkordi

1 Introduction

The concept of n-group was introduced by Dörnte[9], which is a nat-
ural generalization of the notion of group. Since then, many papers
concerning various n-ary algebras have appeared in literature. Another
field which proved to be relevant was of algebraic hyperstructures. Alge-
braic hyperstructures are a suitable generalization of classical algebraic
structures. In a classical algebraic structure, the composition of two
elements is an element while in an algebraic hyperstructure, the compo-
sition of two elements is a set. The notion of hypergroup was introduced
in 1934 by a French mathematician F. Marty [15], at the 8th Congress
of Scandinavian Mathematicians. He published some notes on hyper-
groups, using them in different contexts: algebraic functions, rational
fractions and non-commutative groups. Since then, hundreds of papers
and several books have been written on this topic and several kinds of hy-
pergroups have been intensively studied, such as: regular hypergroups,
reversible regular hypergroups, canonical hypergroups, cogroups, cyclic
hypergroups, reduced hypergroups and associativity hypergroups(for ex-
ample see [2, 3, 4]).

The recent book on hyperstructures [6] points out their applications
in fuzzy and rough set theory, cryptography, codes, automata, probabil-
ity, geometry, lattices, binary relations, graphs and hypergraphs. More-
over, Davvaz and Vougiouklis [7] have established a connection between
the two domains in the form of an extension of the concept of n-ary
groups to the concept of n-ary hypergroups, which has also proved to
be of great interest and they were studied by Ghadiri and Waphare [11]
and others [5, 8, 10, 17, 16, 20, 1].

In this paper, we define the left(right) G-sets in the context of n-
ary semihypergroups. Furthermore, we define direct system and direct
limit of G-sets and prove that some properties about them. We note
that this concepts defined and considered only by binary operation and
binary hyperoperation [13, 18]. We generalized this concept by external
hyperoperation on n-ary semihypergroups. Finally, we introduce the
concept of tensor product that is a non-additive modification of classi-
cal in module theory and play an important role in homological algebra
[19]. Also, we prove that the tensor product exists and is unique up to
isomorphism.
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2 Basic definitions

In this paragraph, we present some definitions concerning n-ary semihy-
pergroups. Let G be a non-empty set and f be a mapping f : G×G −→
P∗(G), where P∗(G) is the set of all non-empty subsets of G. Then, f
is called a binary hyperoperation on G. We denote by Gn the cartesian
product G × G.... × G, where G appears n times. The couple (G, f) is
called hypergroupoid. When, n = 2, for any two non-empty subsets G1

and G2 of G, we define

G1 ◦G2 =
⋃

g1∈G1,g2∈G2

g1 ◦ g2.

In this case, a hypergroupoid (G, f) is called semihypergroup if for all
g1, g2 and g3 of G, we have (g1 ◦ g2) ◦ g3 = g1 ◦ (g2 ◦ g3).

In general, f : Gn −→ P∗(G) is called an n-ary hyperoperation on G
and (G, f) is called n-ary hypergroupoid.
Let G1,G2,...,Gn be non-empty subsets of G. Then, we define

f(G1, G2, ..., Gn) =
⋃

gi∈Gi,i∈{1,2,...,n}

f(g1, g2, ..., gn).

The sequence gi, gi+1, ..., gj , will be denoted by gji . For j < i, gji is the
empty set.

Definition 2.1. [7] The n-ary hypergroupoid (G, f) is called n-ary
semihypergroup if for any i, j ∈ {1, 2, ..., n} and g2n−11 ∈ G,

f(gi−11 , f(gn+i−1i ), g2n−1n+i ) = f(gj−11 , f(gn+j−1j ), g2n−1n+j ).

An n-ary semihypergroup (G, f) has an identity element if there is
an element e ∈ G such that

x ∈ f
(
e(i−1), x, e(i−1)

)
,

for all x ∈ G and all 1 ≤ i ≤ n.
An n-ary semihypergroup (G, f) is commutative if for all gn1 ∈ G and

any permutation σ of {1, 2, ..., n}, we have

f(gn1 ) = f(gσ(1), gσ(2), ..., gσ(n)).
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Let (G, f) be an n-ary hypergroup such that there exists a unique

0 ∈ G such that g = f

(
(i−1)

0 , g,
(n−i)

0

)
. Also, there exists a unitary

operation − on G such that
g ∈ f (gn1 ) implies that gi ∈ f(−gi−1, ...,−g1, g,−gn, ...,−gi+1), for all
1 ≤ i ≤ n. Then, (G, f) is called n-ary polygroup and a commutative
n-ary polygroup is called canonical n-ary hypergroup.

Let (G, f) be an n-ary semihypergroup and H be a non-empty subset
of G. Then, H is an n-ary sub semihypergroup of G if it is close under
the n-ary hyperoperation f , i.e., for every (h1, h2, ..., hn) ∈ Hn implies
that f(h1, h2, ..., hn) ⊆ H.

The n-ary semihypergroup (G, f) is called n-ary hypergroup, when
the equation g ∈ f

(
gi−11 , xi, g

n
i+1

)
has the solution xi ∈ G for any

gi−11 , g, gni+1 ∈ G and 1 ≤ i ≤ n.
Let(G1, f1) and (G2, f2) be two n-ary semihypergroups. Then, a

mapping ϕ : G1 −→ G2 is called a homomorphism if for all xn1 ∈ G1, we
have

ϕ(f1(x1, x2, ..., xn)) = f2(ϕ(x1), ϕ(x2), ..., ϕ(xn)).

When G1 and G2 are n-ary semihypergroups with identity, ϕ(e1) = e2.

Example 2.2. Let (G,+) be a semihypergroup and f be an n-ary hy-
peroperation on G as follows:

∀gn1 ∈ G, f(gn1 ) =

n∑
i=1

gi.

Then, (G, f) is an n-ary semihypergroup.

Example 2.3. Let G be a group and < x, y > be a subgroup of G
generated by x and y. Then, we define

f(g1, g2, ..., gn) =< g1, g2, ..., gn >,

where gn1 ∈ G. We obtain that (G, f) is an n-ary hypergroup.

Example 2.4. Let G be a semigroup and N be a normal subsemigroup
of G. Then, for all gn1 ∈ G, we define f(g1, g2, ..., gn) = g1g2...gnN .
Hence, (G, f) is an n-ary semihypergroup.
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Example 2.5. Let D be an integral domain and F be its field of frac-
tions and snd U be the group of the invertible elements of D. Then, we
define

f(g1, g2, ..., gn) = {g : ∃un1 ∈ U, g = u1g1 + u2g2 + ...+ ungn},

where gi ∈ F/U with 1 ≤ i ≤ n. Hence, (F/U, f) is an n-ary semihy-
pergroup.

Example 2.6. Let V be a vector space over an ordered field F and
x1, x2, ..., xn ∈ V . Then, we define

f(x1, x2, ..., xn) =

{
n∑
i=1

λixi : λi > 0,
n∑
i=1

λi = 1

}
.

Hence, (V, f) is an n-ary semihypergroup.

Example 2.7. Let G = {a1, a2, a3}. Then, G is a 3-ary semihypergroup
by following hyperoperation:

f(a1, a1, a1) = f(a2, a2, a2) = {a1, a2}, f(a3, a3, a3) = {a3},

f(a3, a1, a1) = f(a1, a3, a1) = f(a1, a1, a3) = {a3},

f(a3, a1, a2) = f(a1, a3, a2) = {a3},

f(a1, a2, a3) = {a3}, f(a3, a2, a2) = f(a2, a3, a2) = f(a2, a2, a3) = {a3}.

3 Left(right) G-sets

In this section, we generalize the concept of tensor product of left(right)
G-sets as a generalization of semigroups[12].

Let G be an n-ary semihypergroup and X be a non-empty set. Then,
we say that X is a left G-set if there is an external hyperoperation
h : Gn−1 ×X −→ P∗(X) with the property

h
(
f(gn1 ), g2n−2n+1 , x

)
= h

(
g1, f(gn2 , gn+1), g

2n−2
n+2 , x

)
= ... = h

(
gn−11 , h

(
g2n−2n , x

))
,

where g2n−21 ∈ G and x ∈ X. If e is an scalar identity of G, we say that
X has an unitary when h

(
e(n−1), x

)
= x, for every x ∈ X.
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Dually, a non-empty set X is a right G-set if there is an external
hyperoperation h : X ×Gn−1 −→ P∗(X),

h
(
x, gn−21 , f

(
g2n−2n−1

))
= ... = h

(
h
(
x, gn−11

)
, g2n−2n

)
.

In the same way, we say that X has an unitary when h
(
x, e(n−1)

)
= x,

for every x ∈ X.
Let G and H be n-ary semihypergroups. Then, we say that X is a

(G,H)-set if it is a left G-set by external hyperoperation h1 : Gn−1 ×
X −→ P∗(X) and a right H-set by external hyperoperation h2 : X ×
Hn−1 −→ P∗(X) and

h2(h1(g
n−1
1 , x), tn−11 ) = h1(g

n−1
1 , h2(x, t

n−1
1 )),

where gn−11 ∈ G, tn−11 ∈ H and x ∈ X.
Let G be a canonical n-ary hypergroup and X be a left G-set.

Then, we say that X is reversible if x1 ∈ h(g1, g2, · · · , gn−1, x2) im-
plies that x2 ∈ h(−gn−1,−gn−2, · · · ,−g1, x1), where x1, x2 ∈ X and
g1, g2, · · · , gn−1 ∈ G.

Let X be a left G-set, G be an n-ary semigroup and h : Gn−1×X −→
X. Then, we say that X is a multiplicative left G-set.

Example 3.1. Let G be a canonical n-ary hypergroup and N be a sub
canonical n-ary hypergroup of G. Then, we define the relation N∗ on G
as follows:

xN∗y ⇐⇒ f
(
x,−y, 0(n−2)

)
∩N 6= ∅.

It is not difficult to see that N∗ is an equivalence relation. Hence,
N∗(x) = f

(
N, x, 0(n−2)

)
and the set of all equivalence classes G/N∗ =

{N∗(x) : x ∈ G} is a left G-set as follows:

h : Gn−1 ×G/N∗ −→ P∗(G/N∗)
(gn−11 , N∗(x)) −→ {N∗(t) : t ∈ f(gn−11 , x)}.

Definition 3.2. Let G be a canonical n-ary hypergroup and X be a
reversible left G-set. Then, we define the relation ≡ on X as follows:

x1 ≡ x2 ⇐⇒ ∃gn−11 ∈ G : x1 ∈ h(gn−11 , x2).
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Proposition 3.3. Let G be a canonical n-ary hypergroup and X be a
reversible left G-set and has an unitary. Then, the relation ≡ is an
equivalence.

Proof. Suppose that x ∈ X. Since x = h(e(n−1, x), it implies that
the relation ≡ is reflexive. Let x1, x2 ∈ X and x1 ≡ x2. Then, x1 ∈
h(gn−11 , x2). SinceX is reversible, we have x2 ∈ h(−gn−1,−gn−2, · · · ,−g1, x1).
Hence, ≡ is symmetric. Let x1, x2, x3 ∈ X such that x1 ∈ h(gn−11 , x2)
and x2 ∈ h(kn−11 , x3), where gn−11 , kn−11 ∈ G. This implies that

x1 ∈ h(gn−11 , x2) ⊆ h(gn−11 , h(kn−11 , x3)) = h(f(gn−11 , k1), k
n−1
2 , x3).

Then, there exists g ∈ f(gn−11 , k1) such that x1 ∈ h(g, kn−12 , x3). This
implies that the relation ≡ is transitive. Therefore, the relation ≡ is
equivalence. �

We denote the equivalence class of x ∈ X with respect to the equiv-
alence relation ≡ by orb(x) and it is called orbital of x. Hence,

orb(x) =
{
t ∈ X : ∃gn−11 ∈ G, t ∈ h(gn−11 , x)

}
.

Definition 3.4. Let G be an n-ary semihypergroup and X be a left
G-set and x ∈ X. Then, stabilizer x defined as follows:

Stab(x) =

g ∈ G : x = h(g, g, · · · , g︸ ︷︷ ︸
n−1

, x)

 .

When X is a left G-set with unitary and x ∈ X. We have x =
h(e(n−1), x). Hence, Stab(x) 6= ∅.

Proposition 3.5. Let G be a commutative n-ary semihypergroup, X be
a left G-set with unitary and x ∈ X. Then, Stab(x) is a commutative
n-ary sub semihypergroup of G.

Proof. Since e ∈ Stab(x), we have Stab(x) is a non-empty set. Let
g1, g2, · · · , gn ∈ Stab(x). Then,

h(g1, g1, · · · , g1︸ ︷︷ ︸
n−1

, x) = h(g2, g2, · · · , g2︸ ︷︷ ︸
n−1

, x) = · · · = h(gn, gn, · · · , gn︸ ︷︷ ︸
n−1

, x) = x.
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Since G is a commutative n-ary semihypergroup, we have

h(f(g1, g2, · · · , gn), f(g1, g2, · · · , gn), · · · , f(g1, g2, · · · , gn)︸ ︷︷ ︸
n−1

, x) = x.

This implies that h(g, g, · · · , g︸ ︷︷ ︸
n−1

, x) = x, for every g ∈ f(g1, g2, · · · , gn).

Therefore, f(g1, g2, · · · , gn) ⊆ Stab(x). This completes the proof. �

Example 3.6. Let G be a canonical hypergroup and X = G. Then, X
is a reversible left G-set by external hyperoperation h : G×X −→ P∗(X)
such that h(g, x) = g−1xg, where g ∈ G and x ∈ X. Indeed,

h(g1, h(g2, x)) = g−11 h(g2, x)g1 = g−11 g−12 xg2g1 = h(g1g2, x).

Let x1 ∈ h(g, x2), where x1, x2 ∈ X and g ∈ G. Then, x1 ∈ g−1x2g.
Hence, there exists k ∈ g−1x2 such that x1 ∈ kg. This implies that
k ∈ x1g−1 and x2 ∈ gk. Then, x2 ∈ gx1g−1 = h(g−1, x1). Therefore, X
is a reversible left G-set. Also, for every x ∈ X, we have

orb(x) = {t ∈ X : ∃ g ∈ G, t ∈ g−1xg}, Stab(x) = {g ∈ G : gx = xg}.

Proposition 3.7. Let G be a commutative n-ary semihypergroup and
X be a left G-set. Then, X is a (G,G)-set.

Proof. Since X is a left G-set, there exists an external hyperoperation
h : Gn−1 ×X −→ P∗(X) such that

h
(
f(gn1 ), g2n−2n+1 , x

)
= h

(
g1, f(gn2 , gn+1), g

2n−2
n+2 , x

)
= ... = h

(
gn−11 , h

(
g2n−2n , x

))
.

Let right external hyperoperation ĥ : X × Gn−1 −→ P∗(X) defined by
ĥ(x, gn−11 ) = h(gn−11 , x), where gn−11 ∈ G and x ∈ X. Then, one can see
that X is a right G-set and (G,G)-set. �

Example 3.8. Let K4 be a Kelain group and S = {a1, a2, a3, a4, a5}.
Then, S is a left K4-set by following hyperoperation:

a1 a2 a3 a4 a5
e {a1} {a2, a3} {a2, a3} {a4} {a5}
a {a2, a3} {a1} {a1} {a5} {a4}
b {a4} {a5} {a5} {a1} {a2, a3}
ab {a5} {a4} {a4} {a2, a3} {a1}



Direct limit and tensor product for left(right) G-sets on hypergroups 9

Where K4 = {e, a, b, ab} such that a2 = b2 = e and ab = ba. Since K4 is
an abelian group, we can consider S as a right K4-set.

Definition 3.9. A map ϕ : X −→ Y from a left G-set X into a left
G-set Y is called G-map if

ϕ(h1(g
n−1
1 , x)) = h2(g

n−1
1 , ϕ(x)).

When X and Y are (G,H)-sets and ϕ : X −→ Y is G-map and H-map,
then ϕ is called (G,H)-map. A G-map ϕ is called isomorphism, when
it is both one to one and onto.

Let Mor(X,Y ) be the set of all G-maps from X into Y such that X
and Y be left G-sets and h1 : Gn−1 ×X −→ P∗(X), h2 : Gn−1 × Y −→
P∗(Y ). Then, we define

h : Gn−1 ×Mor(X,Y ) −→Mor(X,Y )

(gn−11 , ϕ) 7−→ ϕ,

where ϕ : X −→ Y and ϕ(x) = h2
(
gn−11 , ϕ(x)

)
. Hence,

ϕ(h1
(
gn−11 , x)

)
= h2

(
gn−11 , ϕ(h1

(
gn−11 , x)

))
= h2

(
gn−11 , h2

(
gn−11 , ϕ(x)

))
= h2

(
gn−11 , ϕ(x)

)
.

This implies that ϕ ∈Mor(X,Y ). Moreover, for every x ∈ X,

h(f(gn1 ), g2n−2n+1 , ϕ)(x) = h2(f(gn1 ), g2n−2n+1 , ϕ(x))

= h2(g1, f(gn2 , gn+1), g
2n−2
n+2 , ϕ(x))

= h(g1, f(gn2 , gn+1), g
2n−2
n+2 , ϕ)(x).

This implies that h(f(gn1 ), g2n−2n+1 , ϕ) = h
(
g1, f(gn2 , gn+1), g

2n−2
n+2 , ϕ

)
. In

the same way, we can see

h
(
f(gn1 ), g2n−2n+1 , ϕ

)
= h(g1, f(gn2 , gn+1), g

2n−2
n+2 , ϕ) = · · · = h

(
gn−11 , h(g2n−2n , ϕ)

)
.

Hence, Mor(X,Y ) is a left G-set.
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Let X be a left G-set, ρ be an equivalence relation on X and A,B ⊆
X. Then, we define

AρB ⇐⇒ ∀a ∈ A, ∃ b ∈ B : aρb and ∀b ∈ B, ∃ a ∈ A : aρb.

Also,

AρB ⇐⇒ ∀ a ∈ A,∀ b ∈ B, aρb.

An equivalence relation ρ is called regular on a left G-set X, when

x1ρ x2 =⇒ h(gn−11 , x1)ρ h(gn−11 , x2), ∀gn−11 ∈ G.

An equivalence relation ρ is called strongly regular on a left G-set X,
when

x1ρ x2 =⇒ h(gn−11 , x1)ρ h(gn−11 , x2), ∀gn−11 ∈ G.

The quotient set [X : ρ] is a left G-set by h : Gn−1 × [X : ρ] −→
P∗([X : ρ]), where

h(gn−11 , ρ(x)) = {ρ(t) : t ∈ h(gn−11 , x)}.

We note that there is a G-map ϕ : X −→ [X : ρ] by ϕ(x) = ρ(x).

Example 3.10. Let G be an n-ary semigroup. Then, G is a (G,G)-set,
where the action of G on G is defined by means of multiplication.

Example 3.11. Let H be an n-ary subsemigroup of G. Then, G is a
(H,H)-set in the obvious way.

Example 3.12. Let G be an n-ary semihypergroup and X be an n-ary
subsemihypergroup of G and

h : Gn−1 ×X −→ X

(gn−11 , x) 7−→ e,

where e is a scalar identity and gn−11 ∈ G and x ∈ X. Then, X is a left
G-set.

Example 3.13. Let G =
⋃
n≥0An such that A0 = {0}, An = [n, n+ 1)

and X be positive integers numbers. We define
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f : Gn −→ P∗(G)
(gn1 ) 7−→ At,

where t = max{m1,m2, ...,mn} and gi ∈ Ami . Then, (G, f) is n-ary
semihypergroup. Also,

h : Gn−1 ×X −→ X

(gn−11 , x) 7−→ max{m1,m2, ...,mn−1, x}.

Then, X is a left G-set.

It is clear that the cartesian product X × Y of a left G1-set X and
a right G2-set Y becomes (G1, G2)-set by the following definitions:

h1(g
n−1
1 , (x, y)) = (h1(g

n−1
1 , x), y),

h2((x, y), tn−11 ) = (x, h2(y, t
n−1
1 )),

where x ∈ X, y ∈ Y , gi ∈ G1 and tj ∈ G2, for 1 ≤ i ≤ n − 1 and
1 ≤ j ≤ n− 1.

Definition 3.14. Let X be a left G-set with unitary. Then, we define

aβmb ⇐⇒ ∃ gij ∈ G, 1 ≤ i ≤ m, 1 ≤ j ≤ n− 1, x ∈ X

: {a, b} ⊆ h
(
gn−1m1 , h

(
gn−1(m−1)1, h

(
gn−1(m−2)1, · · · , h

(
gn−111 , x

)
...
)))

,

where a, b ∈ X and m ≥ 1. Let β =
⋃
m≥1 βm. Clearly, the relation β is

reflexive and symmetric. We denote by β∗ the transitive closure of β.

Let X be a left G-set. Then, we define

P =
{
h
(
gn−1m1 , h

(
gn−1(m−1)1, h

(
gn−1(m−2)1, · · · , h

(
gn−111 , x

)
...
)))

: x ∈ X,m ∈ N
}
.

Theorem 3.15. Let X be a left G-set with unitary. Then, β∗ is the
smallest strong regular relation on X.
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Proof. Suppose that aβ∗b and kn−11 ∈ G. It follows that there ex-
ist x0 = a, x1, x2, ..., xn = b such that for all i ∈ {0, 1, 2, · · · , n − 1},
we have xiβxi+1. Let u1 ∈ h(kn−11 , a) and u2 ∈ h(kn−11 , b). We check
that u1β

∗u2. From xiβxi+1, it follows that there exists a hyperprod-
uct Pi such that {xi, xi+1} ⊆ Pi. Hence, h(kn−11 , xi) ⊆ h(kn−11 , Pi) and

h(kn−11 , xi+1) ⊆ h(kn−11 , Pi), which means that h(kn−11 , xi)βh(kn−11 , xi+1).
Hence, for all i ∈ {0, 1, 2, · · · ,m − 1} and for all si ∈ h(kn−11 , xi), we
have siβsi+1. We consider s0 = u1 and sm = u2. It follows that, u1β

∗u2.
Then, the equivalence relation β∗ is strongly regular.

Let ρ be a strongly regular relation. Since ρ is reflexive β1 ⊆ ρ.
Suppose that βm−1 ⊆ ρ and aβmb. Hence

{a, b} ⊆ h
(
gn−1m1 , h

(
gn−1(m−1)1, h

(
gn−1(m−2)1, · · · , h

(
gn−111 , x

)
...
)))

.

There exist u, v ∈ h
(
gn−1(m−1)1, h

(
gn−1(m−2)1, h

(
gn−1(m−3)1, · · · , h

(
gn−111 , x

)
...
)))

such that a ∈ h
(
gn−11 , u

)
and b ∈ h

(
gn−11 , v

)
. We have uβm−1v and ac-

cording to the hypothesis, we obtain uρv. Since ρ is strongly regular, it
follows that aρb. Hence, βm ⊆ ρ. Therefore, β∗ ⊆ ρ. �

Definition 3.16. Let X be a left G-set. Then, β∗ is called fundamental
relation on X and the set of all equivalence classes [X : β∗] is called the
fundamental G-set.

Definition 3.17. LetG be an n-ary semihypergroup with scalar identity
and X be a left G-set. Then, we define

a/b = {x ∈ X : a ∈ h(e(n−2), b, x)},

where a ∈ X and b ∈ G.

Definition 3.18. LetG be an n-ary semihypergroup with scalar identity
and X be a left G-set. Then, (X,h) is called a join space if the following
condition holds for all a, b ∈ X and all c, d ∈ G:

a/c ∩ b/d 6= ∅ ⇒ h(e(n−2), a) ∩ h(e(n−1), b) 6= ∅.

Definition 3.19. LetG be an n-ary semihypergroup with scalar identity
and a left G-set X be join space. Then, we define the following relation
on X:

xJGy ⇐⇒ h(e(n−2), G, x) ∩ h(e(n−2), G, y) 6= ∅.
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Theorem 3.20. Let G be an n-ary semihypergroup with scalar identity
and a left G-set X be join space. Then, the relation JG is an equivalence
relation on X and the equivalence class of an element a ∈ X is as follows:

JG(a) = h(e(n−2), G, a)/G.

Proof. It’s obvious that JG is reflexive and symmetric. Now we prove
that JG is transitive: Suppose that aJGb and bJGc. Hence, h(e(n−2), G, a)∩
h(e(n−2), G, b) 6= ∅ and h(e(n−2), G, b) ∩ h(e(n−2), G, c) 6= ∅. There
exists d1 ∈ h(e(n−2), G, a) ∩ h(e(n−2), G, b) and d2 ∈ h(e(n−2), G, b) ∩
h(e(n−2), G, c). We have

∃g ∈ G : d1 ∈ h(e(n−2), g, b) −→ b ∈ d1/g ⊆ h(e(n−2), G, a)/G,

∃g′ ∈ G : d2 ∈ h(e(n−2), g
′
, b) −→ b ∈ d2/g′ ⊆ h(e(n−2), G, c)/G.

Hence,

h(e(n−2), G, a)/G ∩ h(e(n−2), G, c)/G 6= ∅,

h(e(n−2), G, a) ∩ h(e(n−2), G, c) 6= ∅,

which completes the proof. �

Definition 3.21. Let X be a left G-set and A be a non-empty subset
of X. Then, we say that A is a complete part of X if for any non-zero
natural number m and gij ∈ G, where 1 ≤ i ≤ m, 1 ≤ j ≤ n − 1 and
x ∈ X, the following implication holds:

A ∩ h
(
gn−1m1 , h

(
gn−1(m−1)1, h

(
gn−1(m−2)1, · · · , h

(
gn−111 , x

)
...
)))

6= ∅ =⇒

h
(
gn−1m1 , h

(
gn−1(m−1)1, h

(
gn−1m−2)1, · · · , h

(
gn−111 , x

)
...
)))

⊆ A.

If B is a subset of X, denote by C(B) the complete closure of B,
which is the smallest complete part of X that contains B.

Let K1(A) = A and for all n ≥ 1, we define
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Kn+1(A) =
{
y ∈ X : ∃gn−1m1 , g

n−1
(m−1)1, ..., g

n−1
11 ∈ G, x ∈ X,

y ∈ h
(
gn−1m1 , h

(
gn−1(m−1)1, h

(
gn−1(m−2)1, · · · , h

(
gn−111 , x

)
...
)))

,

Kn(A) ∩ h
(
gn−1m1 , h

(
gn−1(m−1)1, h

(
gn−1(m−2)1, · · · , h

(
gn−111 , x

)
...
)))

6= ∅
}
.

Also, we define K(A) =
⋃
n≥1Kn(A).

Theorem 3.22. Let X be a left G-set and A be a non-empty subset of
X. Then, C(A) = K(A).

Proof. Suppose that

K(A) ∩ h
(
gn−1m1 , h

(
gn−1(m−1)1, h

(
gn−1(m−2)1, · · · , h

(
gn−111 , x

)
· · ·
)))

6= ∅.

Then, there exists n ≥ 1 such that

Kn(A) ∩ h
(
gn−1m1 , h

(
gn−1(m−1)1, h

(
gn−1m−2)1, · · · , h

(
gn−111 , x

)
· · ·
)))

6= ∅.

This means that

h
(
gn−1m1 , h

(
gn−1(m−1)1, h

(
gn−1(m−2)1, · · · , h

(
gn−111 , x

)
· · ·
)))

⊆ Kn+1(A) ⊆ K(A).

Hence, K(A) is a complete part. Now, if A ⊆ B and B is a complete
part of X, then we show that K(A) ⊆ B. We have K1(A) = A ⊆ B
and suppose that Kn(A) ⊆ B. We check that Kn+1(A) ⊆ B. Let
z ∈ Kn+1(A). Then, there exists a hyperproduct

h
(
gn−1p1 , h

(
gn−1(p−1)1, h

(
gn−1(p−2)1, · · · , h

(
gn−111 , x

)
· · ·
)))

,

such that

z ∈ h
(
gn−1p1 , h

(
gn−1(p−1)1, h

(
gn−1(p−2)1, · · · , h

(
gn−111 , x

)
· · ·
)))

.

Hence,

B ∩ h
(
gn−1p1 , h

(
gn−1(p−1)1, h

(
gn−1(p−2)1, · · · , h

(
gn−111 , x

)
· · ·
)))

6= ∅.
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Since B is a complete part, we obtain

h
(
gn−1p1 , h

(
gn−1(p−1)1, h

(
gn−1(p−2)1, · · · , h

(
gn−111 , x

)
· · ·
)))

⊆ B.

We obtain z ∈ B. Therefore, K(A) is a smallest complete part contains
A. This implies that C(A) = K(A). �

Proposition 3.23. Let X be a left G-set and x be an arbitrary element
of X. Then,

(1) For all n ≥ 2, we have Kn(K2(x)) = Kn+1(x),

(2) x ∈ Kn(y)⇐⇒ y ∈ Kn(x).

Proof. (1) We proof this proposition by induction. We have

K2(K2(x)) =
{
y ∈ X : ∃gn−1p1 , gn−1(p−1)1, ..., g

n−1
11 ∈ G,

.y ∈ h
(
gn−1(p−1)1, h

(
gn−1(p−2), · · · , h

(
gn−111 , x

)))
K2(x) ∩ h

(
gn−1(p−2), · · · , h

(
gn−111 , x

))
6= ∅
}

= K3(x).

Suppose that Kn−1(K2(x)) = Kn(x). Then,

Kn(K2(x)) =
{
z ∈ X : ∃gn−1p1 , gn−1(p−1)1, ..., g

n−1
11 ∈ G,

z ∈ h
(
gn−1(p−1)1, h

(
gn−1(p−2), · · · , h

(
gn−111 , x

)))
,

K(n−1)(K2(x)) ∩ h
(
gn−1(p−1)1, h

(
gn−1(p−2), · · · , h

(
gn−111 , x

)))
6= ∅
}

= K(n+1)(x).

(2)We check the equivalence by induction. For n = 2, we have

x ∈ K2(y) =
{
z ∈ X : gn−1p1 , gn−1(p−1)1, ..., g

n−1
11 ∈ G, t ∈ X

z ∈ h
(
gn−1(p−1)1, h

(
gn−1(p−2)1, · · · , h

(
gn−111 , t

)
· · ·
))

K1(y) ∩ h
(
gn−1(p−1)1, h

(
gn−1(p−2)1, · · · , h

(
gn−111 , t

)
· · ·
))
6= ∅
}
.
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Hence, {y, x} ⊆ h
(
gn−1(p−1)1, h

(
gn−1(p−2)1, · · · , h

(
gn−111 , t

)
· · ·
))

. This im-

plies that y ∈ K2(x). Let x ∈ K(n−1)(y) if and only if y ∈ K(n−1)(x). If

x ∈ Kn(y), then there exists h
(
gn−1(p−1)1, h

(
gn−1(p−2)1, · · · , h

(
gn−111 , t

)
· · ·
))

such that x ∈ h
(
gn−1(p−1)1, h

(
gn−1(p−2)1, · · · , h

(
gn−111 , t

)
· · ·
))

and

h
(
gn−1(p−1)1, h

(
gn−1(p−2)1, · · · , h

(
gn−111 , t

)
· · ·
))
∩K(n−1)(y) 6= ∅.

Hence, there exists v ∈ X such that

v ∈ h
(
gn−1(p−1)1, h

(
gn−1(p−2)1, · · · , h

(
gn−111 , t

)
· · ·
))
∩K(n−1)(y).

Also,

K2(x) =
{
z ∈ X : gn−1p1 , gn−1(p−1)1, ..., g

n−1
11 ∈ G, t ∈ X,

z ∈ h
(
gn−1(p−1)1, h

(
gn−1(p−2)1, · · · , h

(
gn−111 , t

)
· · ·
))

K1(x) ∩ h
(
gn−1(p−1)1, h

(
gn−1(p−2)1, · · · , h

(
gn−111 , t

)
· · ·
))
6= ∅
}
.

By definition K2(x) we have v ∈ K2(x). Also, by induction hypothesis
v ∈ K(n−1)(y) implies that y ∈ K(n−1)(v).

It follows that v ∈ K2(x) and y ∈ K(n−1)(v). Hence, y ∈ K(n−1)(K2(x)) =
Kn(x). Similarly, we obtain the converse implication. �

Corollary 3.24. Let X be a left G-set. Then, the following relation is
an equivalence:

xK y ⇐⇒ ∃n ≥ 1 : x ∈ Kn(y).

Theorem 3.25. Let X be a left G-set. Then, the equivalence relation
K and β∗ are coincide.

Proof. Suppose that x, y ∈ X and xβy. This implies that

{x, y} ⊆ h
(
gn−1p1 , h

(
gn−1(p−1)1, · · · , h

(
gn−111 , x

)
· · ·
))

,

for some gij ∈ G, where 1 ≤ i ≤ p and 1 ≤ j ≤ n− 1. This implies that
x ∈ K2(y) ⊆ K(y). Hence, β ⊆ K whence β∗ ⊆ K. Now, if we have
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xKy and x 6= y, then there exists n ≥ 1 such that xKny, which means
that there exists

h
(
gn−1(p−1)1, h

(
gn−1(p−2)1, · · · , h

(
gn−111 , x

)
· · ·
))

such that

x ∈ h
(
gn−1(p−1)1, h

(
gn−1(p−2)1, · · · , h

(
gn−111 , x

)
· · ·
))

.

Let

x1 ∈ h
(
gn−1(p−1)1, h

(
gn−1(p−2)1, · · · , h

(
gn−111 , x

)
· · ·
))
∩Kn(y).

Then, xβx1. Thus, x1 ∈ Kn(y). In the same way, after a finite number
of steps, we obtain that there exist xn−1 and xn such that xn−1βxn and
xn ∈ Kn−(n−1)(y) = {y}. Therefore, xβ∗y. �

Proposition 3.26. Let X and Y be left G-sets and α : X −→ Y be a
G-map. Then, a map α̂ : [X : β∗] −→ [Y : β∗], defined by α̂(β∗(x)) =
β∗(α(x)) is a G-map.

Proof. Suppose that β∗(a) = β∗(b), where a, b ∈ X. Then, there
exist x1, x2, · · · , xn ∈ X such that x1 = a and xn = b and xiβxi+1, for
1 ≤ i ≤ n− 1. This implies that

{xi, xi+1} ⊆ h
(
gn−1mi1

, h
(
gn−1(mi−1)1, h

(
gn−1(mi−2)1, · · · , h

(
gn−111 , x

)
· · ·
)))

,

where x ∈ X, mi ∈ N and gn−1mi1
∈ G. Since α is a G-map, we have

{α(xi), α(xi+1)} ⊆ h
(
gn−1mi1

, h
(
gn−1(mi−1)1, · · · , h

(
gn−111 , α(x)

)
· · ·
))

.

This implies that β∗(α(a)) = β∗(α(b)) and α̂ is well-defined. Also, for
every β∗(x) ∈ [X : β∗] and g1, g2, · · · , gn−1 ∈ G, we have

α̂(h
(
gn−11 , β∗(x))

)
= α̂(

{
β∗(t) : t ∈ h

(
gn−11 , x

)}
)

=
{
β∗(α(t)) : t ∈ h

(
gn−11 , x

)}
=
{
β∗(a) : a = α(t), t ∈ h

(
gn−11 , x

)}
=
{
β∗(a) : a ∈ h

(
gn−11 , α(x)

)}
= h

(
gn−11 , α̂(β∗(x))

)
.

Therefore, the map α̂ is a G-map. �
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4 Direct limit of (G,H)-sets

Let (I,≤) be a partially ordered set and {Xi : i ∈ I} be a collection of
(G,H)-sets, where G and H be n-ary semihypergroups. Also, for every
i, j ∈ I such that i ≤ j, there are (G,H)-maps αij : Xi −→ Xj such
that

(1) αii = IXi ,

(2) αij ◦ αjk = αik.

Then, we say that (Xi, αij)i,j∈I is a direct system of (G,H)-sets.
A (G,H)-set X is called a direct limit of (Xi, αij)i,j∈I if there exists

(G,H)-maps βi : Xi −→ X such that for all i ≤ j, βj ◦αij = βi. Also, if
there exists a (G,H)-set Y with the property that there exists (G,H)-
maps γi : Xi −→ Y such that γj ◦ αij = γi, where i ≤ j, then there is a
unique (G,H)-map δ : X −→ Y such that δ ◦ βi = γi, for every i ∈ I.
We write limi∈IXi = X.

Theorem 4.1. Let (Xi, αij)i,j∈I be a direct system. Then, the direct
limit exists and is unique up to isomorphism.

Proof. Suppose that (Xi, αij)i,j∈I is a direct system. Then, there is
no loss of generality in supposing that the sets Xi(i ∈ I) are pairwise
disjoint. Let Z be the union of all the sets Xi. Then, Z is a (G,H)-set
in an obvious way. We define

ρ = {(xi, yj) : xi ∈ Xi, yj = αij(xi), i, j ∈ I, i ≤ j},

and ρ∗ be an equivalence relation generated by ρ. Let xiρyj and gn−11 ∈
G. Then, αij(xi) = yj . This implies that

h(gn−11 , yj) = h(gn−11 , αij(xi)) = αij(h(gn−11 , xi)).

Hence, for every b ∈ h(gn−11 , yj) there exists a ∈ h(gn−11 , xi) such that
αij(a) = b. Thus, aρb. Also, xρ∗y implies that there exist x1, x2, ..., xn ∈
Z such that xiρxi+1. Hence, h(gn−11 , xi)ρh(gn−11 , xi+1) implies that
h(gn−11 , xi)ρ∗h(gn−11 , xi+1). We have a (G,H)-map βi : Xi −→ [Z : ρ∗]
defined by βi(xi) = ρ∗(xi). Then, βj(αij(xi)) = ρ∗(αij(xi)) = ρ∗(xi) =
βi(xi), for every xi ∈ Xi and so βj ◦ αij = αi. If Y is a (G,H)-set and
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γi : Xi −→ Y be G-maps such that γj ◦αij = γi, for each i, j ∈ I, i ≤ j,
then we have a (G,H)-map ϕ : Z = ∪i∈IXi into Y such that ϕ(xi) =
γi(xi), where xi ∈ Xi and i ∈ I. Also,

ϕ(αij(xi)) = γj(αij(xi)) = γi(xi) = ϕ(xi).

Hence, there exists a (G,H)-map ω : [Z : ρ∗] −→ Y defined by ω(ρ∗(xi)) =
γi(xi). Moreover, ω ◦ βi(xi) = ω(ρ∗(xi)) = γi(xi), for all xi ∈ Xi. Fi-
nally, the (G,H)-map ω is unique: If ω1 is another (G,H)-map with the
same properties, then for all xi ∈ Xi we have

ω1(ρ
∗(xi)) = ω1(βi(xi)) = γi(xi) = ω(ρ∗(xi)).

Hence ω = ω1. Let X and Y be direct limit of the direct system
(Xi, αij)i,j∈I . Then, we have a unique (G,H)-map ω1 : X −→ Y and
ω2 : Y −→ X such that βi◦ω1 = γi and γi◦ω2 = βi. Hence βi◦ω1◦ω2 = βi
and γi ◦ ω2 ◦ ω1 = γi. This implies that ω1 ◦ ω2 = Id and ω2 ◦ ω1 = Id.
Therefore, the direct limit is unique up to isomorphism. �

Theorem 4.2. Let (Xi, αij)i,j∈I be a direct system of left G-subsets of
X, G be a commutative n-ary semihypergroup and β∗ be a fundamental
relation on X. Then, ([Xi : β∗], α̂ij)i,j∈I is a direct system of [X : β∗].
Also, limi∈I [Xi : β∗] = [limi∈IXi : β∗].

Proof. Suppose that (Xi, αij)i,j∈I is a direct system and αij : Xi −→ Xj

be (G,G)-maps for i ≤ j. By Proposition 3.26, α̂ij : [Xi : β∗] −→ [Xj :
β∗] are (G,G)-maps, where i, j ∈ I and i ≤ j. Also,

α̂ii(β
∗(x)) = β∗(αii(x)) = β∗(x),

where β∗(x) ∈ [Xi : β∗] and

α̂ij ◦ α̂jk(β∗(x) ) = α̂ij(α̂jk(β
∗(x)))

= β∗(αij ◦ αjk(x))
= β∗(αik(x))
= α̂ik(β

∗(x))

,
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where β∗(x) ∈ [Xi : β∗]. Hence, ([Xi, β
∗], α̂ij)i,j∈I is a direct system.

Let X ′ be the direct limit of the direct system (Xi, αij)i,j∈I . Then,
αij : Xi −→ Xj and σi : Xi −→ X ′ such that σj ◦ αij = σi. We define
σ̂i : [Xi : β∗] −→ [X ′ : β∗] by σ̂i(β

∗(xi)) = β∗(σi(xi)), where xi ∈ Xi.
By Proposition 3.26, σ̂i are well-defined and (G,G)-maps. Also, the
maps α̂ij : [Xi : β∗] −→ [Xj : β∗] are well-defined and (G,G)-maps.
Thus,

σ̂j ◦ α̂ij(β∗(xi)) = β∗(σj ◦ αij(xi)) = β∗(σi(xi)) = σ̂i(β
∗(xi)).

Let T be an another (G,G)-set and γi : Xi −→ T be (G,G)-maps such
that γj ◦ αij = γi. Then, γ̂j ◦ α̂ij = γ̂i. Hence, there exists a unique
(G,G)-map δ : X ′ −→ T such that δ ◦ σi = γi. By Proposition 3.26,
δ̂ : [X ′ : β∗] −→ [T : β∗] is a (G,G)-map and easy to see that δ̂ ◦ σ̂i = γ̂i.
Now, δ̂ is unique:
If δ̂1 is another (G,G)-map with the same properties of δ̂, then

δ̂1(σ̂i(β
∗(xi))) = β∗(δ1 ◦ σi(xi))

= β∗(δ ◦ σi(xi))
= δ̂ ◦ σ̂i(β∗(xi))

This completes the proof. �

5 Tensor product

In this section, we generalize the concept of tensor product of n-ary
semihypergroups as a generalization of semigroups[12].

LetX, Y and Z be (G1, G2)-set, (G2, G3)-set and (G1, G3)-set,respectively.
Then, we know that X × Y is a (G1, G3)-set. We say that a map
ϕ : X × Y −→ Z is called bimap if for all x ∈ X, gn−11 ∈ G2 and
y ∈ Y , we have

ϕ
(
h1(x, g

n−1
1 ), y

)
= ϕ

(
x, h2(g

n−1
1 , y)

)
.

A pair (P,ψ) consists of a (G1, G3)-set P and a bimap ψ : X×Y −→
P will be called a tensor product ofX and Y overG2 if for every (G1, G3)-
set Z and every bimap β : X × Y −→ Z, there exists a unique bimap
β : P −→ Z such that β ◦ ψ = β.
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Suppose that ρ∗ is the equivalence relation on X × Y generated by
the relation

ρ =
{

((t1, y) , (x, t2)), x ∈ X, y ∈ Y, gn−11 ∈ G2, t1 = h1
(
x, gn−11

)
, t2 = h2(g

n−1
1 , y)

}
.

where gn−11 ∈ G2 are scalar elements. This means that for every x ∈ X
and y ∈ Y we have | h1

(
x, gn−11

)
|= 1 and | h2(gn−11 , y) |= 1. We denote

a typical element ρ∗(x, y) of [X × Y : ρ∗] by x⊗ y and we define X ⊗ Y
to be [X × Y : ρ∗]. By definition of ρ∗ we immediately have that

h1(x, g
n−1
1 )⊗ y = x⊗ h2(gn−11 , y).

Example 5.1. Let G be an commutative n-ary semihypergroup and X
be a non-empty set. Then, X is a left G-set as follows:

h : Gn−1 ×X −→ P∗(X)

(gn−11 , x) −→ {x}

Hence for every x, y ∈ X, we have ρ∗(x, y) = {(x, y)}. Also, if we define
h(gn−11 , x) = X, then we obtain ρ∗(x, y) = X ×X.

Example 5.2. Let G = {a1, a2, a3} be a canonical hypergroup by fol-
lowing hyperoperation and X = G. Then, X is a left G-set as follows:

a1 a2 a3
a1 a1 a2 a3
a2 a2 a2 {a1, a2, a3}
a3 a3 {a1, a2, a3} a3

h : G×X −→ P∗(X)
(g, x) −→ g−1xg

Hence [X × Y : ρ∗] = X × Y .

Example 5.3. Let (G,+) be a canonical hypergroup and N be a non-
zero subcanonical hypergroup of G. Then, we define an equivalence
relation N∗ on G as follows:

xN∗y ⇐⇒ (x− y) ∩N 6= ∅,
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where x, y ∈ G. The set of all equivalence classes G/N∗ = {N∗(x) : x ∈
G} is a left G-set as follows:

h : G×G/N∗ −→ P∗(G/N∗)
(g,N∗(x)) −→ {N∗(t) : t ∈ g + x}.

Indeed,

h(g1, h(g2, N
∗(x))) = {h(g1, N

∗(t)) : N∗(t) ∈ h(g2, N
∗(x))}

= {h(g1, N
∗(t)) : t ∈ g2 + x}

= {N∗(t′) : t′ ∈ g1 + t ⊆ g1 + (g2 + x) = (g1 + g2) + x}
= {N∗(t′) : t′ ∈ (g1 + g2) + x}
= h(g1 + g2, N

∗(x)).

Also,
h(0, N∗(x)) = {N∗(t) : t ∈ 0 + x} = N∗(x).

Let g be a scalar element of G. Then, for every N∗(x) ∈ G/N∗, we have
| h(g,N∗(x)) |= 1. We claim, g = 0. Let g 6= 0. Then, | h(g,N∗(0)) |=
1. We have | N∗(g) |= 1. Since g ∈ N∗(g) and for every a ∈ g +N , a ∈
N∗(g), we have a = g. This implies that N = {0} which is contradiction.
Thus, the only scalar element of G is {0}. Therefore,

G/N∗ ⊗G/N∗ = {ρ∗(N∗(g1), N∗(g2)) : g1, g2 ∈ G}
= {(N∗(g1), N∗(g2) : g1, g2 ∈ G}
= G/N∗ ×G/N∗.

Proposition 5.4. Let X and Y be (G1, G2)- and (G2, G3)- sets, respec-
tively, then x1⊗ y1 = x2⊗ y2 if and only if there exist a1, a2, ..., an ∈ X,
b1, b2, ..., bn−1 ∈ Y and scalar elements tn−1i1 , sn−1j1 ∈ G2 where 1 ≤ i ≤
n− 1 and 1 ≤ j ≤ n such that

x1 = h1
(
a1, s

n−1
11

)
,

h1
(
a1, t

n−1
11

)
= h1

(
a2, s

n−1
21

)
,

...

h1
(
ai, t

n−1
i1

)
= h1

(
ai+1, s

n−1
(i+1)1

)
,

...

h1

(
an−1, t

n−1
(n−1)1

)
= h1

(
x2, s

n−1
n1

)
.
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h2
(
sn−111 , y1

)
= h2

(
tn−111 , b1

)
,

h2
(
sn−121 , b1

)
= h2

(
tn−121 , b2

)
,

...

h2(s
n−1
n1 , bn−1) = y2,

Proof. Suppose that we have given sequence of equivalence equations.
Then,

x1 ⊗ y1 = h1
(
a1, s

n−1
11

)
⊗ y1 = a1 ⊗ h2(tn−111 , y1) = h1(a1, t

n−1
11 )⊗ y1

= h1
(
a2, s

n−1
21

)
⊗ y1

...

= x2 ⊗ h2(sn−1n1 , bn−1)
= x2 ⊗ y2.

Conversely, suppose that x1⊗y1 = x2⊗y2. Hence there is a sequence
(p1, h1), (p2, h2), ..., (pn, hn) such that (x1, y1) = (p1, h1),(pn, hn) = (x2, y2)
and ((pi, hi), (pi+1, hi+1)) ∈ ρ, i = 1, · · · , n− 1. By the definition ρ, we
have the given sequence of equations. This completes the proof. �

Proposition 5.5. Let X and Y be (G1, G2)-set and (G2, G3)-set, re-
spectively. Then, X ⊗ Y is a (G1, G3)-set.

Proof. Since X and Y are (G1, G2)- and (G2, G3)-sets, respectively, by
definition

h1 : X ×Gn−12 −→ P∗(X), h
′
1 : Gn−11 ×X −→ P∗(X),

h2 : Gn−12 × Y −→ P∗(Y ), h
′
2 : Y ×Gn−13 −→ P∗(Y ).

We define

h2
(
x⊗ y, sn−11

)
= x⊗ h′2

(
y, sn−11

)
,

h1
(
kn−11 , x⊗ y

)
= h

′
1

(
kn−11 , x

)
⊗ y,

where sn−11 ∈ G3, k
n−1
1 ∈ G1 and x ∈ X, y ∈ Y .
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Suppose that x1 ⊗ y1 = x2 ⊗ y2. By the Proposition 5.4, we have

x1 = h1
(
a1, s

n−1
11

)
,

h1
(
a1, t

n−1
11

)
= h1

(
a2, s

n−1
21

)
,

...

h1
(
ai, t

n−1
i1

)
= h1

(
ai+1, s

n−1
(i+1)1

)
,

...

h1

(
an−1, t

n−1
(n−1)1

)
= h1

(
x2, s

n−1
n1

)
.

h2
(
sn−111 , y1

)
= h2

(
tn−111 , b1

)
,

h2
(
sn−121 , b1

)
= h2

(
tn−121 , b2

)
,

...

h2
(
sn−1i1 , bi−1

)
= h2

(
tn−1i1 , bi

)
,

...

h2

(
sn−1(n−1)1, bn−2

)
= h2

(
tn−1(n−1)1, bn−1

)
,

h2(s
n−1
n1 , bn−1) = y2,

where a1, a2, ..., an ∈ X, b1, b2, ..., bn−1 ∈ Y and tn−1i1 , sn−1j1 ∈ G2 where
1 ≤ i ≤ n− 1 and 1 ≤ j ≤ n. This implies that

h
′
1

(
kn−11 , x1

)
= h

′
1

(
kn−11 , h1

(
a1, s

n−1
11

))
,

h
′
1

(
kn−11 , h1

(
a1, t

n−1
11

))
= h

′
1

(
kn−11 , h1

(
a2, s

n−1
21

))
,

...

h
′
1

(
kn−11 , h1

(
ai, t

n−1
i1

))
= h

′
1

(
kn−11 , h1

(
ai+1, s

n−1
(i+1)1

))
...

h
′
1

(
kn−11 , h1

(
an−1, t

n−1
(n−1)1

))
= h

′
1

(
kn−11 , h1

(
x2, s

n−1
n1

))
.

Thus,
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h
′
1

(
kn−11 , x1

)
= h1

(
h
′
1

(
kn−11 , a1

)
, sn−111

)
,

h1

(
h
′
1

(
kn−11 , a1

)
, tn−111

)
= h1

(
h
′
1

(
kn−11 , a2

)
, sn−121

)
,

...

h1

(
h
′
1

(
kn−11 , ai

)
, tn−1i1

)
= h1

(
h
′
1

(
kn−11 , ai+1

)
, sn−1(i+1)1

)
,

...

h1

(
h
′
1

(
kn−11 , an−1

)
, tn−1(n−1)1

)
= h1

(
h
′
1

(
kn−11 , x2

)
, sn−1n1

)
.

This implies that h
′
1

(
kn−11 , x1

)
⊗ y1 = h

′
1

(
kn−11 , x2

)
⊗ y2 and the map

h1 is well-defined. We can see that X ⊗ Y is a left G1-set by h1. In
the same way, X ⊗ Y is a right G3-set by the map h2. Also, for every
x⊗ y ∈ X ⊗ Y , kn−11 ∈ G1 and sn−11 ∈ G3

h2
(
h1
(
kn−11 , x⊗ y

)
, sn−11

)
= h2

(
h
′
1

(
kn−11 , x

)
⊗ y, sn−11

)
= h

′
1

(
kn−11 , x

)
⊗ h′2

(
y, sn−11

)
= h1

(
kn−11 , h2

(
x⊗ y, sn−11

))
.

Therefore, X ⊗ Y is a (G1, G3)-set. This completes the proof. �

Definition 5.6. Let X and Y be (G1, G2)- and (G2, G3)-sets, respec-
tively. We define a map π : X × Y −→ X ⊗ Y with π(x, y) = x⊗ y. It’s
easy to see that π is a bimap and is called canonical bimap.

Theorem 5.7. Let X and Y be (G1, G2)- and (G2, G3)-sets, respec-
tively. Then, (X ⊗ Y, π) is a tensor product of X and Y over G2.

Proof. Suppose that Z is a (G1, G3)-set and β : X × Y −→ Z is a
bimap. We define β : X ⊗ Y −→ Z by

β(x⊗ y) = β(x, y),

where x ∈ X and y ∈ Y . Let x1 ⊗ y1 = x2 ⊗ y2. Then, by Proposition
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5.4, we have

β(x1, y1) = β(h1
(
a1, s

n−1
11

)
, y1) = β(a1, h2

(
sn−111 , y1

)
)

= β(a1, h2
(
tn−111 , b1

)
= β(h1(a1, t

n−1
11 ), b1)

...

= β(x2, h2(s
n−1
1n , bn−1))

= β(x2, y2).

Hence, β(x1 ⊗ y1) = β(x2 ⊗ y2). This implies that β is well-defined. It
is now routine to establish that β is bimap and β ◦ π = β. Moreover, β
is unique with respect to these properties. �

Proposition 5.8. Let X and Y be left G1- and right G2- sets, respec-
tively. Then, the tensor product of them is unique up to isomorphism

Proof. Suppose that (P,ψ) and (P
′
, ψ
′
) are tensor product of X and

Y . Then, we find a unique ψ̂′ : P −→ P
′

and ψ̂ : P
′ −→ P such that

ψ ◦ ψ̂′ = ψ
′

and ψ
′ ◦ ψ̂ = ψ. Hence, ψ ◦ ψ̂′ ◦ ψ̂ = ψ and by the uniqueness

property, we have ψ̂′ ◦ ψ̂ = Id. In the same way, ψ̂ ◦ ψ̂′ = Id and so
P ∼= P

′
. This completes the proof. �

Let G1 and G2 be n-ary semihypergroups. Then, a map ϕ : G1 −→
G2 is called morphism, when

ϕ(f(g1, g2, ..., gn)) = f(ϕ(g1), ϕ(g2), ..., ϕ(gn)),

where gn1 ∈ G1. When G1 and G2 are n- ary semihypergroups with
identities elements, ϕ(e1) = e2.

Definition 5.9. Let H be an n-ary sub semihypergroup of G and g ∈ G.
Then, we say that H dominates g, when for any n-ary subsemigroup T
and all morphisms ϕ1, ϕ2 : G −→ T, the following implication holds

∀ h ∈ H, ϕ1(h) = ϕ2(h) =⇒ ϕ1(g) = ϕ2(g).

More informally, H dominates g if any two morphisms of G that
coincide on elements of H, coincide also on g. The set of elements
dominated by H is called dominion of H in G and is written DomH(G).
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It is clear thatH ⊆ DomH(G). WhenG is a n-ary semigroup, DomH(G)
is an n-ary subsemigroup of G. Indeed, suppose that g1, g2, ..., gn ∈
DomH(G) and morphisms ϕ1, ϕ2 : G −→ T such that ϕ1(h) = ϕ2(h),
for all h ∈ H. Hence, ϕ1(gi) = ϕ2(gi), for 1 ≤ i ≤ n. Hence,

ϕ1(f(g1, g2, ..., gn)) = f(ϕ1(g1), ϕ1(g2)...ϕ1(gn))
= f(ϕ2(g1), ϕ2(g2)...ϕ2(gn))
= ϕ2(f(g1, g2, ..., gn)).

Theorem 5.10. Let H be an n-ary subsemihypergroup of G, g ∈ G,
which G has identity element and g ⊗ e = e⊗ g. Then, g ∈ DomH(G).

Proof. Suppose that g⊗e = e⊗g and we have an n-ary semihypergroup
T such that ϕ1, ϕ2 : G −→ T are morphisms. Let ϕ1(h) = ϕ2(h), for
every h ∈ H. Then, T is an (H,H)-set if we define

h : Hn−1 × T −→ T

(hn−11 , t) 7−→ f2(ϕ1(f1(h
n−1
1 , e)), t, e, e, ..., e︸ ︷︷ ︸

n−2

),

h
′

: T ×Hn−1 −→ T

(t, hn−11 ) 7−→ f2(t, ϕ1(f1(h
n−1
1 , e)), e, e, ..., e︸ ︷︷ ︸

n−2

).

We define ψ : G×G −→ T as follows

(g1, g2) 7−→ f2(ϕ1(g1), ϕ2(g2), e, e, ..., e︸ ︷︷ ︸
n−2

).

Hence, ψ is an (H,H)-map and is even bimap. Indeed,

ψ(f1(g1, h
n−1
1 ), g2) = f2(ϕ1(f1(g1, h

n−1
1 )), ϕ2(g2), e, e, ..., e︸ ︷︷ ︸

n−2

)

= f2(f2(ϕ1(g1), ϕ1(h1), · · · , ϕ1(hn−1)), ϕ2(g2), e, e, ..., e︸ ︷︷ ︸
n−2

)

= f2(f2(ϕ1(g1), ϕ2(h1), · · · , ϕ2(hn−1)), ϕ2(g2), e, e, ..., e︸ ︷︷ ︸
n−2

)

= f2(ϕ1(g1), f2(ϕ2(h1), · · · , ϕ2(hn−1), ϕ2(g2)), e, e, ..., e︸ ︷︷ ︸
n−2

)

= ψ(g1, f2(h
n−1
1 , g2)).
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It follows that there is a map ψ : G⊗G −→ T

(g1 ⊗ g2) 7−→ ψ(g1, g2),

for every g1 ⊗ g2 ∈ G⊗G. Since g ⊗ e = e⊗ g, we have

ϕ1(g) = f2(ϕ1(g), ϕ2(e), e, e, .., e) = ψ(g ⊗ e) = ψ(e⊗ g)
= f2(ϕ1(e), ϕ2(g), e, e, ..., e)
= ϕ2(g).

This completes the proof. �
Let X1, X2 and X3 be left G-sets, ϕ1 : X1 −→ X2, ϕ2 : X1 −→ X3,

ψ1 : X2 −→ X and ψ2 : X3 −→ X be morphisms such that ψ1 ◦ ϕ1 =
ψ2 ◦ ϕ2. If there exist a left G-set X

′
and morphisms ψ

′
1 : X2 −→ X

′

and ψ
′
2 : X3 −→ X

′
such that ψ

′
1 ◦ ϕ1 = ψ

′
2 ◦ ϕ2, then there exists a

unique morphism ω : X −→ X
′

such that

ω ◦ ψ1 = ψ
′
1, ω ◦ ψ2 = ψ

′
2.

Hence, we say that [Xi, ϕj , ψr], 1 ≤ i ≤ 3, 1 ≤ j ≤ 2, 1 ≤ r ≤ 2 is
a push out system. We note that X = [

⋃3
i=1Xi : ρ∗] of the disjoint

of X1, X2, X3, where ρ∗ is the congruence relation generated by the
following relation:

x1 ρ x2 ⇐⇒ x1 ∈ X1 and x2 = ϕ1(x1) or x2 = ϕ2(x1).

The map ψ1 : X2 −→ X and ψ2 : X3 −→ X,

ψ1(x2) = ρ∗(x2), ψ2(x3) = ρ∗(x3).

Let x2 ∈ X2 and x3 ∈ X3 and ψ1(x2) = ψ2(x3). Then, x2 ∈ Imϕ1.
Indeed, We have ρ∗(x2) = ρ∗(x3). This implies that there are b1, b2, ..., bn
such that b1 = x2 and b2 = x3 and (bi, bi+1) ∈ ρ. Such a sequence cannot
even unless x2 ∈ Imϕ1.

Definition 5.11. Let H be an n-ary subsemihypergroup of n-ary semi-
hypergroup G with identity. We say that H has the extension property
in G if for every left H-set X and right H-set Y the map X × Y −→
X ⊗G⊗ Y defined by x⊗ y −→ x⊗ e⊗ y is one to one.
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Theorem 5.12. Let H be an n-ary subsemihypergroup of an n-ary semi-
hypergroup G with identity and H has the extension property in G and
ϕ : X −→ Y be a morphism and y ⊗ e = ϕ(x) ⊗ g in Y ⊗ G. Then,
y ∈ Imϕ.

Proof. Suppose that [X,X, Y, Y, P ] is a push out system, where ϕ1, ϕ2 :
X −→ Y , ψ1, ψ2 : Y −→ P . Hence [X⊗G,X⊗G, Y ⊗G, Y ⊗G,P ⊗G],
where ϕ1 ⊗ I : X ⊗ G −→ Y ⊗ G, ϕ2 ⊗ I : X ⊗ G −→ Y ⊗ G, ψ1 ⊗ I :
Y ⊗G −→ P ⊗G and ψ2 ⊗ I : Y ⊗G −→ P ⊗G is a push out system.
Let y ⊗ e = ϕ(x)⊗ g in Y ⊗G. Then,

ψ1(y)⊗ e = (ψ1 ⊗ I)(y ⊗ e) = (ψ1 ⊗ I)(ϕ(x)⊗ g) = ψ1ϕ(x)⊗ g
= ψ2ϕ(x)⊗ g
= (ψ2 ⊗ I)(ϕ(x)⊗ g)
= (ψ2 ⊗ I)(y ⊗ e)
= ψ2(y)⊗ e.

By the extension property the map y −→ y⊗ e from Y to Y ⊗H is one
to one. Hence ψ1(y) = ψ2(y). This implies that y ∈ Imϕ. �

Theorem 5.13. Let X, Y and Z be left G-sets. Then, X ⊗ Y and
Mor(Y,Z) are left G-sets and

Mor(X ⊗ Y,Z) ∼= Mor(X,Mor(Y,Z)).

Proof. Suppose that g1, g2, ..., gn−1 ∈ G, h1 : Gn−1 × X −→ X, h2 :
Gn−1 × Y −→ Y , h3 : Gn−1 × Z −→ Z and α ∈ Mor(Y, Z). We define
h : Gn−1 ×Mor(Y,Z) −→Mor(Y, Z) by

h(gn−11 , α)(x) = h3
(
gn−11 , α(x)

)
,

where x ∈ Y . Hence,

h(f(gn1 ), g2n−2n+1 , α)(x) = h3
(
f(gn1 ), g2n−2n+1 , α(x)

)
...

= h3(g
n−1
1 , h3(g

2n−2
n , α(x)))

= h(gn−11 , h(g2n−2n , α))(x),

for every x ∈ Y . This implies that Mor(Y, Z) is a left G-set. By
Proposition 5.5, X ⊗ Y is a left G-set.
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Let f ∈Mor(X ⊗ Y,Z). Then, f is a G-map. Hence,

f
(
h
′ (
gn−11 , x⊗ y

))
= h3

(
gn−11 , f(x⊗ y)

)
.

for every gn−11 ∈ G and x⊗ y ∈ X ⊗ Y .
For every x ∈ X, we define fx(y) = f(x ⊗ y). Hence fx ∈ Mor(Y,Z).
Indeed, for every gn−11 ∈ G we have

fx(h2
(
gn−11 , y)

)
= f(x⊗ h2(gn−11 , y))

= f(h1(g
n−1
1 , x)⊗ y)

= f
(
h
′ (
gn−11 , x⊗ y

))
= h3

(
gn−11 , f(x⊗ y)

)
.

We define

ψ : Mor(X ⊗ Y,Z) −→Mor(X,Mor(Y,Z))

f 7−→ Tf ,

where Tf : X −→ Mor(Y, Z by Tf (x) = fx. Hence ψ is a morphism.
Indeed, for every gn−11 ∈ G, x ∈ X, y ∈ Y and f ∈Mor(X ⊗ Y, Z),

ψ
(
h(gn−11 , f)

)
(x⊗ y) = Th(gn−1

1 ,f)(x⊗ y) = h(gn−11 , f)x(y)

= h3
(
gn−11 , f(x⊗ y)

)
= h3

(
gn−11 , fx(y)

)
= h

(
gn−11 , ψ(f)

)
(x⊗ y).

Let f ∈Mor(X,Mor(Y,Z)) and T : Gn−1×Mor(Y, Z) −→Mor(Y,Z).
Then, for every x ∈ X, f(x) is a morphism. We define

ϕ : Mor(X,Mor(Y,Z)) −→Mor(X ⊗ Y,Z)

f 7−→ f,

where f(x⊗ y) = (f(x))(y). We have

ϕ
(
h(gn−11 , f

)
(x)) = h

(
gn−11 , f

)
,
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where

h
(
gn−11 , f

)
(x⊗ y) = (h

(
gn−11 , f

)
(x))(y) = T

(
gn−11 , f(x)

)
(y)

= T
(
gn−11 , (f(x))(y)

)
= T (gn−11 , (ϕ(f)(x))(y),

for every x ∈ X and y ∈ Y . Hence ϕ is a morphism. Moreover, for every
f ∈Mor(X ⊗ Y,Z) and x⊗ y ∈ X ⊗ Y ,

(ϕ ◦ ψ)(f)(x⊗ y) = ϕ(ψ(f)(x⊗ y)) = ϕ(Tf (x)(y)) = fx(y) = f(x⊗ y)

Hence ϕ◦ψ = IMor(X⊗Y,Z). On the other hand, for every f ∈Mor(X,Mor(Y, Z)),

(ψ ◦ ϕ)(f) = ψ(ϕ(f)) = ψ(f) = Tf

such that Tf ∈Mor(X ⊗ Y,Z) and for every x⊗ y ∈ X ⊗ Y , we have

Tf (x⊗ y) = f(x⊗ y) = (f(x))(y).

Hence,

ψ ◦ ϕ = IMor(X,Mor(Y,Z)).

This completes the proof. �

Theorem 5.14. Let (Xi, αij)i,j∈I be a direct system of left (G,H)-sets
and X be a right G-set. Then, (Xi ⊗X, α̂ij)i,j∈I is a direct system and
limi∈I(Xi ⊗X) = (limi∈IXi)⊗X.

Proof. Suppose that αij : Xi −→ Xj and αij : Xi × X −→ Xi ⊗ X
defined by αij(xi, x) = αij(xi)⊗ x. Hence,

αij(h(xi, t
n−1
1 ), x) = h(xi, t

n−1
1 )⊗x = xi⊗h(tn−11 , x) = αij(xi, h(tn−11 , x)).

Then, αij is a bimap. Thus, there is α̂ij : Xi⊗X −→ Xj ⊗X such that
α̂ij(xi ⊗ x) = αij(xi)⊗ x, where xi ∈ Xi and x ∈ X. Also,

α̂jk ◦ α̂ij(xi ⊗ x) = αjk ◦ αij(xi)⊗ x = αik(xi)⊗ x = α̂ik((xi)⊗ x).

and

α̂ii(xi ⊗ x) = αij(xi)⊗ x = xi ⊗ x.



32 N. Rakhsh Khorshid and S. Ostadhadi-Dehkordi

Let βi : Xi −→ limi∈IXi and βi : Xi × X −→ limi∈IXi ⊗ X defined
by βi(t, x) = βi(t) ⊗ x. Then, βi is a bimap. Thus, there exists β̂i :
Xi ⊗X −→ limi∈IXi ⊗X such that β̂i(t⊗ x) = βi(t)⊗ x.

β̂j ◦ α̂ij(xi ⊗ x) = βj(αij(xi)⊗ x) = βi(xi)⊗ x = β̂i(xi ⊗ x).

Let x ∈ X be a fixed element and σi : Xi −→ Xi ⊗ X defined by
σi(xi) = xi ⊗ x and Y be a (G,H)-set and γi : Xi ⊗ X −→ Y such
that γ̂j ◦ α̂ij = γ̂i. Then, γj ◦ σj ◦ αij = γi ◦ σi. Thus, there exists
δ : Y −→ limi∈IXi such that δ ◦ γi ◦ σi = βi. Therefore, γj ◦ α̂ij = γi
and limi∈I(Xi ⊗X) = (limi∈IXi)⊗X. �

6 Conclusion

The study of homological concepts in the context of hypergroups theory
is a new research theory. This generalizes the existing research of these
concepts on hyperstructures, done especially in from a different point
of view [13, 18]. In the present paper, we have introduced and studied
left(right) G-sets on n- ary hypergroups and resent some examples. Also,
the various properties of these concept are emphasized. Moreover, we
have introduced and studied direct limit and tensor product of left(right)
G-sets on n-ary semihypergroups. A possible future study could be
devoted to the introduction and analysis of flat left(right) G-sets and
”Tor” functor.
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