A Hyperstructures Approach to the Direct Limit and Tensor Product for Left(right) G-sets on Hypergroups

N. Rakhsh Khorshid
Department of Mathematics,University of Hormozgan, Bandar Abbas, Iran.
S. Ostadhadi-Dehkordi ${ }^{*}$
Department of Mathematics,University of Hormozgan , Bandar Abbas, Iran.

Abstract

In this paper, we introduce the concept of left(right)- G sets by external hyperoperations and some examples presented. We construct quotient left(right)- G sets by regular (strongly) regular relations. Also, we consider fundamental relation as a smallest strongly regular relations and by complete parts concepts introduce an equivalence relation that is coincide with fundamental relation. The main purpose of this paper is to introduce the concepts of tensor product and direct limit on G-sets of n-ary semihypergroups that are non-additive modification of classical construction in module theory. This concept is crucially important in homological algebra and several properties are found and examples are presented.

AMS Subject Classification: 20N15.
Keywords and Phrases: n-ary semihypergroup, G-set, direct system, direct limit, Tensor product.

[^0]
1 Introduction

The concept of n-group was introduced by Dörnte[9], which is a natural generalization of the notion of group. Since then, many papers concerning various n-ary algebras have appeared in literature. Another field which proved to be relevant was of algebraic hyperstructures. Algebraic hyperstructures are a suitable generalization of classical algebraic structures. In a classical algebraic structure, the composition of two elements is an element while in an algebraic hyperstructure, the composition of two elements is a set. The notion of hypergroup was introduced in 1934 by a French mathematician F. Marty [15], at the $8^{t h}$ Congress of Scandinavian Mathematicians. He published some notes on hypergroups, using them in different contexts: algebraic functions, rational fractions and non-commutative groups. Since then, hundreds of papers and several books have been written on this topic and several kinds of hypergroups have been intensively studied, such as: regular hypergroups, reversible regular hypergroups, canonical hypergroups, cogroups, cyclic hypergroups, reduced hypergroups and associativity hypergroups(for example see [2, 3, 4]).

The recent book on hyperstructures [6] points out their applications in fuzzy and rough set theory, cryptography, codes, automata, probability, geometry, lattices, binary relations, graphs and hypergraphs. Moreover, Davvaz and Vougiouklis [7] have established a connection between the two domains in the form of an extension of the concept of n-ary groups to the concept of n-ary hypergroups, which has also proved to be of great interest and they were studied by Ghadiri and Waphare [11] and others $[5,8,10,17,16,20,1]$.

In this paper, we define the left(right) G-sets in the context of n ary semihypergroups. Furthermore, we define direct system and direct limit of G-sets and prove that some properties about them. We note that this concepts defined and considered only by binary operation and binary hyperoperation $[13,18]$. We generalized this concept by external hyperoperation on n-ary semihypergroups. Finally, we introduce the concept of tensor product that is a non-additive modification of classical in module theory and play an important role in homological algebra [19]. Also, we prove that the tensor product exists and is unique up to isomorphism.

2 Basic definitions

In this paragraph, we present some definitions concerning n-ary semihypergroups. Let G be a non-empty set and f be a mapping $f: G \times G \longrightarrow$ $\mathcal{P}^{*}(G)$, where $\mathcal{P}^{*}(G)$ is the set of all non-empty subsets of G. Then, f is called a binary hyperoperation on G. We denote by G^{n} the cartesian product $G \times G \ldots \times G$, where G appears n times. The couple (G, f) is called hypergroupoid. When, $n=2$, for any two non-empty subsets G_{1} and G_{2} of G, we define

$$
G_{1} \circ G_{2}=\bigcup_{g_{1} \in G_{1}, g_{2} \in G_{2}} g_{1} \circ g_{2}
$$

In this case, a hypergroupoid (G, f) is called semihypergroup if for all g_{1}, g_{2} and g_{3} of G, we have $\left(g_{1} \circ g_{2}\right) \circ g_{3}=g_{1} \circ\left(g_{2} \circ g_{3}\right)$.

In general, $f: G^{n} \longrightarrow \mathcal{P}^{*}(G)$ is called an n-ary hyperoperation on G and (G, f) is called n-ary hypergroupoid.
Let $G_{1}, G_{2}, \ldots, G_{n}$ be non-empty subsets of G. Then, we define

$$
f\left(G_{1}, G_{2}, \ldots, G_{n}\right)=\bigcup_{g_{i} \in G_{i}, i \in\{1,2, \ldots, n\}} f\left(g_{1}, g_{2}, \ldots, g_{n}\right)
$$

The sequence $g_{i}, g_{i+1}, \ldots, g_{j}$, will be denoted by g_{i}^{j}. For $j<i, g_{i}^{j}$ is the empty set.

Definition 2.1. [7] The n-ary hypergroupoid (G, f) is called n-ary semihypergroup if for any $i, j \in\{1,2, \ldots, n\}$ and $g_{1}^{2 n-1} \in G$,

$$
f\left(g_{1}^{i-1}, f\left(g_{i}^{n+i-1}\right), g_{n+i}^{2 n-1}\right)=f\left(g_{1}^{j-1}, f\left(g_{j}^{n+j-1}\right), g_{n+j}^{2 n-1}\right)
$$

An n-ary semihypergroup (G, f) has an identity element if there is an element $e \in G$ such that

$$
x \in f\left(e^{(i-1)}, x, e^{(i-1)}\right)
$$

for all $x \in G$ and all $1 \leq i \leq n$.
An n-ary semihypergroup (G, f) is commutative if for all $g_{1}^{n} \in G$ and any permutation σ of $\{1,2, \ldots, n\}$, we have

$$
f\left(g_{1}^{n}\right)=f\left(g_{\sigma(1)}, g_{\sigma(2)}, \ldots, g_{\sigma(n)}\right)
$$

Let (G, f) be an n-ary hypergroup such that there exists a unique $0 \in G$ such that $g=f\left(\begin{array}{cc}(i-1) \\ 0\end{array}, g, \stackrel{(n-i)}{0}\right)$. Also, there exists a unitary operation - on G such that
$g \in f\left(g_{1}^{n}\right)$ implies that $g_{i} \in f\left(-g_{i-1}, \ldots,-g_{1}, g,-g_{n}, \ldots,-g_{i+1}\right)$, for all $1 \leq i \leq n$. Then, (G, f) is called n-ary polygroup and a commutative n-ary polygroup is called canonical n-ary hypergroup.

Let (G, f) be an n-ary semihypergroup and H be a non-empty subset of G. Then, H is an n-ary sub semihypergroup of G if it is close under the n-ary hyperoperation f, i.e., for every $\left(h_{1}, h_{2}, \ldots, h_{n}\right) \in H^{n}$ implies that $f\left(h_{1}, h_{2}, \ldots, h_{n}\right) \subseteq H$.

The n-ary semihypergroup (G, f) is called n-ary hypergroup, when the equation $g \in f\left(g_{1}^{i-1}, x_{i}, g_{i+1}^{n}\right)$ has the solution $x_{i} \in G$ for any $g_{1}^{i-1}, g, g_{i+1}^{n} \in G$ and $1 \leq i \leq n$.
$\operatorname{Let}\left(G_{1}, f_{1}\right)$ and $\left(G_{2}, f_{2}\right)$ be two n-ary semihypergroups. Then, a mapping $\varphi: G_{1} \longrightarrow G_{2}$ is called a homomorphism if for all $x_{1}^{n} \in G_{1}$, we have

$$
\varphi\left(f_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right)=f_{2}\left(\varphi\left(x_{1}\right), \varphi\left(x_{2}\right), \ldots, \varphi\left(x_{n}\right)\right)
$$

When G_{1} and G_{2} are n-ary semihypergroups with identity, $\varphi\left(e_{1}\right)=e_{2}$.
Example 2.2. Let $(G,+)$ be a semihypergroup and f be an n-ary hyperoperation on G as follows:

$$
\forall g_{1}^{n} \in G, \quad f\left(g_{1}^{n}\right)=\sum_{i=1}^{n} g_{i} .
$$

Then, (G, f) is an n-ary semihypergroup.
Example 2.3. Let G be a group and $\langle x, y\rangle$ be a subgroup of G generated by x and y. Then, we define

$$
f\left(g_{1}, g_{2}, \ldots, g_{n}\right)=<g_{1}, g_{2}, \ldots, g_{n}>
$$

where $g_{1}^{n} \in G$. We obtain that (G, f) is an n-ary hypergroup.
Example 2.4. Let G be a semigroup and N be a normal subsemigroup of G. Then, for all $g_{1}^{n} \in G$, we define $f\left(g_{1}, g_{2}, \ldots, g_{n}\right)=g_{1} g_{2} \ldots g_{n} N$. Hence, (G, f) is an n-ary semihypergroup.

Direct limit and tensor product for left(right) G-sets on hypergroups 5

Example 2.5. Let D be an integral domain and F be its field of fractions and snd U be the group of the invertible elements of D. Then, we define

$$
f\left(\overline{g_{1}}, \overline{g_{2}}, \ldots, \overline{g_{n}}\right)=\left\{\bar{g}: \exists u_{1}^{n} \in U, g=u_{1} g_{1}+u_{2} g_{2}+\ldots+u_{n} g_{n}\right\}
$$

where $\overline{g_{i}} \in F / U$ with $1 \leq i \leq n$. Hence, $(F / U, f)$ is an n-ary semihypergroup.

Example 2.6. Let V be a vector space over an ordered field F and $x_{1}, x_{2}, \ldots, x_{n} \in V$. Then, we define

$$
f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left\{\sum_{i=1}^{n} \lambda_{i} x_{i}: \lambda_{i}>0, \sum_{i=1}^{n} \lambda_{i}=1\right\} .
$$

Hence, (V, f) is an n-ary semihypergroup.
Example 2.7. Let $G=\left\{a_{1}, a_{2}, a_{3}\right\}$. Then, G is a 3 -ary semihypergroup by following hyperoperation:

$$
\begin{gathered}
f\left(a_{1}, a_{1}, a_{1}\right)=f\left(a_{2}, a_{2}, a_{2}\right)=\left\{a_{1}, a_{2}\right\}, \quad f\left(a_{3}, a_{3}, a_{3}\right)=\left\{a_{3}\right\}, \\
f\left(a_{3}, a_{1}, a_{1}\right)=f\left(a_{1}, a_{3}, a_{1}\right)=f\left(a_{1}, a_{1}, a_{3}\right)=\left\{a_{3}\right\}, \\
f\left(a_{3}, a_{1}, a_{2}\right)=f\left(a_{1}, a_{3}, a_{2}\right)=\left\{a_{3}\right\}, \\
f\left(a_{1}, a_{2}, a_{3}\right)=\left\{a_{3}\right\}, f\left(a_{3}, a_{2}, a_{2}\right)=f\left(a_{2}, a_{3}, a_{2}\right)=f\left(a_{2}, a_{2}, a_{3}\right)=\left\{a_{3}\right\} .
\end{gathered}
$$

3 Left(right) G-sets

In this section, we generalize the concept of tensor product of left(right) G-sets as a generalization of semigroups[12].

Let G be an n-ary semihypergroup and X be a non-empty set. Then, we say that X is a left G-set if there is an external hyperoperation $h: G^{n-1} \times X \longrightarrow \mathcal{P}^{*}(X)$ with the property
$h\left(f\left(g_{1}^{n}\right), g_{n+1}^{2 n-2}, x\right)=h\left(g_{1}, f\left(g_{2}^{n}, g_{n+1}\right), g_{n+2}^{2 n-2}, x\right)=\ldots=h\left(g_{1}^{n-1}, h\left(g_{n}^{2 n-2}, x\right)\right)$,
where $g_{1}^{2 n-2} \in G$ and $x \in X$. If e is an scalar identity of G, we say that X has an unitary when $h\left(e^{(n-1)}, x\right)=x$, for every $x \in X$.

Dually, a non-empty set X is a right G-set if there is an external hyperoperation $h: X \times G^{n-1} \longrightarrow \mathcal{P}^{*}(X)$,

$$
h\left(x, g_{1}^{n-2}, f\left(g_{n-1}^{2 n-2}\right)\right)=\ldots=h\left(h\left(x, g_{1}^{n-1}\right), g_{n}^{2 n-2}\right) .
$$

In the same way, we say that X has an unitary when $h\left(x, e^{(n-1)}\right)=x$, for every $x \in X$.

Let G and H be n-ary semihypergroups. Then, we say that X is a (G, H)-set if it is a left G-set by external hyperoperation $h_{1}: G^{n-1} \times$ $X \longrightarrow \mathcal{P}^{*}(X)$ and a right H-set by external hyperoperation $h_{2}: X \times$ $H^{n-1} \longrightarrow \mathcal{P}^{*}(X)$ and

$$
h_{2}\left(h_{1}\left(g_{1}^{n-1}, x\right), t_{1}^{n-1}\right)=h_{1}\left(g_{1}^{n-1}, h_{2}\left(x, t_{1}^{n-1}\right)\right),
$$

where $g_{1}^{n-1} \in G, t_{1}^{n-1} \in H$ and $x \in X$.
Let G be a canonical n-ary hypergroup and X be a left G-set. Then, we say that X is reversible if $x_{1} \in h\left(g_{1}, g_{2}, \cdots, g_{n-1}, x_{2}\right)$ implies that $x_{2} \in h\left(-g_{n-1},-g_{n-2}, \cdots,-g_{1}, x_{1}\right)$, where $x_{1}, x_{2} \in X$ and $g_{1}, g_{2}, \cdots, g_{n-1} \in G$.

Let X be a left G-set, G be an n-ary semigroup and $h: G^{n-1} \times X \longrightarrow$ X. Then, we say that X is a multiplicative left G-set.

Example 3.1. Let G be a canonical n-ary hypergroup and N be a sub canonical n-ary hypergroup of G. Then, we define the relation N^{*} on G as follows:

$$
x N^{*} y \Longleftrightarrow f\left(x,-y, 0^{(n-2)}\right) \cap N \neq \emptyset .
$$

It is not difficult to see that N^{*} is an equivalence relation. Hence, $N^{*}(x)=f\left(N, x, 0^{(n-2)}\right)$ and the set of all equivalence classes $G / N^{*}=$ $\left\{N^{*}(x): x \in G\right\}$ is a left G-set as follows:

$$
\begin{aligned}
h: G^{n-1} \times G / N^{*} & \longrightarrow \mathcal{P}^{*}\left(G / N^{*}\right) \\
\left(g_{1}^{n-1}, N^{*}(x)\right) & \longrightarrow\left\{N^{*}(t): t \in f\left(g_{1}^{n-1}, x\right)\right\} .
\end{aligned}
$$

Definition 3.2. Let G be a canonical n-ary hypergroup and X be a reversible left G-set. Then, we define the relation \equiv on X as follows:

$$
x_{1} \equiv x_{2} \Longleftrightarrow \exists g_{1}^{n-1} \in G: x_{1} \in h\left(g_{1}^{n-1}, x_{2}\right)
$$

Proposition 3.3. Let G be a canonical n-ary hypergroup and X be a reversible left G-set and has an unitary. Then, the relation \equiv is an equivalence.

Proof. Suppose that $x \in X$. Since $x=h\left(e^{(n-1}, x\right)$, it implies that the relation \equiv is reflexive. Let $x_{1}, x_{2} \in X$ and $x_{1} \equiv x_{2}$. Then, $x_{1} \in$ $h\left(g_{1}^{n-1}, x_{2}\right)$. Since X is reversible, we have $x_{2} \in h\left(-g_{n-1},-g_{n-2}, \cdots,-g_{1}, x_{1}\right)$. Hence, \equiv is symmetric. Let $x_{1}, x_{2}, x_{3} \in X$ such that $x_{1} \in h\left(g_{1}^{n-1}, x_{2}\right)$ and $x_{2} \in h\left(k_{1}^{n-1}, x_{3}\right)$, where $g_{1}^{n-1}, k_{1}^{n-1} \in G$. This implies that

$$
x_{1} \in h\left(g_{1}^{n-1}, x_{2}\right) \subseteq h\left(g_{1}^{n-1}, h\left(k_{1}^{n-1}, x_{3}\right)\right)=h\left(f\left(g_{1}^{n-1}, k_{1}\right), k_{2}^{n-1}, x_{3}\right) .
$$

Then, there exists $g \in f\left(g_{1}^{n-1}, k_{1}\right)$ such that $x_{1} \in h\left(g, k_{2}^{n-1}, x_{3}\right)$. This implies that the relation \equiv is transitive. Therefore, the relation \equiv is equivalence.

We denote the equivalence class of $x \in X$ with respect to the equivalence relation \equiv by $\operatorname{orb}(x)$ and it is called orbital of x. Hence,

$$
\operatorname{orb}(x)=\left\{t \in X: \exists g_{1}^{n-1} \in G, \quad t \in h\left(g_{1}^{n-1}, x\right)\right\} .
$$

Definition 3.4. Let G be an n-ary semihypergroup and X be a left G-set and $x \in X$. Then, stabilizer x defined as follows:

$$
\operatorname{Stab}(x)=\{g \in G: x=h(\underbrace{g, g, \cdots, g}_{n-1}, x)\} .
$$

When X is a left G-set with unitary and $x \in X$. We have $x=$ $h\left(e^{(n-1)}, x\right)$. Hence, $\operatorname{Stab}(x) \neq \emptyset$.

Proposition 3.5. Let G be a commutative n-ary semihypergroup, X be a left G-set with unitary and $x \in X$. Then, $\operatorname{Stab}(x)$ is a commutative n-ary sub semihypergroup of G.

Proof. Since $e \in \operatorname{Stab}(x)$, we have $\operatorname{Stab}(x)$ is a non-empty set. Let $g_{1}, g_{2}, \cdots, g_{n} \in \operatorname{Stab}(x)$. Then,
$h(\underbrace{g_{1}, g_{1}, \cdots, g_{1}}_{n-1}, x)=h(\underbrace{g_{2}, g_{2}, \cdots, g_{2}}_{n-1}, x)=\cdots=h(\underbrace{g_{n}, g_{n}, \cdots, g_{n}}_{n-1}, x)=x$.

Since G is a commutative n-ary semihypergroup, we have

$$
h(\underbrace{f\left(g_{1}, g_{2}, \cdots, g_{n}\right), f\left(g_{1}, g_{2}, \cdots, g_{n}\right), \cdots, f\left(g_{1}, g_{2}, \cdots, g_{n}\right)}_{n-1}, x)=x .
$$

This implies that $h(\underbrace{g, g, \cdots, g}_{n-1}, x)=x$, for every $g \in f\left(g_{1}, g_{2}, \cdots, g_{n}\right)$.
Therefore, $f\left(g_{1}, g_{2}, \cdots, g_{n}\right) \subseteq \operatorname{Stab}(x)$. This completes the proof.
Example 3.6. Let G be a canonical hypergroup and $X=G$. Then, X is a reversible left G-set by external hyperoperation $h: G \times X \longrightarrow \mathcal{P}^{*}(X)$ such that $h(g, x)=g^{-1} x g$, where $g \in G$ and $x \in X$. Indeed,

$$
h\left(g_{1}, h\left(g_{2}, x\right)\right)=g_{1}^{-1} h\left(g_{2}, x\right) g_{1}=g_{1}^{-1} g_{2}^{-1} x g_{2} g_{1}=h\left(g_{1} g_{2}, x\right) .
$$

Let $x_{1} \in h\left(g, x_{2}\right)$, where $x_{1}, x_{2} \in X$ and $g \in G$. Then, $x_{1} \in g^{-1} x_{2} g$. Hence, there exists $k \in g^{-1} x_{2}$ such that $x_{1} \in k g$. This implies that $k \in x_{1} g^{-1}$ and $x_{2} \in g k$. Then, $x_{2} \in g x_{1} g^{-1}=h\left(g^{-1}, x_{1}\right)$. Therefore, X is a reversible left G-set. Also, for every $x \in X$, we have
$\operatorname{orb}(x)=\left\{t \in X: \exists g \in G, t \in g^{-1} x g\right\}, \quad \operatorname{Stab}(x)=\{g \in G: g x=x g\}$.
Proposition 3.7. Let G be a commutative n-ary semihypergroup and X be a left G-set. Then, X is a (G, G)-set.

Proof. Since X is a left G-set, there exists an external hyperoperation $h: G^{n-1} \times X \longrightarrow \mathcal{P}^{*}(X)$ such that
$h\left(f\left(g_{1}^{n}\right), g_{n+1}^{2 n-2}, x\right)=h\left(g_{1}, f\left(g_{2}^{n}, g_{n+1}\right), g_{n+2}^{2 n-2}, x\right)=\ldots=h\left(g_{1}^{n-1}, h\left(g_{n}^{2 n-2}, x\right)\right)$.
Let right external hyperoperation $\widehat{h}: X \times G^{n-1} \longrightarrow \mathcal{P}^{*}(X)$ defined by $\widehat{h}\left(x, g_{1}^{n-1}\right)=h\left(g_{1}^{n-1}, x\right)$, where $g_{1}^{n-1} \in G$ and $x \in X$. Then, one can see that X is a right G-set and (G, G)-set.

Example 3.8. Let K_{4} be a Kelain group and $S=\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right\}$. Then, S is a left K_{4}-set by following hyperoperation:

	a_{1}	a_{2}	a_{3}	a_{4}	a_{5}
e	$\left\{a_{1}\right\}$	$\left\{a_{2}, a_{3}\right\}$	$\left\{a_{2}, a_{3}\right\}$	$\left\{a_{4}\right\}$	$\left\{a_{5}\right\}$
a	$\left\{a_{2}, a_{3}\right\}$	$\left\{a_{1}\right\}$	$\left\{a_{1}\right\}$	$\left\{a_{5}\right\}$	$\left\{a_{4}\right\}$
b	$\left\{a_{4}\right\}$	$\left\{a_{5}\right\}$	$\left\{a_{5}\right\}$	$\left\{a_{1}\right\}$	$\left\{a_{2}, a_{3}\right\}$
ab	$\left\{a_{5}\right\}$	$\left\{a_{4}\right\}$	$\left\{a_{4}\right\}$	$\left\{a_{2}, a_{3}\right\}$	$\left\{a_{1}\right\}$

Direct limit and tensor product for left(right) G-sets on hypergroups 9

Where $K_{4}=\{e, a, b, a b\}$ such that $a^{2}=b^{2}=e$ and $a b=b a$. Since K_{4} is an abelian group, we can consider S as a right K_{4}-set.

Definition 3.9. A map $\varphi: X \longrightarrow Y$ from a left G-set X into a left G-set Y is called G-map if

$$
\varphi\left(h_{1}\left(g_{1}^{n-1}, x\right)\right)=h_{2}\left(g_{1}^{n-1}, \varphi(x)\right) .
$$

When X and Y are (G, H)-sets and $\varphi: X \longrightarrow Y$ is G-map and H-map, then φ is called (G, H)-map. A G-map φ is called isomorphism, when it is both one to one and onto.

Let $\operatorname{Mor}(X, Y)$ be the set of all G-maps from X into Y such that X and Y be left G-sets and $h_{1}: G^{n-1} \times X \longrightarrow \mathcal{P}^{*}(X), h_{2}: G^{n-1} \times Y \longrightarrow$ $\mathcal{P}^{*}(Y)$. Then, we define

$$
\begin{aligned}
h: G^{n-1} \times \operatorname{Mor}(X, Y) & \longrightarrow \operatorname{Mor}(X, Y) \\
\left(g_{1}^{n-1}, \varphi\right) & \longmapsto \bar{\varphi},
\end{aligned}
$$

where $\bar{\varphi}: X \longrightarrow Y$ and $\bar{\varphi}(x)=h_{2}\left(g_{1}^{n-1}, \varphi(x)\right)$. Hence,

$$
\begin{aligned}
\bar{\varphi}\left(h_{1}\left(g_{1}^{n-1}, x\right)\right) & =h_{2}\left(g_{1}^{n-1}, \varphi\left(h_{1}\left(g_{1}^{n-1}, x\right)\right)\right) \\
& =h_{2}\left(g_{1}^{n-1}, h_{2}\left(g_{1}^{n-1}, \varphi(x)\right)\right) \\
& =h_{2}\left(g_{1}^{n-1}, \bar{\varphi}(x)\right) .
\end{aligned}
$$

This implies that $\bar{\varphi} \in \operatorname{Mor}(X, Y)$. Moreover, for every $x \in X$,

$$
\begin{aligned}
h\left(f\left(g_{1}^{n}\right), g_{n+1}^{2 n-2}, \varphi\right)(x) & =h_{2}\left(f\left(g_{1}^{n}\right), g_{n+1}^{2 n-2}, \varphi(x)\right) \\
& =h_{2}\left(g_{1}, f\left(g_{2}^{n}, g_{n+1}\right), g_{n+2}^{2 n-2}, \varphi(x)\right) \\
& =h\left(g_{1}, f\left(g_{2}^{n}, g_{n+1}\right), g_{n+2}^{2 n-2}, \varphi\right)(x) .
\end{aligned}
$$

This implies that $h\left(f\left(g_{1}^{n}\right), g_{n+1}^{2 n-2}, \varphi\right)=h\left(g_{1}, f\left(g_{2}^{n}, g_{n+1}\right), g_{n+2}^{2 n-2}, \varphi\right)$. In the same way, we can see
$h\left(f\left(g_{1}^{n}\right), g_{n+1}^{2 n-2}, \varphi\right)=h\left(g_{1}, f\left(g_{2}^{n}, g_{n+1}\right), g_{n+2}^{2 n-2}, \varphi\right)=\cdots=h\left(g_{1}^{n-1}, h\left(g_{n}^{2 n-2}, \varphi\right)\right)$.
Hence, $\operatorname{Mor}(X, Y)$ is a left G-set.

Let X be a left G-set, ρ be an equivalence relation on X and $A, B \subseteq$ X. Then, we define

$$
A \bar{\rho} B \Longleftrightarrow \forall a \in A, \exists b \in B: a \rho b \text { and } \forall b \in B, \exists a \in A: a \rho b .
$$

Also,

$$
A \overline{\bar{\rho}} B \Longleftrightarrow \forall a \in A, \forall b \in B, a \rho b
$$

An equivalence relation ρ is called regular on a left G-set X, when

$$
x_{1} \rho x_{2} \Longrightarrow h\left(g_{1}^{n-1}, x_{1}\right) \bar{\rho} h\left(g_{1}^{n-1}, x_{2}\right), \forall g_{1}^{n-1} \in G .
$$

An equivalence relation ρ is called strongly regular on a left G-set X, when

$$
x_{1} \rho x_{2} \Longrightarrow h\left(g_{1}^{n-1}, x_{1}\right) \overline{\bar{\rho}} h\left(g_{1}^{n-1}, x_{2}\right), \forall g_{1}^{n-1} \in G .
$$

The quotient set $[X: \rho]$ is a left G-set by $\bar{h}: G^{n-1} \times[X: \rho] \longrightarrow$ $\mathcal{P}^{*}([X: \rho])$, where

$$
\bar{h}\left(g_{1}^{n-1}, \rho(x)\right)=\left\{\rho(t): t \in h\left(g_{1}^{n-1}, x\right)\right\} .
$$

We note that there is a G-map $\varphi: X \longrightarrow[X: \rho]$ by $\varphi(x)=\rho(x)$.
Example 3.10. Let G be an n-ary semigroup. Then, G is a (G, G)-set, where the action of G on G is defined by means of multiplication.

Example 3.11. Let H be an n-ary subsemigroup of G. Then, G is a (H, H)-set in the obvious way.

Example 3.12. Let G be an n-ary semihypergroup and X be an n-ary subsemihypergroup of G and

$$
\begin{aligned}
h: G^{n-1} \times X & \longrightarrow X \\
\left(g_{1}^{n-1}, x\right) & \longmapsto e,
\end{aligned}
$$

where e is a scalar identity and $g_{1}^{n-1} \in G$ and $x \in X$. Then, X is a left G-set.

Example 3.13. Let $G=\bigcup_{n \geq 0} A_{n}$ such that $A_{0}=\{0\}, A_{n}=[n, n+1)$ and X be positive integers numbers. We define

Direct limit and tensor product for left(right) G-sets on hypergroups 11

$$
\begin{aligned}
f: G^{n} & \longrightarrow \mathcal{P}^{*}(G) \\
\left(g_{1}^{n}\right) & \longmapsto A_{t},
\end{aligned}
$$

where $t=\max \left\{m_{1}, m_{2}, \ldots, m_{n}\right\}$ and $g_{i} \in A_{m_{i}}$. Then, (G, f) is n-ary semihypergroup. Also,

$$
\begin{aligned}
h: G^{n-1} \times X & \longrightarrow X \\
\left(g_{1}^{n-1}, x\right) & \longmapsto \max \left\{m_{1}, m_{2}, \ldots, m_{n-1}, x\right\} .
\end{aligned}
$$

Then, X is a left G-set.
It is clear that the cartesian product $X \times Y$ of a left G_{1}-set X and a right G_{2}-set Y becomes $\left(G_{1}, G_{2}\right)$-set by the following definitions:

$$
\begin{aligned}
& \bar{h}_{1}\left(g_{1}^{n-1},(x, y)\right)=\left(h_{1}\left(g_{1}^{n-1}, x\right), y\right), \\
& \bar{h}_{2}\left((x, y), t_{1}^{n-1}\right)=\left(x, h_{2}\left(y, t_{1}^{n-1}\right)\right),
\end{aligned}
$$

where $x \in X, y \in Y, g_{i} \in G_{1}$ and $t_{j} \in G_{2}$, for $1 \leq i \leq n-1$ and $1 \leq j \leq n-1$.

Definition 3.14. Let X be a left G-set with unitary. Then, we define

$$
\begin{gathered}
a \beta_{m} b \Longleftrightarrow \exists g_{i j} \in G, 1 \leq i \leq m, 1 \leq j \leq n-1, x \in X \\
:\{a, b\} \subseteq h\left(g_{m 1}^{n-1}, h\left(g_{(m-1) 1}^{n-1}, h\left(g_{(m-2) 1}^{n-1}, \cdots, h\left(g_{11}^{n-1}, x\right) \ldots\right)\right)\right),
\end{gathered}
$$

where $a, b \in X$ and $m \geq 1$. Let $\beta=\bigcup_{m \geq 1} \beta_{m}$. Clearly, the relation β is reflexive and symmetric. We denote by β^{*} the transitive closure of β.

Let X be a left G-set. Then, we define

$$
P=\left\{h\left(g_{m 1}^{n-1}, h\left(g_{(m-1) 1}^{n-1}, h\left(g_{(m-2) 1}^{n-1}, \cdots, h\left(g_{11}^{n-1}, x\right) \ldots\right)\right)\right): x \in X, m \in N\right\} .
$$

Theorem 3.15. Let X be a left G-set with unitary. Then, β^{*} is the smallest strong regular relation on X.

Proof. Suppose that $a \beta^{*} b$ and $k_{1}^{n-1} \in G$. It follows that there exist $x_{0}=a, x_{1}, x_{2}, \ldots, x_{n}=b$ such that for all $i \in\{0,1,2, \cdots, n-1\}$, we have $x_{i} \beta x_{i+1}$. Let $u_{1} \in h\left(k_{1}^{n-1}, a\right)$ and $u_{2} \in h\left(k_{1}^{n-1}, b\right)$. We check that $u_{1} \beta^{*} u_{2}$. From $x_{i} \beta x_{i+1}$, it follows that there exists a hyperproduct P_{i} such that $\left\{x_{i}, x_{i+1}\right\} \subseteq P_{i}$. Hence, $h\left(k_{1}^{n-1}, x_{i}\right) \subseteq h\left(k_{1}^{n-1}, P_{i}\right)$ and $h\left(k_{1}^{n-1}, x_{i+1}\right) \subseteq h\left(k_{1}^{n-1}, P_{i}\right)$, which means that $h\left(k_{1}^{n-1}, x_{i}\right) \overline{\bar{\beta}} h\left(k_{1}^{n-1}, x_{i+1}\right)$. Hence, for all $i \in\{0,1,2, \cdots, m-1\}$ and for all $s_{i} \in h\left(k_{1}^{n-1}, x_{i}\right)$, we have $s_{i} \beta s_{i+1}$. We consider $s_{0}=u_{1}$ and $s_{m}=u_{2}$. It follows that, $u_{1} \beta^{*} u_{2}$. Then, the equivalence relation β^{*} is strongly regular.

Let ρ be a strongly regular relation. Since ρ is reflexive $\beta_{1} \subseteq \rho$. Suppose that $\beta_{m-1} \subseteq \rho$ and $a \beta_{m} b$. Hence

$$
\{a, b\} \subseteq h\left(g_{m 1}^{n-1}, h\left(g_{(m-1) 1}^{n-1}, h\left(g_{(m-2) 1}^{n-1}, \cdots, h\left(g_{11}^{n-1}, x\right) \ldots\right)\right)\right)
$$

There exist $u, v \in h\left(g_{(m-1) 1}^{n-1}, h\left(g_{(m-2) 1}^{n-1}, h\left(g_{(m-3) 1}^{n-1}, \cdots, h\left(g_{11}^{n-1}, x\right) \ldots\right)\right)\right)$ such that $a \in h\left(g_{1}^{n-1}, u\right)$ and $b \in h\left(g_{1}^{n-1}, v\right)$. We have $u \beta_{m-1} v$ and according to the hypothesis, we obtain $u \rho v$. Since ρ is strongly regular, it follows that $a \rho b$. Hence, $\beta_{m} \subseteq \rho$. Therefore, $\beta^{*} \subseteq \rho$.
Definition 3.16. Let X be a left G-set. Then, β^{*} is called fundamental relation on X and the set of all equivalence classes $\left[X: \beta^{*}\right]$ is called the fundamental G-set.
Definition 3.17. Let G be an n-ary semihypergroup with scalar identity and X be a left G-set. Then, we define

$$
a / b=\left\{x \in X: a \in h\left(e^{(n-2)}, b, x\right)\right\},
$$

where $a \in X$ and $b \in G$.
Definition 3.18. Let G be an n-ary semihypergroup with scalar identity and X be a left G-set. Then, (X, h) is called a join space if the following condition holds for all $a, b \in X$ and all $c, d \in G$:

$$
a / c \cap b / d \neq \emptyset \quad \Rightarrow \quad h\left(e^{(n-2)}, a\right) \cap h\left(e^{(n-1)}, b\right) \neq \emptyset
$$

Definition 3.19. Let G be an n-ary semihypergroup with scalar identity and a left G-set X be join space. Then, we define the following relation on X :

$$
x J_{G} y \Longleftrightarrow h\left(e^{(n-2)}, G, x\right) \cap h\left(e^{(n-2)}, G, y\right) \neq \emptyset
$$

Direct limit and tensor product for left(right) G-sets on hypergroups 13

Theorem 3.20. Let G be an n-ary semihypergroup with scalar identity and a left G-set X be join space. Then, the relation J_{G} is an equivalence relation on X and the equivalence class of an element $a \in X$ is as follows:

$$
J_{G}(a)=h\left(e^{(n-2)}, G, a\right) / G
$$

Proof. It's obvious that J_{G} is reflexive and symmetric. Now we prove that J_{G} is transitive: Suppose that $a J_{G} b$ and $b J_{G} c$. Hence, $h\left(e^{(n-2)}, G, a\right) \cap$ $h\left(e^{(n-2)}, G, b\right) \neq \emptyset$ and $h\left(e^{(n-2)}, G, b\right) \cap h\left(e^{(n-2)}, G, c\right) \neq \emptyset$. There exists $d_{1} \in h\left(e^{(n-2)}, G, a\right) \cap h\left(e^{(n-2)}, G, b\right)$ and $d_{2} \in h\left(e^{(n-2)}, G, b\right) \cap$ $h\left(e^{(n-2)}, G, c\right)$. We have

$$
\exists g \in G: d_{1} \in h\left(e^{(n-2)}, g, b\right) \quad \longrightarrow b \in d_{1} / g \subseteq h\left(e^{(n-2)}, G, a\right) / G
$$

$$
\exists g^{\prime} \in G: d_{2} \in h\left(e^{(n-2)}, g^{\prime}, b\right) \quad \longrightarrow b \in d_{2} / g^{\prime} \subseteq h\left(e^{(n-2)}, G, c\right) / G
$$

Hence,

$$
\begin{gathered}
h\left(e^{(n-2)}, G, a\right) / G \cap h\left(e^{(n-2)}, G, c\right) / G \neq \emptyset \\
\quad h\left(e^{(n-2)}, G, a\right) \cap h\left(e^{(n-2)}, G, c\right) \neq \emptyset
\end{gathered}
$$

which completes the proof.
Definition 3.21. Let X be a left G-set and A be a non-empty subset of X. Then, we say that A is a complete part of X if for any non-zero natural number m and $g_{i j} \in G$, where $1 \leq i \leq m, 1 \leq j \leq n-1$ and $x \in X$, the following implication holds:

$$
\begin{gathered}
A \cap h\left(g_{m 1}^{n-1}, h\left(g_{(m-1) 1}^{n-1}, h\left(g_{(m-2) 1}^{n-1}, \cdots, h\left(g_{11}^{n-1}, x\right) \ldots\right)\right)\right) \neq \emptyset \Longrightarrow \\
h\left(g_{m 1}^{n-1}, h\left(g_{(m-1) 1}^{n-1}, h\left(g_{m-2) 1}^{n-1}, \cdots, h\left(g_{11}^{n-1}, x\right) \ldots\right)\right)\right) \subseteq A
\end{gathered}
$$

If B is a subset of X, denote by $C(B)$ the complete closure of B, which is the smallest complete part of X that contains B.

Let $K_{1}(A)=A$ and for all $n \geq 1$, we define

$$
\begin{gathered}
K_{n+1}(A)=\left\{y \in X: \exists g_{m 1}^{n-1}, g_{(m-1) 1}^{n-1}, \ldots, g_{11}^{n-1} \in G, x \in X,\right. \\
y \in h\left(g_{m 1}^{n-1}, h\left(g_{(m-1) 1}^{n-1}, h\left(g_{(m-2) 1}^{n-1}, \cdots, h\left(g_{11}^{n-1}, x\right) \ldots\right)\right)\right), \\
\left.K_{n}(A) \cap h\left(g_{m 1}^{n-1}, h\left(g_{(m-1) 1}^{n-1}, h\left(g_{(m-2) 1}^{n-1}, \cdots, h\left(g_{11}^{n-1}, x\right) \ldots\right)\right)\right) \neq \emptyset\right\} .
\end{gathered}
$$

Also, we define $K(A)=\bigcup_{n \geq 1} K_{n}(A)$.
Theorem 3.22. Let X be a left G-set and A be a non-empty subset of X. Then, $C(A)=K(A)$.

Proof. Suppose that

$$
K(A) \cap h\left(g_{m 1}^{n-1}, h\left(g_{(m-1) 1}^{n-1}, h\left(g_{(m-2) 1}^{n-1}, \cdots, h\left(g_{11}^{n-1}, x\right) \cdots\right)\right)\right) \neq \emptyset .
$$

Then, there exists $n \geq 1$ such that

$$
K_{n}(A) \cap h\left(g_{m 1}^{n-1}, h\left(g_{(m-1) 1}^{n-1}, h\left(g_{m-2) 1}^{n-1}, \cdots, h\left(g_{11}^{n-1}, x\right) \cdots\right)\right)\right) \neq \emptyset
$$

This means that
$h\left(g_{m 1}^{n-1}, h\left(g_{(m-1) 1}^{n-1}, h\left(g_{(m-2) 1}^{n-1}, \cdots, h\left(g_{11}^{n-1}, x\right) \cdots\right)\right)\right) \subseteq K_{n+1}(A) \subseteq K(A)$.
Hence, $K(A)$ is a complete part. Now, if $A \subseteq B$ and B is a complete part of X, then we show that $K(A) \subseteq B$. We have $K_{1}(A)=A \subseteq B$ and suppose that $K_{n}(A) \subseteq B$. We check that $K_{n+1}(A) \subseteq B$. Let $z \in K_{n+1}(A)$. Then, there exists a hyperproduct

$$
h\left(g_{p 1}^{n-1}, h\left(g_{(p-1) 1}^{n-1}, h\left(g_{(p-2) 1}^{n-1}, \cdots, h\left(g_{11}^{n-1}, x\right) \cdots\right)\right)\right)
$$

such that

$$
z \in h\left(g_{p 1}^{n-1}, h\left(g_{(p-1) 1}^{n-1}, h\left(g_{(p-2) 1}^{n-1}, \cdots, h\left(g_{11}^{n-1}, x\right) \cdots\right)\right)\right) .
$$

Hence,

$$
B \cap h\left(g_{p 1}^{n-1}, h\left(g_{(p-1) 1}^{n-1}, h\left(g_{(p-2) 1}^{n-1}, \cdots, h\left(g_{11}^{n-1}, x\right) \cdots\right)\right)\right) \neq \emptyset .
$$

Direct limit and tensor product for left(right) G-sets on hypergroups 15

Since B is a complete part, we obtain

$$
h\left(g_{p 1}^{n-1}, h\left(g_{(p-1) 1}^{n-1}, h\left(g_{(p-2) 1}^{n-1}, \cdots, h\left(g_{11}^{n-1}, x\right) \cdots\right)\right)\right) \subseteq B
$$

We obtain $z \in B$. Therefore, $K(A)$ is a smallest complete part contains A. This implies that $C(A)=K(A)$.

Proposition 3.23. Let X be a left G-set and x be an arbitrary element of X. Then,
(1) For all $n \geq 2$, we have $K_{n}\left(K_{2}(x)\right)=K_{n+1}(x)$,
(2) $x \in K_{n}(y) \Longleftrightarrow y \in K_{n}(x)$.

Proof. (1) We proof this proposition by induction. We have

$$
\begin{gathered}
K_{2}\left(K_{2}(x)\right)=\left\{y \in X: \exists g_{p 1}^{n-1}, g_{(p-1) 1}^{n-1}, \ldots, g_{11}^{n-1} \in G\right. \\
. y \in h\left(g_{(p-1) 1}^{n-1}, h\left(g_{(p-2)}^{n-1}, \cdots, h\left(g_{11}^{n-1}, x\right)\right)\right) \\
\left.K_{2}(x) \cap h\left(g_{(p-2)}^{n-1}, \cdots, h\left(g_{11}^{n-1}, x\right)\right) \neq \emptyset\right\}=K_{3}(x)
\end{gathered}
$$

Suppose that $K_{n-1}\left(K_{2}(x)\right)=K_{n}(x)$. Then,

$$
\begin{gathered}
K_{n}\left(K_{2}(x)\right)=\left\{z \in X: \exists g_{p 1}^{n-1}, g_{(p-1) 1}^{n-1}, \ldots, g_{11}^{n-1} \in G\right. \\
z \in h\left(g_{(p-1) 1}^{n-1}, h\left(g_{(p-2)}^{n-1}, \cdots, h\left(g_{11}^{n-1}, x\right)\right)\right) \\
\left.K_{(n-1)}\left(K_{2}(x)\right) \cap h\left(g_{(p-1) 1}^{n-1}, h\left(g_{(p-2)}^{n-1}, \cdots, h\left(g_{11}^{n-1}, x\right)\right)\right) \neq \emptyset\right\}=K_{(n+1)}(x)
\end{gathered}
$$

(2)We check the equivalence by induction. For $n=2$, we have

$$
\begin{gathered}
x \in K_{2}(y)=\left\{z \in X: g_{p 1}^{n-1}, g_{(p-1) 1}^{n-1}, \ldots, g_{11}^{n-1} \in G, t \in X\right. \\
z \in h\left(g_{(p-1) 1}^{n-1}, h\left(g_{(p-2) 1}^{n-1}, \cdots, h\left(g_{11}^{n-1}, t\right) \cdots\right)\right) \\
\left.K_{1}(y) \cap h\left(g_{(p-1) 1}^{n-1}, h\left(g_{(p-2) 1}^{n-1}, \cdots, h\left(g_{11}^{n-1}, t\right) \cdots\right)\right) \neq \emptyset\right\} .
\end{gathered}
$$

Hence, $\{y, x\} \subseteq h\left(g_{(p-1) 1}^{n-1}, h\left(g_{(p-2) 1}^{n-1}, \cdots, h\left(g_{11}^{n-1}, t\right) \cdots\right)\right)$. This implies that $y \in K_{2}(x)$. Let $x \in K_{(n-1)}(y)$ if and only if $y \in K_{(n-1)}(x)$. If $x \in K_{n}(y)$, then there exists $h\left(g_{(p-1) 1}^{n-1}, h\left(g_{(p-2) 1}^{n-1}, \cdots, h\left(g_{11}^{n-1}, t\right) \cdots\right)\right)$ such that $x \in h\left(g_{(p-1) 1}^{n-1}, h\left(g_{(p-2) 1}^{n-1}, \cdots, h\left(g_{11}^{n-1}, t\right) \cdots\right)\right)$ and

$$
h\left(g_{(p-1) 1}^{n-1}, h\left(g_{(p-2) 1}^{n-1}, \cdots, h\left(g_{11}^{n-1}, t\right) \cdots\right)\right) \cap K_{(n-1)}(y) \neq \emptyset .
$$

Hence, there exists $v \in X$ such that

$$
v \in h\left(g_{(p-1) 1}^{n-1}, h\left(g_{(p-2) 1}^{n-1}, \cdots, h\left(g_{11}^{n-1}, t\right) \cdots\right)\right) \cap K_{(n-1)}(y) .
$$

Also,

$$
\begin{gathered}
K_{2}(x)=\left\{z \in X: g_{p 1}^{n-1}, g_{(p-1) 1}^{n-1}, \ldots, g_{11}^{n-1} \in G, t \in X,\right. \\
z \in h\left(g_{(p-1) 1}^{n-1}, h\left(g_{(p-2) 1}^{n-1}, \cdots, h\left(g_{11}^{n-1}, t\right) \cdots\right)\right) \\
\left.K_{1}(x) \cap h\left(g_{(p-1) 1}^{n-1}, h\left(g_{(p-2) 1}^{n-1}, \cdots, h\left(g_{11}^{n-1}, t\right) \cdots\right)\right) \neq \emptyset\right\} .
\end{gathered}
$$

By definition $K_{2}(x)$ we have $v \in K_{2}(x)$. Also, by induction hypothesis $v \in K_{(n-1)}(y)$ implies that $y \in K_{(n-1)}(v)$.

It follows that $v \in K_{2}(x)$ and $y \in K_{(n-1)}(v)$. Hence, $y \in K_{(n-1)}\left(K_{2}(x)\right)=$ $K_{n}(x)$. Similarly, we obtain the converse implication.

Corollary 3.24. Let X be a left G-set. Then, the following relation is an equivalence:

$$
x K y \Longleftrightarrow \exists n \geq 1: x \in K_{n}(y) .
$$

Theorem 3.25. Let X be a left G-set. Then, the equivalence relation K and β^{*} are coincide.

Proof. Suppose that $x, y \in X$ and $x \beta y$. This implies that

$$
\{x, y\} \subseteq h\left(g_{p 1}^{n-1}, h\left(g_{(p-1) 1}^{n-1}, \cdots, h\left(g_{11}^{n-1}, x\right) \cdots\right)\right)
$$

for some $g_{i j} \in G$, where $1 \leq i \leq p$ and $1 \leq j \leq n-1$. This implies that $x \in K_{2}(y) \subseteq K(y)$. Hence, $\beta \subseteq K$ whence $\beta^{*} \subseteq K$. Now, if we have

Direct limit and tensor product for left(right) G-sets on hypergroups 17

$x K y$ and $x \neq y$, then there exists $n \geq 1$ such that $x K_{n} y$, which means that there exists

$$
h\left(g_{(p-1) 1}^{n-1}, h\left(g_{(p-2) 1}^{n-1}, \cdots, h\left(g_{11}^{n-1}, x\right) \cdots\right)\right)
$$

such that

$$
x \in h\left(g_{(p-1) 1}^{n-1}, h\left(g_{(p-2) 1}^{n-1}, \cdots, h\left(g_{11}^{n-1}, x\right) \cdots\right)\right) .
$$

Let

$$
x_{1} \in h\left(g_{(p-1) 1}^{n-1}, h\left(g_{(p-2) 1}^{n-1}, \cdots, h\left(g_{11}^{n-1}, x\right) \cdots\right)\right) \cap K_{n}(y) .
$$

Then, $x \beta x_{1}$. Thus, $x_{1} \in K_{n}(y)$. In the same way, after a finite number of steps, we obtain that there exist x_{n-1} and x_{n} such that $x_{n-1} \beta x_{n}$ and $x_{n} \in K_{n-(n-1)}(y)=\{y\}$. Therefore, $x \beta^{*} y$.
Proposition 3.26. Let X and Y be left G-sets and $\alpha: X \longrightarrow Y$ be a G-map. Then, a map $\widehat{\alpha}:\left[X: \beta^{*}\right] \longrightarrow\left[Y: \beta^{*}\right]$, defined by $\widehat{\alpha}\left(\beta^{*}(x)\right)=$ $\beta^{*}(\alpha(x))$ is a G-map.
Proof. Suppose that $\beta^{*}(a)=\beta^{*}(b)$, where $a, b \in X$. Then, there exist $x_{1}, x_{2}, \cdots, x_{n} \in X$ such that $x_{1}=a$ and $x_{n}=b$ and $x_{i} \beta x_{i+1}$, for $1 \leq i \leq n-1$. This implies that

$$
\left\{x_{i}, x_{i+1}\right\} \subseteq h\left(g_{m_{i} 1}^{n-1}, h\left(g_{\left(m_{i}-1\right) 1}^{n-1}, h\left(g_{\left(m_{i}-2\right) 1}^{n-1}, \cdots, h\left(g_{11}^{n-1}, x\right) \cdots\right)\right)\right)
$$

where $x \in X, m_{i} \in N$ and $g_{m_{i 1}}^{n-1} \in G$. Since α is a G-map, we have

$$
\left\{\alpha\left(x_{i}\right), \alpha\left(x_{i+1}\right)\right\} \subseteq h\left(g_{m_{i} 1}^{n-1}, h\left(g_{\left(m_{i}-1\right) 1}^{n-1}, \cdots, h\left(g_{11}^{n-1}, \alpha(x)\right) \cdots\right)\right) .
$$

This implies that $\beta^{*}(\alpha(a))=\beta^{*}(\alpha(b))$ and $\widehat{\alpha}$ is well-defined. Also, for every $\beta^{*}(x) \in\left[X: \beta^{*}\right]$ and $g_{1}, g_{2}, \cdots, g_{n-1} \in G$, we have

$$
\begin{aligned}
\widehat{\alpha}\left(\bar{h}\left(g_{1}^{n-1}, \beta^{*}(x)\right)\right) & =\widehat{\alpha}\left(\left\{\beta^{*}(t): t \in h\left(g_{1}^{n-1}, x\right)\right\}\right) \\
& =\left\{\beta^{*}(\alpha(t)): t \in h\left(g_{1}^{n-1}, x\right)\right\} \\
& =\left\{\beta^{*}(a): a=\alpha(t), t \in h\left(g_{1}^{n-1}, x\right)\right\} \\
& =\left\{\beta^{*}(a): a \in h\left(g_{1}^{n-1}, \alpha(x)\right)\right\} \\
& =\bar{h}\left(g_{1}^{n-1}, \widehat{\alpha}\left(\beta^{*}(x)\right)\right) .
\end{aligned}
$$

Therefore, the map $\widehat{\alpha}$ is a G-map.

4 Direct limit of (G, H)-sets

Let (I, \leq) be a partially ordered set and $\left\{X_{i}: i \in I\right\}$ be a collection of (G, H)-sets, where G and H be n-ary semihypergroups. Also, for every $i, j \in I$ such that $i \leq j$, there are (G, H)-maps $\alpha_{i j}: X_{i} \longrightarrow X_{j}$ such that
(1) $\alpha_{i i}=I_{X_{i}}$,
(2) $\alpha_{i j} \circ \alpha_{j k}=\alpha_{i k}$.

Then, we say that $\left(X_{i}, \alpha_{i j}\right)_{i, j \in I}$ is a direct system of (G, H)-sets.
A (G, H)-set X is called a direct limit of $\left(X_{i}, \alpha_{i j}\right)_{i, j \in I}$ if there exists (G, H)-maps $\beta_{i}: X_{i} \longrightarrow X$ such that for all $i \leq j, \beta_{j} \circ \alpha_{i j}=\beta_{i}$. Also, if there exists a (G, H)-set Y with the property that there exists (G, H) maps $\gamma_{i}: X_{i} \longrightarrow Y$ such that $\gamma_{j} \circ \alpha_{i j}=\gamma_{i}$, where $i \leq j$, then there is a unique (G, H)-map $\delta: X \longrightarrow Y$ such that $\delta \circ \beta_{i}=\gamma_{i}$, for every $i \in I$. We write $\lim _{i \in I} X_{i}=X$.

Theorem 4.1. Let $\left(X_{i}, \alpha_{i j}\right)_{i, j \in I}$ be a direct system. Then, the direct limit exists and is unique up to isomorphism.

Proof. Suppose that $\left(X_{i}, \alpha_{i j}\right)_{i, j \in I}$ is a direct system. Then, there is no loss of generality in supposing that the sets $X_{i}(i \in I)$ are pairwise disjoint. Let Z be the union of all the sets X_{i}. Then, Z is a (G, H)-set in an obvious way. We define

$$
\rho=\left\{\left(x_{i}, y_{j}\right): x_{i} \in X_{i}, y_{j}=\alpha_{i j}\left(x_{i}\right), i, j \in I, i \leq j\right\}
$$

and ρ^{*} be an equivalence relation generated by ρ. Let $x_{i} \rho y_{j}$ and $g_{1}^{n-1} \in$ G. Then, $\alpha_{i j}\left(x_{i}\right)=y_{j}$. This implies that

$$
h\left(g_{1}^{n-1}, y_{j}\right)=h\left(g_{1}^{n-1}, \alpha_{i j}\left(x_{i}\right)\right)=\alpha_{i j}\left(h\left(g_{1}^{n-1}, x_{i}\right)\right)
$$

Hence, for every $b \in h\left(g_{1}^{n-1}, y_{j}\right)$ there exists $a \in h\left(g_{1}^{n-1}, x_{i}\right)$ such that $\alpha_{i j}(a)=b$. Thus, $a \rho b$. Also, $x \rho^{*} y$ implies that there exist $x_{1}, x_{2}, \ldots, x_{n} \in$ Z such that $x_{i} \rho x_{i+1}$. Hence, $h\left(g_{1}^{n-1}, x_{i}\right) \bar{\rho} h\left(g_{1}^{n-1}, x_{i+1}\right)$ implies that $h\left(g_{1}^{n-1}, x_{i}\right) \overline{\rho^{*}} h\left(g_{1}^{n-1}, x_{i+1}\right)$. We have a (G, H)-map $\beta_{i}: X_{i} \longrightarrow\left[Z: \rho^{*}\right]$ defined by $\beta_{i}\left(x_{i}\right)=\rho^{*}\left(x_{i}\right)$. Then, $\beta_{j}\left(\alpha_{i j}\left(x_{i}\right)\right)=\rho^{*}\left(\alpha_{i j}\left(x_{i}\right)\right)=\rho^{*}\left(x_{i}\right)=$ $\beta_{i}\left(x_{i}\right)$, for every $x_{i} \in X_{i}$ and so $\beta_{j} \circ \alpha_{i j}=\alpha_{i}$. If Y is a (G, H)-set and

Direct limit and tensor product for left(right) G-sets on hypergroups 19
$\gamma_{i}: X_{i} \longrightarrow Y$ be G-maps such that $\gamma_{j} \circ \alpha_{i j}=\gamma_{i}$, for each $i, j \in I, i \leq j$, then we have a (G, H)-map $\varphi: Z=\cup_{i \in I} X_{i}$ into Y such that $\varphi\left(x_{i}\right)=$ $\gamma_{i}\left(x_{i}\right)$, where $x_{i} \in X_{i}$ and $i \in I$. Also,

$$
\varphi\left(\alpha_{i j}\left(x_{i}\right)\right)=\gamma_{j}\left(\alpha_{i j}\left(x_{i}\right)\right)=\gamma_{i}\left(x_{i}\right)=\varphi\left(x_{i}\right) .
$$

Hence, there exists a $(G, H)-\operatorname{map} \omega:\left[Z: \rho^{*}\right] \longrightarrow Y$ defined by $\omega\left(\rho^{*}\left(x_{i}\right)\right)=$ $\gamma_{i}\left(x_{i}\right)$. Moreover, $\omega \circ \beta_{i}\left(x_{i}\right)=\omega\left(\rho^{*}\left(x_{i}\right)\right)=\gamma_{i}\left(x_{i}\right)$, for all $x_{i} \in X_{i}$. Finally, the (G, H)-map ω is unique: If ω_{1} is another (G, H)-map with the same properties, then for all $x_{i} \in X_{i}$ we have

$$
\omega_{1}\left(\rho^{*}\left(x_{i}\right)\right)=\omega_{1}\left(\beta_{i}\left(x_{i}\right)\right)=\gamma_{i}\left(x_{i}\right)=\omega\left(\rho^{*}\left(x_{i}\right)\right) .
$$

Hence $\omega=\omega_{1}$. Let X and Y be direct limit of the direct system $\left(X_{i}, \alpha_{i j}\right)_{i, j \in I}$. Then, we have a unique (G, H)-map $\omega_{1}: X \longrightarrow Y$ and $\omega_{2}: Y \longrightarrow X$ such that $\beta_{i} \circ \omega_{1}=\gamma_{i}$ and $\gamma_{i} \circ \omega_{2}=\beta_{i}$. Hence $\beta_{i} \circ \omega_{1} \circ \omega_{2}=\beta_{i}$ and $\gamma_{i} \circ \omega_{2} \circ \omega_{1}=\gamma_{i}$. This implies that $\omega_{1} \circ \omega_{2}=I d$ and $\omega_{2} \circ \omega_{1}=I d$. Therefore, the direct limit is unique up to isomorphism.

Theorem 4.2. Let $\left(X_{i}, \alpha_{i j}\right)_{i, j \in I}$ be a direct system of left G-subsets of X, G be a commutative n-ary semihypergroup and β^{*} be a fundamental relation on X. Then, $\left(\left[X_{i}: \beta^{*}\right], \widehat{\alpha}_{i j}\right)_{i, j \in I}$ is a direct system of $\left[X: \beta^{*}\right]$. Also, $\lim _{i \in I}\left[X_{i}: \beta^{*}\right]=\left[\lim _{i \in I} X_{i}: \beta^{*}\right]$.

Proof. Suppose that $\left(X_{i}, \alpha_{i j}\right)_{i, j \in I}$ is a direct system and $\alpha_{i j}: X_{i} \longrightarrow X_{j}$ be (G, G)-maps for $i \leq j$. By Proposition 3.26, $\widehat{\alpha}_{i j}:\left[X_{i}: \beta^{*}\right] \longrightarrow\left[X_{j}:\right.$ $\left.\beta^{*}\right]$ are (G, G)-maps, where $i, j \in I$ and $i \leq j$. Also,

$$
\widehat{\alpha}_{i i}\left(\beta^{*}(x)\right)=\beta^{*}\left(\alpha_{i i}(x)\right)=\beta^{*}(x),
$$

where $\beta^{*}(x) \in\left[X_{i}: \beta^{*}\right]$ and

$$
\begin{aligned}
\widehat{\alpha}_{i j} \circ \widehat{\alpha}_{j k}\left(\beta^{*}(x) \quad\right. & =\widehat{\alpha}_{i j}\left(\widehat{\alpha}_{j k}\left(\beta^{*}(x)\right)\right) \\
& =\beta^{*}\left(\alpha_{i j} \circ \alpha_{j k}(x)\right) \\
& =\beta^{*}\left(\alpha_{i k}(x)\right) \\
& =\widehat{\alpha}_{i k}\left(\beta^{*}(x)\right)
\end{aligned}
$$

where $\beta^{*}(x) \in\left[X_{i}: \beta^{*}\right]$. Hence, $\left(\left[X_{i}, \beta^{*}\right], \widehat{\alpha}_{i j}\right)_{i, j \in I}$ is a direct system.
Let X^{\prime} be the direct limit of the direct system $\left(X_{i}, \alpha_{i j}\right)_{i, j \in I}$. Then, $\alpha_{i j}: X_{i} \longrightarrow X_{j}$ and $\sigma_{i}: X_{i} \longrightarrow X^{\prime}$ such that $\sigma_{j} \circ \alpha_{i j}=\sigma_{i}$. We define $\widehat{\sigma}_{i}:\left[X_{i}: \beta^{*}\right] \longrightarrow\left[X^{\prime}: \beta^{*}\right]$ by $\widehat{\sigma}_{i}\left(\beta^{*}\left(x_{i}\right)\right)=\beta^{*}\left(\sigma_{i}\left(x_{i}\right)\right)$, where $x_{i} \in X_{i}$. By Proposition 3.26, $\widehat{\sigma}_{i}$ are well-defined and (G, G)-maps. Also, the maps $\widehat{\alpha}_{i j}:\left[X_{i}: \beta^{*}\right] \longrightarrow\left[X_{j}: \beta^{*}\right]$ are well-defined and (G, G)-maps. Thus,

$$
\widehat{\sigma}_{j} \circ \widehat{\alpha}_{i j}\left(\beta^{*}\left(x_{i}\right)\right)=\beta^{*}\left(\sigma_{j} \circ \alpha_{i j}\left(x_{i}\right)\right)=\beta^{*}\left(\sigma_{i}\left(x_{i}\right)\right)=\widehat{\sigma}_{i}\left(\beta^{*}\left(x_{i}\right)\right) .
$$

Let T be an another (G, G)-set and $\gamma_{i}: X_{i} \longrightarrow T$ be (G, G)-maps such that $\gamma_{j} \circ \alpha_{i j}=\gamma_{i}$. Then, $\widehat{\gamma_{j}} \circ \widehat{\alpha_{i j}}=\widehat{\gamma_{i}}$. Hence, there exists a unique $(G, G)-\operatorname{map} \delta: X^{\prime} \longrightarrow T$ such that $\delta \circ \sigma_{i}=\gamma_{i}$. By Proposition 3.26, $\widehat{\delta}:\left[X^{\prime}: \beta^{*}\right] \longrightarrow\left[T: \beta^{*}\right]$ is a (G, G)-map and easy to see that $\widehat{\delta} \circ \widehat{\sigma_{i}}=\widehat{\gamma_{i}}$. Now, $\widehat{\delta}$ is unique:
If $\widehat{\delta}_{1}$ is another (G, G)-map with the same properties of $\widehat{\delta}$, then

$$
\begin{aligned}
\widehat{\delta}_{1}\left(\widehat{\sigma}_{i}\left(\beta^{*}\left(x_{i}\right)\right)\right) & =\beta^{*}\left(\delta_{1} \circ \sigma_{i}\left(x_{i}\right)\right) \\
& =\beta^{*}\left(\delta \circ \sigma_{i}\left(x_{i}\right)\right) \\
& =\widehat{\delta} \circ \widehat{\sigma}_{i}\left(\beta^{*}\left(x_{i}\right)\right)
\end{aligned}
$$

This completes the proof.

5 Tensor product

In this section, we generalize the concept of tensor product of n-ary semihypergroups as a generalization of semigroups[12].

Let X, Y and Z be $\left(G_{1}, G_{2}\right)$-set, $\left(G_{2}, G_{3}\right)$-set and $\left(G_{1}, G_{3}\right)$-set,respectively. Then, we know that $X \times Y$ is a $\left(G_{1}, G_{3}\right)$-set. We say that a map $\varphi: X \times Y \longrightarrow Z$ is called bimap if for all $x \in X, g_{1}^{n-1} \in G_{2}$ and $y \in Y$, we have

$$
\varphi\left(h_{1}\left(x, g_{1}^{n-1}\right), y\right)=\varphi\left(x, h_{2}\left(g_{1}^{n-1}, y\right)\right) .
$$

A pair (P, ψ) consists of a $\left(G_{1}, G_{3}\right)$-set P and a bimap $\psi: X \times Y \longrightarrow$ P will be called a tensor product of X and Y over G_{2} if for every $\left(G_{1}, G_{3}\right)$ set Z and every bimap $\beta: X \times Y \longrightarrow Z$, there exists a unique bimap $\bar{\beta}: P \longrightarrow Z$ such that $\bar{\beta} \circ \psi=\beta$.

Direct limit and tensor product for left(right) G-sets on hypergroups 21

Suppose that ρ^{*} is the equivalence relation on $X \times Y$ generated by the relation
$\rho=\left\{\left(\left(t_{1}, y\right),\left(x, t_{2}\right)\right), x \in X, y \in Y, g_{1}^{n-1} \in G_{2}, t_{1}=h_{1}\left(x, g_{1}^{n-1}\right), t_{2}=h_{2}\left(g_{1}^{n-1}, y\right)\right\}$.
where $g_{1}^{n-1} \in G_{2}$ are scalar elements. This means that for every $x \in X$ and $y \in Y$ we have $\left|h_{1}\left(x, g_{1}^{n-1}\right)\right|=1$ and $\left|h_{2}\left(g_{1}^{n-1}, y\right)\right|=1$. We denote a typical element $\rho^{*}(x, y)$ of $\left[X \times Y: \rho^{*}\right]$ by $x \otimes y$ and we define $X \otimes Y$ to be $\left[X \times Y: \rho^{*}\right]$. By definition of ρ^{*} we immediately have that

$$
h_{1}\left(x, g_{1}^{n-1}\right) \otimes y=x \otimes h_{2}\left(g_{1}^{n-1}, y\right) .
$$

Example 5.1. Let G be an commutative n-ary semihypergroup and X be a non-empty set. Then, X is a left G-set as follows:

$$
\begin{aligned}
h: G^{n-1} \times X & \longrightarrow \mathcal{P}^{*}(X) \\
\left(g_{1}^{n-1}, x\right) & \longrightarrow\{x\}
\end{aligned}
$$

Hence for every $x, y \in X$, we have $\rho^{*}(x, y)=\{(x, y)\}$. Also, if we define $h\left(g_{1}^{n-1}, x\right)=X$, then we obtain $\rho^{*}(x, y)=X \times X$.

Example 5.2. Let $G=\left\{a_{1}, a_{2}, a_{3}\right\}$ be a canonical hypergroup by following hyperoperation and $X=G$. Then, X is a left G-set as follows:

	a_{1}	a_{2}	a_{3}
a_{1}	a_{1}	a_{2}	a_{3}
a_{2}	a_{2}	a_{2}	$\left\{a_{1}, a_{2}, a_{3}\right\}$
a_{3}	a_{3}	$\left\{a_{1}, a_{2}, a_{3}\right\}$	a_{3}

$$
\begin{aligned}
h: G \times X & \longrightarrow \mathcal{P}^{*}(X) \\
(g, x) & \longrightarrow g^{-1} x g
\end{aligned}
$$

Hence $\left[X \times Y: \rho^{*}\right]=X \times Y$.
Example 5.3. Let $(G,+)$ be a canonical hypergroup and N be a nonzero subcanonical hypergroup of G. Then, we define an equivalence relation N^{*} on G as follows:

$$
x N^{*} y \Longleftrightarrow(x-y) \cap N \neq \emptyset,
$$

where $x, y \in G$. The set of all equivalence classes $G / N^{*}=\left\{N^{*}(x): x \in\right.$ $G\}$ is a left G-set as follows:

$$
\begin{aligned}
h: G \times G / N^{*} & \longrightarrow \mathcal{P}^{*}\left(G / N^{*}\right) \\
\left(g, N^{*}(x)\right) & \longrightarrow\left\{N^{*}(t): t \in g+x\right\} .
\end{aligned}
$$

Indeed,

$$
\begin{aligned}
h\left(g_{1}, h\left(g_{2}, N^{*}(x)\right)\right) & =\left\{h\left(g_{1}, N^{*}(t)\right): N^{*}(t) \in h\left(g_{2}, N^{*}(x)\right)\right\} \\
& =\left\{h\left(g_{1}, N^{*}(t)\right): t \in g_{2}+x\right\} \\
& =\left\{N^{*}\left(t^{\prime}\right): t^{\prime} \in g_{1}+t \subseteq g_{1}+\left(g_{2}+x\right)=\left(g_{1}+g_{2}\right)+x\right\} \\
& =\left\{N^{*}\left(t^{\prime}\right): t^{\prime} \in\left(g_{1}+g_{2}\right)+x\right\} \\
& =h\left(g_{1}+g_{2}, N^{*}(x)\right) .
\end{aligned}
$$

Also,

$$
h\left(0, N^{*}(x)\right)=\left\{N^{*}(t): t \in 0+x\right\}=N^{*}(x) .
$$

Let g be a scalar element of G. Then, for every $N^{*}(x) \in G / N^{*}$, we have $\left|h\left(g, N^{*}(x)\right)\right|=1$. We claim, $g=0$. Let $g \neq 0$. Then, $\left|h\left(g, N^{*}(0)\right)\right|=$ 1. We have $\left|N^{*}(g)\right|=1$. Since $g \in N^{*}(g)$ and for every $a \in g+N, a \in$ $N^{*}(g)$, we have $a=g$. This implies that $N=\{0\}$ which is contradiction. Thus, the only scalar element of G is $\{0\}$. Therefore,

$$
\begin{aligned}
G / N^{*} \otimes G / N^{*} & =\left\{\rho^{*}\left(N^{*}\left(g_{1}\right), N^{*}\left(g_{2}\right)\right): g_{1}, g_{2} \in G\right\} \\
& =\left\{\left(N^{*}\left(g_{1}\right), N^{*}\left(g_{2}\right): g_{1}, g_{2} \in G\right\}\right. \\
& =G / N^{*} \times G / N^{*} .
\end{aligned}
$$

Proposition 5.4. Let X and Y be $\left(G_{1}, G_{2}\right)$ - and $\left(G_{2}, G_{3}\right)$ - sets, respectively, then $x_{1} \otimes y_{1}=x_{2} \otimes y_{2}$ if and only if there exist $a_{1}, a_{2}, \ldots, a_{n} \in X$, $b_{1}, b_{2}, \ldots, b_{n-1} \in Y$ and scalar elements $t_{i 1}^{n-1}, s_{j 1}^{n-1} \in G_{2}$ where $1 \leq i \leq$ $n-1$ and $1 \leq j \leq n$ such that

$$
\begin{aligned}
x_{1} & =h_{1}\left(a_{1}, s_{11}^{n-1}\right), \\
h_{1}\left(a_{1}, t_{11}^{n-1}\right) & =h_{1}\left(a_{2}, s_{21}^{n-1}\right), \\
& \vdots \\
h_{1}\left(a_{i}, t_{i 1}^{n-1}\right) & =h_{1}\left(a_{i+1}, s_{(i+1) 1}^{n-1}\right), \\
& \vdots \\
h_{1}\left(a_{n-1}, t_{(n-1) 1}^{n-1}\right) & =h_{1}\left(x_{2}, s_{n 1}^{n-1}\right) .
\end{aligned}
$$

Direct limit and tensor product for left(right) G-sets on hypergroups 23

$$
\begin{aligned}
h_{2}\left(s_{11}^{n-1}, y_{1}\right) & =h_{2}\left(t_{11}^{n-1}, b_{1}\right), \\
h_{2}\left(s_{21}^{n-1}, b_{1}\right) & =h_{2}\left(t_{21}^{n-1}, b_{2}\right), \\
& \vdots \\
h_{2}\left(s_{n 1}^{n-1}, b_{n-1}\right) & =y_{2},
\end{aligned}
$$

Proof. Suppose that we have given sequence of equivalence equations.
Then,

$$
\begin{aligned}
x_{1} \otimes y_{1}=h_{1}\left(a_{1}, s_{11}^{n-1}\right) \otimes y_{1}=a_{1} \otimes h_{2}\left(t_{11}^{n-1}, y_{1}\right) & =h_{1}\left(a_{1}, t_{11}^{n-1}\right) \otimes y_{1} \\
& =h_{1}\left(a_{2}, s_{21}^{n-1}\right) \otimes y_{1} \\
& \vdots \\
& =x_{2} \otimes h_{2}\left(s_{n 1}^{n-1}, b_{n-1}\right) \\
& =x_{2} \otimes y_{2}
\end{aligned}
$$

Conversely, suppose that $x_{1} \otimes y_{1}=x_{2} \otimes y_{2}$. Hence there is a sequence $\left(p_{1}, h_{1}\right),\left(p_{2}, h_{2}\right), \ldots,\left(p_{n}, h_{n}\right)$ such that $\left(x_{1}, y_{1}\right)=\left(p_{1}, h_{1}\right),\left(p_{n}, h_{n}\right)=\left(x_{2}, y_{2}\right)$ and $\left(\left(p_{i}, h_{i}\right),\left(p_{i+1}, h_{i+1}\right)\right) \in \rho, i=1, \cdots, n-1$. By the definition ρ, we have the given sequence of equations. This completes the proof.

Proposition 5.5. Let X and Y be $\left(G_{1}, G_{2}\right)$-set and $\left(G_{2}, G_{3}\right)$-set, respectively. Then, $X \otimes Y$ is a $\left(G_{1}, G_{3}\right)$-set.

Proof. Since X and Y are $\left(G_{1}, G_{2}\right)$ - and $\left(G_{2}, G_{3}\right)$-sets, respectively, by definition

$$
\begin{array}{ll}
h_{1}: X \times G_{2}^{n-1} \longrightarrow \mathcal{P}^{*}(X), & h_{1}^{\prime}: G_{1}^{n-1} \times X \longrightarrow \mathcal{P}^{*}(X), \\
h_{2}: G_{2}^{n-1} \times Y \longrightarrow \mathcal{P}^{*}(Y), & h_{2}^{\prime}: Y \times G_{3}^{n-1} \longrightarrow \mathcal{P}^{*}(Y) .
\end{array}
$$

We define

$$
\begin{aligned}
& \bar{h}_{2}\left(x \otimes y, s_{1}^{n-1}\right)=x \otimes h_{2}^{\prime}\left(y, s_{1}^{n-1}\right) \\
& \bar{h}_{1}\left(k_{1}^{n-1}, x \otimes y\right)=h_{1}^{\prime}\left(k_{1}^{n-1}, x\right) \otimes y
\end{aligned}
$$

where $s_{1}^{n-1} \in G_{3}, k_{1}^{n-1} \in G_{1}$ and $x \in X, y \in Y$.

Suppose that $x_{1} \otimes y_{1}=x_{2} \otimes y_{2}$. By the Proposition 5.4, we have

$$
\begin{aligned}
x_{1} & =h_{1}\left(a_{1}, s_{11}^{n-1}\right), \\
h_{1}\left(a_{1}, t_{11}^{n-1}\right) & =h_{1}\left(a_{2}, s_{21}^{n-1}\right), \\
& \vdots \\
h_{1}\left(a_{i}, t_{i 1}^{n-1}\right) & =h_{1}\left(a_{i+1}, s_{(i+1) 1}^{n-1}\right), \\
& \vdots \\
h_{1}\left(a_{n-1}, t_{(n-1) 1}^{n-1}\right) & =h_{1}\left(x_{2}, s_{n 1}^{n-1}\right) \\
& \\
h_{2}\left(s_{11}^{n-1}, y_{1}\right) & =h_{2}\left(t_{11}^{n-1}, b_{1}\right), \\
h_{2}\left(s_{21}^{n-1}, b_{1}\right) & =h_{2}\left(t_{21}^{n-1}, b_{2}\right), \\
& \vdots \\
h_{2}\left(s_{i 1}^{n-1}, b_{i-1}\right) & =h_{2}\left(t_{i 1}^{n-1}, b_{i}\right), \\
& \vdots \\
h_{2}\left(s_{(n-1) 1}^{n-1}, b_{n-2}\right) & =h_{2}\left(t_{(n-1) 1}^{n-1}, b_{n-1}\right), \\
h_{2}\left(s_{n 1}^{n-1}, b_{n-1}\right) & =y_{2},
\end{aligned}
$$

where $a_{1}, a_{2}, \ldots, a_{n} \in X, b_{1}, b_{2}, \ldots, b_{n-1} \in Y$ and $t_{i 1}^{n-1}, s_{j 1}^{n-1} \in G_{2}$ where $1 \leq i \leq n-1$ and $1 \leq j \leq n$. This implies that

$$
\begin{aligned}
h_{1}^{\prime}\left(k_{1}^{n-1}, x_{1}\right) & =h_{1}^{\prime}\left(k_{1}^{n-1}, h_{1}\left(a_{1}, s_{11}^{n-1}\right)\right), \\
h_{1}^{\prime}\left(k_{1}^{n-1}, h_{1}\left(a_{1}, t_{11}^{n-1}\right)\right) & =h_{1}^{\prime}\left(k_{1}^{n-1}, h_{1}\left(a_{2}, s_{21}^{n-1}\right)\right), \\
& \vdots \\
h_{1}^{\prime}\left(k_{1}^{n-1}, h_{1}\left(a_{i}, t_{i 1}^{n-1}\right)\right) & =h_{1}^{\prime}\left(k_{1}^{n-1}, h_{1}\left(a_{i+1}, s_{(i+1) 1}^{n-1}\right)\right) \\
& \vdots \\
h_{1}^{\prime}\left(k_{1}^{n-1}, h_{1}\left(a_{n-1}, t_{(n-1) 1}^{n-1}\right)\right) & =h_{1}^{\prime}\left(k_{1}^{n-1}, h_{1}\left(x_{2}, s_{n 1}^{n-1}\right)\right) .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
h_{1}^{\prime}\left(k_{1}^{n-1}, x_{1}\right) & =h_{1}\left(h_{1}^{\prime}\left(k_{1}^{n-1}, a_{1}\right), s_{11}^{n-1}\right), \\
h_{1}\left(h_{1}^{\prime}\left(k_{1}^{n-1}, a_{1}\right), t_{11}^{n-1}\right) & =h_{1}\left(h_{1}^{\prime}\left(k_{1}^{n-1}, a_{2}\right), s_{21}^{n-1}\right), \\
& \vdots \\
h_{1}\left(h_{1}^{\prime}\left(k_{1}^{n-1}, a_{i}\right), t_{i 1}^{n-1}\right) & =h_{1}\left(h_{1}^{\prime}\left(k_{1}^{n-1}, a_{i+1}\right), s_{(i+1) 1}^{n-1}\right), \\
& \vdots \\
h_{1}\left(h_{1}^{\prime}\left(k_{1}^{n-1}, a_{n-1}\right), t_{(n-1) 1}^{n-1}\right) & =h_{1}\left(h_{1}^{\prime}\left(k_{1}^{n-1}, x_{2}\right), s_{n 1}^{n-1}\right) .
\end{aligned}
$$

This implies that $h_{1}^{\prime}\left(k_{1}^{n-1}, x_{1}\right) \otimes y_{1}=h_{1}^{\prime}\left(k_{1}^{n-1}, x_{2}\right) \otimes y_{2}$ and the map \bar{h}_{1} is well-defined. We can see that $X \otimes Y$ is a left G_{1}-set by \bar{h}_{1}. In the same way, $X \otimes Y$ is a right G_{3}-set by the map \bar{h}_{2}. Also, for every $x \otimes y \in X \otimes Y, k_{1}^{n-1} \in G_{1}$ and $s_{1}^{n-1} \in G_{3}$

$$
\begin{aligned}
\bar{h}_{2}\left(\bar{h}_{1}\left(k_{1}^{n-1}, x \otimes y\right), s_{1}^{n-1}\right) & =\bar{h}_{2}\left(h_{1}^{\prime}\left(k_{1}^{n-1}, x\right) \otimes y, s_{1}^{n-1}\right) \\
& =h_{1}^{\prime}\left(k_{1}^{n-1}, x\right) \otimes h_{2}^{\prime}\left(y, s_{1}^{n-1}\right) \\
& =\bar{h}_{1}\left(k_{1}^{n-1}, \bar{h}_{2}\left(x \otimes y, s_{1}^{n-1}\right)\right) .
\end{aligned}
$$

Therefore, $X \otimes Y$ is a $\left(G_{1}, G_{3}\right)$-set. This completes the proof.
Definition 5.6. Let X and Y be $\left(G_{1}, G_{2}\right)$ - and $\left(G_{2}, G_{3}\right)$-sets, respectively. We define a map $\pi: X \times Y \longrightarrow X \otimes Y$ with $\pi(x, y)=x \otimes y$. It's easy to see that π is a bimap and is called canonical bimap.

Theorem 5.7. Let X and Y be $\left(G_{1}, G_{2}\right)$ - and $\left(G_{2}, G_{3}\right)$-sets, respectively. Then, $(X \otimes Y, \pi)$ is a tensor product of X and Y over G_{2}.

Proof. Suppose that Z is a $\left(G_{1}, G_{3}\right)$-set and $\beta: X \times Y \longrightarrow Z$ is a bimap. We define $\bar{\beta}: X \otimes Y \longrightarrow Z$ by

$$
\bar{\beta}(x \otimes y)=\beta(x, y)
$$

where $x \in X$ and $y \in Y$. Let $x_{1} \otimes y_{1}=x_{2} \otimes y_{2}$. Then, by Proposition
5.4, we have

$$
\begin{aligned}
\beta\left(x_{1}, y_{1}\right)=\beta\left(h_{1}\left(a_{1}, s_{11}^{n-1}\right), y_{1}\right) & =\beta\left(a_{1}, h_{2}\left(s_{11}^{n-1}, y_{1}\right)\right) \\
& =\beta\left(a_{1}, h_{2}\left(t_{11}^{n-1}, b_{1}\right)\right. \\
& =\beta\left(h_{1}\left(a_{1}, t_{11}^{n-1}\right), b_{1}\right) \\
& \vdots \\
& =\beta\left(x_{2}, h_{2}\left(s_{1 n}^{n-1}, b_{n-1}\right)\right) \\
& =\beta\left(x_{2}, y_{2}\right) .
\end{aligned}
$$

Hence, $\bar{\beta}\left(x_{1} \otimes y_{1}\right)=\bar{\beta}\left(x_{2} \otimes y_{2}\right)$. This implies that $\bar{\beta}$ is well-defined. It is now routine to establish that $\bar{\beta}$ is bimap and $\bar{\beta} \circ \pi=\beta$. Moreover, $\bar{\beta}$ is unique with respect to these properties.

Proposition 5.8. Let X and Y be left G_{1} - and right G_{2} - sets, respectively. Then, the tensor product of them is unique up to isomorphism

Proof. Suppose that (P, ψ) and $\left(P^{\prime}, \psi^{\prime}\right)$ are tensor product of X and Y. Then, we find a unique $\widehat{\psi}^{\prime}: P \longrightarrow P^{\prime}$ and $\widehat{\psi}: P^{\prime} \longrightarrow P$ such that $\psi \circ \widehat{\psi^{\prime}}=\psi^{\prime}$ and $\psi^{\prime} \circ \widehat{\psi}=\psi$. Hence, $\psi \circ \widehat{\psi^{\prime}} \circ \widehat{\psi}=\psi$ and by the uniqueness property, we have $\widehat{\psi^{\prime}} \circ \widehat{\psi}=I d$. In the same way, $\widehat{\psi} \circ \widehat{\psi^{\prime}}=I d$ and so $P \cong P^{\prime}$. This completes the proof.

Let G_{1} and G_{2} be n-ary semihypergroups. Then, a map $\varphi: G_{1} \longrightarrow$ G_{2} is called morphism, when

$$
\varphi\left(f\left(g_{1}, g_{2}, \ldots, g_{n}\right)\right)=f\left(\varphi\left(g_{1}\right), \varphi\left(g_{2}\right), \ldots, \varphi\left(g_{n}\right)\right)
$$

where $g_{1}^{n} \in G_{1}$. When G_{1} and G_{2} are n - ary semihypergroups with identities elements, $\varphi\left(e_{1}\right)=e_{2}$.

Definition 5.9. Let H be an n-ary sub semihypergroup of G and $g \in G$. Then, we say that H dominates g, when for any n-ary subsemigroup T and all morphisms $\varphi_{1}, \varphi_{2}: G \longrightarrow T$, the following implication holds

$$
\forall h \in H, \varphi_{1}(h)=\varphi_{2}(h) \Longrightarrow \varphi_{1}(g)=\varphi_{2}(g)
$$

More informally, H dominates g if any two morphisms of G that coincide on elements of H, coincide also on g. The set of elements dominated by H is called dominion of H in G and is written $\operatorname{Dom}_{H}(G)$.

Direct limit and tensor product for left(right) G-sets on hypergroups 27

It is clear that $H \subseteq \operatorname{Dom}_{H}(G)$. When G is a n-ary semigroup, $\operatorname{Dom}_{H}(G)$ is an n-ary subsemigroup of G. Indeed, suppose that $g_{1}, g_{2}, \ldots, g_{n} \in$ $\operatorname{Dom}_{H}(G)$ and morphisms $\varphi_{1}, \varphi_{2}: G \longrightarrow T$ such that $\varphi_{1}(h)=\varphi_{2}(h)$, for all $h \in H$. Hence, $\varphi_{1}\left(g_{i}\right)=\varphi_{2}\left(g_{i}\right)$, for $1 \leq i \leq n$. Hence,

$$
\begin{aligned}
\varphi_{1}\left(f\left(g_{1}, g_{2}, \ldots, g_{n}\right)\right) & =f\left(\varphi_{1}\left(g_{1}\right), \varphi_{1}\left(g_{2}\right) \ldots \varphi_{1}\left(g_{n}\right)\right) \\
& =f\left(\varphi_{2}\left(g_{1}\right), \varphi_{2}\left(g_{2}\right) \ldots \varphi_{2}\left(g_{n}\right)\right) \\
& =\varphi_{2}\left(f\left(g_{1}, g_{2}, \ldots, g_{n}\right)\right)
\end{aligned}
$$

Theorem 5.10. Let H be an n-ary subsemihypergroup of $G, g \in G$, which G has identity element and $g \otimes e=e \otimes g$. Then, $g \in \operatorname{Dom}_{H}(G)$.

Proof. Suppose that $g \otimes e=e \otimes g$ and we have an n-ary semihypergroup T such that $\varphi_{1}, \varphi_{2}: G \longrightarrow T$ are morphisms. Let $\varphi_{1}(h)=\varphi_{2}(h)$, for every $h \in H$. Then, T is an (H, H)-set if we define

$$
\begin{aligned}
h: H^{n-1} \times T & \longrightarrow T \\
\left(h_{1}^{n-1}, t\right) & \longmapsto f_{2}(\varphi_{1}\left(f_{1}\left(h_{1}^{n-1}, e\right)\right), t, \underbrace{e, e, \ldots, e}_{n-2}), \\
h^{\prime}: T \times H^{n-1} & \longrightarrow T \\
\left(t, h_{1}^{n-1}\right) & \longmapsto f_{2}(t, \varphi_{1}\left(f_{1}\left(h_{1}^{n-1}, e\right)\right), \underbrace{e, e, \ldots, e}_{n-2}) .
\end{aligned}
$$

We define $\psi: G \times G \longrightarrow T$ as follows

$$
\left(g_{1}, g_{2}\right) \longmapsto f_{2}(\varphi_{1}\left(g_{1}\right), \varphi_{2}\left(g_{2}\right), \underbrace{e, e, \ldots, e}_{n-2}) .
$$

Hence, ψ is an (H, H)-map and is even bimap. Indeed,

$$
\begin{aligned}
\psi\left(f_{1}\left(g_{1}, h_{1}^{n-1}\right), g_{2}\right) & =f_{2}(\varphi_{1}\left(f_{1}\left(g_{1}, h_{1}^{n-1}\right)\right), \varphi_{2}\left(g_{2}\right), \underbrace{e, e, \ldots, e}_{n-2}) \\
& =f_{2}(f_{2}\left(\varphi_{1}\left(g_{1}\right), \varphi_{1}\left(h_{1}\right), \cdots, \varphi_{1}\left(h_{n-1}\right)\right), \varphi_{2}\left(g_{2}\right), \underbrace{e, e, \ldots, e}_{n-2}) \\
& =f_{2}(f_{2}\left(\varphi_{1}\left(g_{1}\right), \varphi_{2}\left(h_{1}\right), \cdots, \varphi_{2}\left(h_{n-1}\right)\right), \varphi_{2}\left(g_{2}\right), \underbrace{e, e, \ldots, e}_{n-2}) \\
& =f_{2}(\varphi_{1}\left(g_{1}\right), f_{2}\left(\varphi_{2}\left(h_{1}\right), \cdots, \varphi_{2}\left(h_{n-1}\right), \varphi_{2}\left(g_{2}\right)\right), \underbrace{e, e, \ldots, e}_{n-2}) \\
& =\psi\left(g_{1}, f_{2}\left(h_{1}^{n-1}, g_{2}\right)\right)
\end{aligned}
$$

It follows that there is a map $\bar{\psi}: G \otimes G \longrightarrow T$

$$
\left(g_{1} \otimes g_{2}\right) \longmapsto \psi\left(g_{1}, g_{2}\right)
$$

for every $g_{1} \otimes g_{2} \in G \otimes G$. Since $g \otimes e=e \otimes g$, we have

$$
\begin{aligned}
\varphi_{1}(g)=f_{2}\left(\varphi_{1}(g), \varphi_{2}(e), e, e, . ., e\right)=\bar{\psi}(g \otimes e) & =\bar{\psi}(e \otimes g) \\
& =f_{2}\left(\varphi_{1}(e), \varphi_{2}(g), e, e, \ldots, e\right) \\
& =\varphi_{2}(g) .
\end{aligned}
$$

This completes the proof.
Let X_{1}, X_{2} and X_{3} be left G-sets, $\varphi_{1}: X_{1} \longrightarrow X_{2}, \varphi_{2}: X_{1} \longrightarrow X_{3}$, $\psi_{1}: X_{2} \longrightarrow X$ and $\psi_{2}: X_{3} \longrightarrow X$ be morphisms such that $\psi_{1} \circ \varphi_{1}=$ $\psi_{2} \circ \varphi_{2}$. If there exist a left G-set X^{\prime} and morphisms $\psi_{1}^{\prime}: X_{2} \longrightarrow X^{\prime}$ and $\psi_{2}^{\prime}: X_{3} \longrightarrow X^{\prime}$ such that $\psi_{1}^{\prime} \circ \varphi_{1}=\psi_{2}^{\prime} \circ \varphi_{2}$, then there exists a unique morphism $\omega: X \longrightarrow X^{\prime}$ such that

$$
\omega \circ \psi_{1}=\psi_{1}^{\prime}, \quad \omega \circ \psi_{2}=\psi_{2}^{\prime} .
$$

Hence, we say that $\left[X_{i}, \varphi_{j}, \psi_{r}\right], 1 \leq i \leq 3,1 \leq j \leq 2,1 \leq r \leq 2$ is a push out system. We note that $X=\left[\bigcup_{i=1}^{3} X_{i}: \rho^{*}\right]$ of the disjoint of X_{1}, X_{2}, X_{3}, where ρ^{*} is the congruence relation generated by the following relation:

$$
x_{1} \rho x_{2} \Longleftrightarrow x_{1} \in X_{1} \text { and } x_{2}=\varphi_{1}\left(x_{1}\right) \text { or } x_{2}=\varphi_{2}\left(x_{1}\right)
$$

The map $\psi_{1}: X_{2} \longrightarrow X$ and $\psi_{2}: X_{3} \longrightarrow X$,

$$
\psi_{1}\left(x_{2}\right)=\rho^{*}\left(x_{2}\right), \quad \psi_{2}\left(x_{3}\right)=\rho^{*}\left(x_{3}\right)
$$

Let $x_{2} \in X_{2}$ and $x_{3} \in X_{3}$ and $\psi_{1}\left(x_{2}\right)=\psi_{2}\left(x_{3}\right)$. Then, $x_{2} \in \operatorname{Im} \varphi_{1}$. Indeed, We have $\rho^{*}\left(x_{2}\right)=\rho^{*}\left(x_{3}\right)$. This implies that there are $b_{1}, b_{2}, \ldots, b_{n}$ such that $b_{1}=x_{2}$ and $b_{2}=x_{3}$ and $\left(b_{i}, b_{i+1}\right) \in \rho$. Such a sequence cannot even unless $x_{2} \in \operatorname{Im} \varphi_{1}$.

Definition 5.11. Let H be an n-ary subsemihypergroup of n-ary semihypergroup G with identity. We say that H has the extension property in G if for every left H-set X and right H-set Y the map $X \times Y \longrightarrow$ $X \otimes G \otimes Y$ defined by $x \otimes y \longrightarrow x \otimes e \otimes y$ is one to one.

Direct limit and tensor product for left(right) G-sets on hypergroups 29

Theorem 5.12. Let H be an n-ary subsemihypergroup of an n-ary semihypergroup G with identity and H has the extension property in G and $\varphi: X \longrightarrow Y$ be a morphism and $y \otimes e=\varphi(x) \otimes g$ in $Y \otimes G$. Then, $y \in \operatorname{Im} \varphi$.

Proof. Suppose that $[X, X, Y, Y, P]$ is a push out system, where φ_{1}, φ_{2} : $X \longrightarrow Y, \psi_{1}, \psi_{2}: Y \longrightarrow P$. Hence $[X \otimes G, X \otimes G, Y \otimes G, Y \otimes G, P \otimes G]$, where $\varphi_{1} \otimes I: X \otimes G \longrightarrow Y \otimes G, \varphi_{2} \otimes I: X \otimes G \longrightarrow Y \otimes G, \psi_{1} \otimes I:$ $Y \otimes G \longrightarrow P \otimes G$ and $\psi_{2} \otimes I: Y \otimes G \longrightarrow P \otimes G$ is a push out system. Let $y \otimes e=\varphi(x) \otimes g$ in $Y \otimes G$. Then,

$$
\begin{aligned}
\psi_{1}(y) \otimes e=\left(\psi_{1} \otimes I\right)(y \otimes e)=\left(\psi_{1} \otimes I\right)(\varphi(x) \otimes g) & =\psi_{1} \varphi(x) \otimes g \\
& =\psi_{2} \varphi(x) \otimes g \\
& =\left(\psi_{2} \otimes I\right)(\varphi(x) \otimes g) \\
& =\left(\psi_{2} \otimes I\right)(y \otimes e) \\
& =\psi_{2}(y) \otimes e .
\end{aligned}
$$

By the extension property the map $y \longrightarrow y \otimes e$ from Y to $Y \otimes H$ is one to one. Hence $\psi_{1}(y)=\psi_{2}(y)$. This implies that $y \in \operatorname{Im} \varphi$.

Theorem 5.13. Let X, Y and Z be left G-sets. Then, $X \otimes Y$ and $\operatorname{Mor}(Y, Z)$ are left G-sets and

$$
\operatorname{Mor}(X \otimes Y, Z) \cong \operatorname{Mor}(X, M o r(Y, Z))
$$

Proof. Suppose that $g_{1}, g_{2}, \ldots, g_{n-1} \in G, h_{1}: G^{n-1} \times X \longrightarrow X, h_{2}$: $G^{n-1} \times Y \longrightarrow Y, h_{3}: G^{n-1} \times Z \longrightarrow Z$ and $\alpha \in \operatorname{Mor}(Y, Z)$. We define $h: G^{n-1} \times \operatorname{Mor}(Y, Z) \longrightarrow \operatorname{Mor}(Y, Z)$ by

$$
h\left(g_{1}^{n-1}, \alpha\right)(x)=h_{3}\left(g_{1}^{n-1}, \alpha(x)\right),
$$

where $x \in Y$. Hence,

$$
\begin{aligned}
h\left(f\left(g_{1}^{n}\right), g_{n+1}^{2 n-2}, \alpha\right)(x) & =h_{3}\left(f\left(g_{1}^{n}\right), g_{n+1}^{2 n-2}, \alpha(x)\right) \\
& \vdots \\
& =h_{3}\left(g_{n}^{n-1}, h_{3}\left(g_{n}^{2 n-2}, \alpha(x)\right)\right) \\
& =h\left(g_{1}^{n-1}, h\left(g_{n}^{2 n-2}, \alpha\right)\right)(x),
\end{aligned}
$$

for every $x \in Y$. This implies that $\operatorname{Mor}(Y, Z)$ is a left G-set. By Proposition 5.5, $X \otimes Y$ is a left G-set.

Let $f \in \operatorname{Mor}(X \otimes Y, Z)$. Then, f is a G-map. Hence,

$$
f\left(h^{\prime}\left(g_{1}^{n-1}, x \otimes y\right)\right)=h_{3}\left(g_{1}^{n-1}, f(x \otimes y)\right) .
$$

for every $g_{1}^{n-1} \in G$ and $x \otimes y \in X \otimes Y$.
For every $x \in X$, we define $f_{x}(y)=f(x \otimes y)$. Hence $f_{x} \in \operatorname{Mor}(Y, Z)$. Indeed, for every $g_{1}^{n-1} \in G$ we have

$$
\begin{aligned}
f_{x}\left(h_{2}\left(g_{1}^{n-1}, y\right)\right) & =f\left(x \otimes h_{2}\left(g_{1}^{n-1}, y\right)\right) \\
& =f\left(h_{1}\left(g_{1}^{n-1}, x\right) \otimes y\right) \\
& =f\left(h^{\prime}\left(g_{1}^{n-1}, x \otimes y\right)\right) \\
& =h_{3}\left(g_{1}^{n-1}, f(x \otimes y)\right) .
\end{aligned}
$$

We define

$$
\begin{aligned}
\psi: M o r(X \otimes Y, Z) & \longrightarrow \operatorname{Mor}(X, M o r(Y, Z)) \\
f & \longmapsto T_{f},
\end{aligned}
$$

where $T_{f}: X \longrightarrow \operatorname{Mor}\left(Y, Z\right.$ by $T_{f}(x)=f_{x}$. Hence ψ is a morphism. Indeed, for every $g_{1}^{n-1} \in G, x \in X, y \in Y$ and $f \in \operatorname{Mor}(X \otimes Y, Z)$,

$$
\begin{aligned}
\psi\left(h\left(g_{1}^{n-1}, f\right)\right)(x \otimes y)=T_{h\left(g_{1}^{n-1}, f\right)}(x \otimes y) & =h\left(g_{1}^{n-1}, f\right)_{x}(y) \\
& =h_{3}\left(g_{1}^{n-1}, f(x \otimes y)\right) \\
& =h_{3}\left(g_{1}^{n-1}, f_{x}(y)\right) \\
& =h\left(g_{1}^{n-1}, \psi(f)\right)(x \otimes y) .
\end{aligned}
$$

Let $f \in \operatorname{Mor}(X, \operatorname{Mor}(Y, Z))$ and $T: G^{n-1} \times \operatorname{Mor}(Y, Z) \longrightarrow \operatorname{Mor}(Y, Z)$. Then, for every $x \in X, f(x)$ is a morphism. We define

$$
\begin{aligned}
\varphi: \operatorname{Mor}(X, \operatorname{Mor}(Y, Z)) & \longrightarrow \operatorname{Mor}(X \otimes Y, Z) \\
f & \longmapsto \bar{f},
\end{aligned}
$$

where $\bar{f}(x \otimes y)=(f(x))(y)$. We have

$$
\varphi\left(h\left(g_{1}^{n-1}, f\right)(x)\right)=\bar{h}\left(g_{1}^{n-1}, f\right),
$$

Direct limit and tensor product for left(right) G-sets on hypergroups 31
where

$$
\begin{aligned}
\bar{h}\left(g_{1}^{n-1}, f\right)(x \otimes y)=\left(h\left(g_{1}^{n-1}, f\right)(x)\right)(y) & =T\left(g_{1}^{n-1}, f(x)\right)(y) \\
& =T\left(g_{1}^{n-1},(f(x))(y)\right) \\
& =T\left(g_{1}^{n-1},(\varphi(f)(x))(y),\right.
\end{aligned}
$$

for every $x \in X$ and $y \in Y$. Hence φ is a morphism. Moreover, for every $f \in \operatorname{Mor}(X \otimes Y, Z)$ and $x \otimes y \in X \otimes Y$,

$$
(\varphi \circ \psi)(f)(x \otimes y)=\varphi(\psi(f)(x \otimes y))=\varphi\left(T_{f}(x)(y)\right)=f_{x}(y)=f(x \otimes y)
$$

Hence $\varphi \circ \psi=I_{\operatorname{Mor}(X \otimes Y, Z)}$. On the other hand, for every $f \in \operatorname{Mor}(X, \operatorname{Mor}(Y, Z))$,

$$
(\psi \circ \varphi)(f)=\psi(\varphi(f))=\psi(\bar{f})=T_{\bar{f}}
$$

such that $T_{\bar{f}} \in \operatorname{Mor}(X \otimes Y, Z)$ and for every $x \otimes y \in X \otimes Y$, we have

$$
T_{\bar{f}}(x \otimes y)=\bar{f}(x \otimes y)=(f(x))(y) .
$$

Hence,

$$
\psi \circ \varphi=I_{M o r(X, M o r(Y, Z))} .
$$

This completes the proof.
Theorem 5.14. Let $\left(X_{i}, \alpha_{i j}\right)_{i, j \in I}$ be a direct system of left (G, H)-sets and X be a right G-set. Then, $\left(X_{i} \otimes X, \widehat{\alpha}_{i j}\right)_{i, j \in I}$ is a direct system and $\lim _{i \in I}\left(X_{i} \otimes X\right)=\left(\lim _{i \in I} X_{i}\right) \otimes X$.

Proof. Suppose that $\alpha_{i j}: X_{i} \longrightarrow X_{j}$ and $\bar{\alpha}_{i j}: X_{i} \times X \longrightarrow X_{i} \otimes X$ defined by $\bar{\alpha}_{i j}\left(x_{i}, x\right)=\alpha_{i j}\left(x_{i}\right) \otimes x$. Hence,
$\bar{\alpha}_{i j}\left(h\left(x_{i}, t_{1}^{n-1}\right), x\right)=h\left(x_{i}, t_{1}^{n-1}\right) \otimes x=x_{i} \otimes h\left(t_{1}^{n-1}, x\right)=\overline{\alpha_{i j}}\left(x_{i}, h\left(t_{1}^{n-1}, x\right)\right)$.
Then, $\bar{\alpha}_{i j}$ is a bimap. Thus, there is $\widehat{\alpha}_{i j}: X_{i} \otimes X \longrightarrow X_{j} \otimes X$ such that $\widehat{\alpha}_{i j}\left(x_{i} \otimes x\right)=\alpha_{i j}\left(x_{i}\right) \otimes x$, where $x_{i} \in X_{i}$ and $x \in X$. Also,

$$
\widehat{\alpha}_{j k} \circ \widehat{\alpha}_{i j}\left(x_{i} \otimes x\right)=\alpha_{j k} \circ \alpha_{i j}\left(x_{i}\right) \otimes x=\alpha_{i k}\left(x_{i}\right) \otimes x=\widehat{\alpha}_{i k}\left(\left(x_{i}\right) \otimes x\right) .
$$

and

$$
\widehat{\alpha}_{i i}\left(x_{i} \otimes x\right)=\alpha_{i j}\left(x_{i}\right) \otimes x=x_{i} \otimes x .
$$

Let $\beta_{i}: X_{i} \longrightarrow \lim _{i \in I} X_{i}$ and $\bar{\beta}_{i}: X_{i} \times X \longrightarrow \lim _{i \in I} X_{i} \otimes X$ defined by $\bar{\beta}_{i}(t, x)=\beta_{i}(t) \otimes x$. Then, $\bar{\beta}_{i}$ is a bimap. Thus, there exists $\widehat{\beta}_{i}$: $X_{i} \otimes X \longrightarrow \lim _{i \in I} X_{i} \otimes X$ such that $\widehat{\beta}_{i}(t \otimes x)=\beta_{i}(t) \otimes x$.

$$
\widehat{\beta}_{j} \circ \widehat{\alpha}_{i j}\left(x_{i} \otimes x\right)=\beta_{j}\left(\alpha_{i j}\left(x_{i}\right) \otimes x\right)=\beta_{i}\left(x_{i}\right) \otimes x=\widehat{\beta}_{i}\left(x_{i} \otimes x\right) .
$$

Let $x \in X$ be a fixed element and $\sigma_{i}: X_{i} \longrightarrow X_{i} \otimes X$ defined by $\sigma_{i}\left(x_{i}\right)=x_{i} \otimes x$ and Y be a (G, H)-set and $\gamma_{i}: X_{i} \otimes X \longrightarrow Y$ such that $\widehat{\gamma}_{j} \circ \widehat{\alpha}_{i j}=\widehat{\gamma}_{i}$. Then, $\gamma_{j} \circ \sigma_{j} \circ \alpha_{i j}=\gamma_{i} \circ \sigma_{i}$. Thus, there exists $\delta: Y \longrightarrow \lim _{i \in I} X_{i}$ such that $\delta \circ \gamma_{i} \circ \sigma_{i}=\beta_{i}$. Therefore, $\gamma_{j} \circ \widehat{\alpha}_{i j}=\gamma_{i}$ and $\lim _{i \in I}\left(X_{i} \otimes X\right)=\left(\lim _{i \in I} X_{i}\right) \otimes X$.

6 Conclusion

The study of homological concepts in the context of hypergroups theory is a new research theory. This generalizes the existing research of these concepts on hyperstructures, done especially in from a different point of view [13, 18]. In the present paper, we have introduced and studied left(right) G-sets on n - ary hypergroups and resent some examples. Also, the various properties of these concept are emphasized. Moreover, we have introduced and studied direct limit and tensor product of left(right) G-sets on n-ary semihypergroups. A possible future study could be devoted to the introduction and analysis of flat left(right) G-sets and "Tor" functor.

References

[1] M. Al Tahan and B. Davvaz, Electrochemical cells as experimental verifications of n-ary hyperstructures, Matematika, 35(1) (2019), 13-24.
[2] P. Corsini, Prolegomena of hypergroup theory, Second Edition, Aviani Editore (1993).
[3] P. Corsini and V. Leoreanu, Applications of hyperstructure theory, Advances in Mathematics, Kluwer Academic Publishers, Dordrecht, (2003).

Direct limit and tensor product for left(right) G-sets on hypergroups 33
[4] I. Cristea and M. Snescu, Binary relations and reduced hypergroups, Discrete Mathematics, 308(16) (2008), 3537-3544.
[5] B. Davvaz, W.A. Dudek, and S. Mirvakili, Neutrla elements, fundamental relations and n-ary hyperring, International Journal of Algebra and Computation, 19(04) (2009), 567-583.
[6] B. Davvaz and V. Leoreanu-Fotea, Hyperring theory and applications, International Academic Press USA, (2007).
[7] B. Davvaz and Vougiouklis, n-ary hypergroups, Iran. J. Sci. Technol. Trans. A, 30 (A2)(2006), 165-174.
[8] M. De Salvo and G. Lo Faro, On the n-complete hypergroups, Discrete Mathematics, 208/209 (1999), 177-188.
[9] W. Dörnte, Unterschungen uber einen verallgemeinerten gruppenbegriff, Math.Z. 29 (1929), 1-19.
[10] W.A. Dudek and V.S. Trokhimenko, De Morgan (2,n)-Semigroups of n-Place Functions, Communications in Algebra, 44 (2016), 44304437.
[11] M. Ghadirin and B.N. Waphare, n-Ary polygroups, Iranian J. Science and Technology, Transaction A, 33(A2) (2009), 145-158.
[12] J.M. Howie, An introduction to semigroup theory, Academic Press, (1976).
[13] V. Leoreanu, Direct limits and inverse limits of SHR semigroups, Southeast Asian Bull. Math. 25(3) (2001), 421-426.
[14] V. Leoreanu-Fotea, I. Rosenberg, B. Davvaz, and T. Vougiouklis, A new class of n-ary hyperoperations, European J. Combinatorics, (44) (2015), 265-273.
[15] F. Marty, Sur une generalization de la notion de group, $8^{\text {th }}$ Congress Math, Scandinaves, (1934), 45-49.
[16] S. Mirvakili and B. Davvaz, Applications of strongly transitive geometric spaces to n-ary hypergroups, ARS Combinatoria, 109 (2013), 193-227.
[17] S. Ostadhadi-Dehkordi, m-Ary Hypervector Space: Convergent Sequence and Bundle Subsets, Iranian Journal of Mathematical Sciences and Informatics, 11(2) (2016), 23-41.
[18] S. Ostadhadi-Dehkordi, Direct limit derived from twist product on Γ-semihypergroups, Kragujevac Journal of Mathematics, 40(1) (2016), 61-72.
[19] J. Rotman, An introduction to homological algebra, Academic Press, New York, (1979).
[20] L. Shehu and B. Davvaz, Direct and semidirect product of n-ary polygroups via n-ary factor polygroups, J. Algebra and its Applications, 18(5) (2019), 1950082 (20 pages).

N. Rakhsh Khorshid

Department of Mathematics
University of Hormozgan
Bandar Abbas, Iran.
E-mail: n.rakhshkhorshid.phd@hormozgan.ac.ir

S. Ostadhadi-Dehkordi

Department of Mathematics
Assistant Professor of Mathematics
University of Hormozgan
Bandar Abbas, Iran.
E-mail: Ostadhadi@hormozgan.ac.ir

[^0]: Received:August 2020; Accepted: February 2020.

 * Corresponding Author

