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Abstract. Fuzzy fractional heat equations (FFHEs) are utilized to an-
alyze the behaviour of the certain phenomena in various mathematical
and scientific models. The main goal of this paper is to construct the
solution of fuzzy fractional heat equations by taking a reliable recipe
of Sumudu transformation method and homotopy analysis method into
account. These method allow us to remove the difficulties and restric-
tions confronted in other methods. The feasibility of this method is
confirmed by given numerical examples. The result presented that the
proposed method is suitable, powerful and reliable for obtaining the
solution of fuzzy fractional problems with FFHEs.
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1 Introduction

It is evident from the scientific studies that fractional differential equa-
tions (FDEs) have been gaining growing attention last two decades. By
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means of fuzzy quantities, crisp quantities in the FDEs can be replaced
to reflect imprecision and uncertainty. This emerges fuzzy fractional
differential equations (FFDEs). As a result, there are many different
studies on the solutions of FFDEs [18, 22, 2, 16, 11, 24, 3]. Modelling
scientific processes with uncertainty such as linear algebra, differential
equations, power systems, control theory, system theory, optimization,
signal processing and etc. [5, 20, 4, 21, 14, 15] by fuzzy differential
equations is more suitable than ordinary or partial differential equa-
tions. Consequently, studying on the approximate solution of FFDEs
is trend topic of the applied mathematics. Therefore we do research on
the series solution of fuzzy heat-like equations in this paper.

In the determination of fuzzy differential equations, using fuzzy lin-
ear matrix equations plays a significant role. Therefore, establishing the
solution of fuzzy linear matrix equations is very essential part of the
fuzzy differential equations. There are quite a few study on fuzzy linear
matrix equations by means of analytic methods such as Ezzati’s method
[19, 13, 9]. The Kronecker product and embedding approach are very
useful to accomplish a fuzzy solution of fuzzy linear matrix equations.

The organization of this paper is as follows:
In section 2, we present fundamental definitions and concepts. Section 3
is devoted to the presentation of time fractional heat equation. Sumudu
homotopy analysis transform method for fuzzy time fractional derivative
equations is given in section 4. Numerical examples are presented to
illustrate the implementation of this method for fuzzy time fractional
equations in section 5. Finally, conclusion of this study is given in the
last section.

2 Preliminaries

In this section, fundamental definitions and concepts are presented.
Fuzzy numbers t̃ (q) : Rn → [0, 1] in the space En of n-dimensional fuzzy
numbers satisfy the following conditions:

� t̃ (q) is called normal, if ∃q0 ∈ Rn for which t̃ (q0) = 1,
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� t̃ (q) is called fuzzy convex, if ∀q1, q2 ∈ Rn, x ∈ [0, 1], t̃ (xq1 + (1− x) q2) ≥
min{t̃ (q1) , t̃ (q2)},

� The support of the t̃ (q) is defined as suppt̃ (q) =
{
q ∈ R : t̃ (q) > 0

}
and its closure cl(suppt̃ (q)) is compact,

� t̃ (q) is upper semi-continuous.

The µ-cut set of a fuzzy number t̃ (q) ∈ E represented by
[
t̃ (q)

]µ
, is

described as

[
t̃ (q)

]µ
=

{{
q ∈ R : t̃ (q) ≥ µ

}
, 0 < µ ≤ 1

cl
(
suppt̃ (q)

)
, µ = 0

which is a closed and bounded interval
[
tµ(q), tµ(q)

]
where tµ(q) repre-

sents the left-hand endpoint of
[
t̃ (q)

]µ
and tµ(q) the right-hand endpoint

of
[
t̃ (q)

]µ
.

Definition 2.1. A pair
[
tµ(q), tµ(q)

]
of functions tµ(q), tµ(q), 0 ≤ µ ≤ 1

is said to be the parametric form of a fuzzy number t̃ (q). Moreover the
following conditions are satisfied:

� tµ(q) is an increasing left continuous function.

� tµ(q) is a decreasing left continuous function.

� tµ (q) ≤ tµ(q), 0 ≤ µ ≤ 1.

Definition 2.2. The fuzzy Sumudu transformation of a continuous fuzzy
function b̃ : R→ F(R) for which b̃(uq)� e−q is improper fuzzy Riemann
integrable is defined as [1]

G (u) = S
[
b̃ (q)

]
(u) =

∫ ∞
0

b̃(uq)� e−qdq, u ∈ [−µ1, µ2],

where µ1, µ2 > 0. The parametric form of fuzzy Sumudu transformation
is denoted as: [

S
[
b̃ (q)

]
(u)
]

=
[
S [b (q)] (u) , S

[
b (q)

]
(u)
]
.
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3 Fuzzy Time Fractional Heat Equation

This part is devoted to the presentation of time fractional heat equation
is given by taking the fundemental fuzzy properties [6], [17], [7], [23] into
account in a fuzzy environment. Consider the one-dimensional fuzzy
fractional problem with FFHEs:

∂αr̃ (p, t, α)

∂αt
= D2

p r̃ (p, t) , 0 < p < l, t > 0 (1)

r̃ (p, 0) = g̃(p)

where r̃(p, t), ∂
αr̃(p,t,α)
∂αt denote a fuzzy function [17] and the fuzzy time

fractional derivative (FTFD) of order α respectively. Moreover the fuzzy
function g̃(p) is described as follows [10]:

g̃ (p) = µ̃d(p) (2)

where d(p), µ̃ represent the crisp function of the crisp variable p and the
fuzzy convex number, respectively. The fuzzification of Problem (1) for
all β ∈ [0, 1] is as follows [10]:

[r̃ (p, t)]β = [r (p, t;β) , r(p, t;β)], (3)[
∂αr̃ (p, t, α)

∂αt

]
β

=

[
∂αr (p, t, α;β)

∂αt
,
∂αr (p, t, α;β)

∂αt

]
, (4)

[
D2
p r̃ (p, t)

]
β

=
[
D2
pr (p, t;β) , D2

pr (p, t;β)
]
, (5)

[r̃ (p, 0)]β = [r (p, 0;β) , r(p, 0;β)], (6)

[g̃ (p)]β = [g (p;β) , g(p;β)] (7)

where

[g̃ (p)]β =
[
µ (β) , µ(β)

]
d(p). (8)

The function described by utilizing the fuzzy extension principle [10]:{
r (p, t;β) = min {r̃ (µ̃ (β) , t) : µ̃ (β) ∈ r̃ (p, t;β)},
r (p, t;β) = max {r̃ (µ̃ (β) , t) : µ̃ (β) ∈ r̃ (p, t;β)}

(9)
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is called the membership function.
Based on [10], after fuzzfication of Problem (1) and defuzzfication of
Eqs. (2-9), Problem (1) is rewritten in the following form:
The lower bound of problem (1){

∂αr(p,t,α;β)
∂αt = D2

pr (p, t;β) ,

r (p, 0;β) = µ (β) d(p).

The upper bound of problem (1){
∂αr(p,t,α;β)

∂αt = D2
pr (p, t;β) ,

r (p, 0;β) = µ (β) d(p).

4 Sumudu homotopy analysis transform method
(SHAM) for FTFD Equation

Consider the following fuzzy problem including heat-like fuzzy time-
fractional differential equation

CDα
t r̃ (p, t) = D2

p r̃ (p, t) , 0 < p < 1, t > 0, 0 < α ≤ 1 (10)

r̃ (p, 0) = g̃(p).

The initial condition can be treated homogeneously for simplicity. Based
on the proposed method, the Sumudu transformation is applied to both
sides of the Eq. (10):

S
[
CDα

t r̃ (p, t)
]

= S
[
D2
p r̃ (p, t)

]
. (11)

w−αS [r̃ (p, t)]− w−αr̃ (p, 0) = S
[
D2
p r̃ (p, t)

]
.

S [r̃ (p, t)]− wαS
[
D2
p r̃ (p, t)

]
− r̃ (p, 0) = 0.

Eq. (11) is rewritten in terms of nonlinear operator as follows:

N [r̃ (p, t)] = 0,

where r̃ (p, t) , r̃0 (p, t) and h 6= 0 denote unknown function, initial ap-
proximation and an auxiliary parameter, respectively. The nonlinear



6 S. CETINKAYA AND A. DEMIR

operator can be defined in terms of embedding parameter e ∈ [0, 1] as
follows:

N
[
φ̃ (p, t; e)

]
= S

[
φ̃ (p, t; e)

]
− wαS

[
D2
pφ̃ (p, t; e)

]
− φ̃ (p, 0; e) = 0.

We construct such a homotopy [12], [19]

(1− e) S
[
φ̃ (p, t; e)− r̃0 (p, t)

]
= ehH(p, t)N

[
φ̃ (p, t; e)

]
is zeroth-order deformation equation. Here, H (p, t) 6= 0. The zero-
order deformation equations are obtained by taking e = 0 and e = 1, as
follows:

φ̃ (p, t; 0) = r̃0 (p, t) , φ̃ (p, t; 1) = r̃ (p, t) .

φ̃i (p, t; e) can be obtained in the power series form in e by the help of
Taylor’s theorem as follows:

φ̃ (p, t; e) = r̃0 (p, t) +

∞∑
l=1

f̃l (p, t)e
l (12)

where

r̃l (p, t) =
1

l!

∂lφ̃ (p, t; e)

∂el

∣∣∣∣∣
e=0

.

The parameter h is utilized to make (12) convergent. The series (12)
converges at e = 1 for properly chosen the auxiliary linear operator,
the initial guess, the auxiliary function and the auxiliary parameter h.
Hence

r̃ (p, t) = r̃0 (p, t) +
∞∑
l=1

r̃l(p, t)

is the obtained solution of the original nonlinear equations. It is seen
from the above expression that exact solution r̃(p, t) and the initial guess
r̃0(p, t) have a relationship in terms of r̃l(p, t)(l = 1, 2, 3, . . .).
In order to determine them, the following vectors are defined

~̃r = {r̃0 (p, t) , r̃1 (p, t) , r̃2 (p, t) , . . . , r̃l(p, t)} .

The lth-order deformation equation is obtained in the following form

S [r̃l (p, t)− χlr̃l−1 (p, t)] = hH (p, t)Rl

(
~̃rl−1(p, t)

)
. (13)
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If both sides of Eq. (13) is operated the inverse Sumudu transform, then
the following expression is obtained:

r̃l (p, t) = χlr̃l−1 (p, t) + S−1
[
hH (p, t)Rl

(
~̃rl−1(p, t)

)]
where

Rl

(
~̃rl−1(p, t)

)
=

1

(l − 1)!

∂l−1N
[
φ̃ (p, t; e)

]
∂el−1

∣∣∣∣∣∣
e=0

and

χl =

{
0, l ≤ 1

1, l > 1.

In our case

Rl

(
~̃rl−1(p, t)

)
= CDα

t r̃ (p, t)−D2
p r̃ (p, t) .

As a result r̃l (p, t) for l ≥ 1, at M th order is obtained without any diffi-
culty. Therefore an approximate solution of the Eq. (10) is constructed
as

r̃(p, t) =
M∑
l=0

r̃l(p, t) (14)

where M →∞.

Theorem 4.1. If the series (14) converges as M →∞, then, the limit
must be the exact solution Eq. (10).

Proof. Assume that the series (14) is convergent. Hence

∞∑
l=0

r̃l(p, t) = r̃0 (p, t) +
∞∑
l=1

r̃l(p, t) = K̃(p, t).
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As a result limM→∞ r̃l(p, t) = 0. Hence taking the Eq. (13) into account
the following is obtained

lim
M→∞

[
hH (p, t)

M∑
l=1

Rl

(
~̃rl−1(p, t)

)]
= lim

M→∞

(
M∑
l=1

S [r̃l (p, t)− χlr̃l−1 (p, t)]

)

= S

[
lim
M→∞

M∑
l=1

[
r̃l (p, t)− χlf̃l−1 (p, t)

]]

= S
[

lim
M→∞

r̃l(p, t)

]
= 0.

Since h 6= 0, H (p, t) 6= 0, therefore,
∑∞

l=1Rl

(
~̃rl−1(p, t)

)
= 0. From

(3.15)

∞∑
l=1

Rl

(
~̃rl−1(p, t)

)
=
∞∑
l=1

C
0 D

α

t r̃l−1 (p, t)−
∞∑
l=1

D2
p r̃l−1 (p, t).

∞∑
l=1

Rl

(
~̃rl−1(p, t)

)
= C

0 D
α

t

∞∑
l=1

r̃l−1 (p, t)−D2
p

∞∑
l=1

r̃l−1 (p, t).

∞∑
l=1

Rl

(
~̃rl−1(p, t)

)
= C

0 D
α

t

∞∑
l=0

r̃l (p, t)−D2
p

∞∑
l=0

r̃l (p, t).

C
0 D

α

t K̃ (p, t)−D2
pK̃ (p, t) = 0. (15)

Above equation (15) shows that, K̃(p, t) satisfies the original problem
(10). �

5 Numerical Illustrations

This section is devoted to illustrated examples for demonstrating the
efficacy of SHAM.

Example 5.1. Consider the following fuzzy problem [19]:{
CDα

t r̃ (p, t) = D2
p r̃ (p, t) , 0 < p < 1, t > 0, 0 < α ≤ 1

r̃ (p, 0) = g̃ (p) = k̃ sin (πp), 0 < p < 1.
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The general definitions of the fuzzy problems{
CDα

t r (p, t) = D2
pr (p, t) , 0 < p < 1, t > 0, 0 < α ≤ 1

r (p, 0) = g (p) = k (β) sin (πp), 0 < p < 1
(16)

{
CDα

t r (p, t) = D2
pr (p, t) , 0 < p < 1, t > 0, 0 < α ≤ 1

r (p, 0) = g (p) = k (β) sin (πp), 0 < p < 1

(17)
Application of the Sumudu transform to both sides of Problem (16)
yields

S [r (p, t)]− wαS
[
D2
pr (p, t)

]
− r (p, 0) = 0.

The operator N becomes

N
[
φ (p, t; e)

]
= S

[
φ (p, t; e)

]
− wαS

[
D2
pφ (p, t; e)

]
= 0, t > 0, 0 ≤ e ≤ 1

and thus, we have

Rl
(
~rl−1(p, t)

)
= S [rl−1 (p, t)]− wαS

[
D2
prl−1 (p, t)

]
= 0, t > 0

The deformation equation of order l becomes

S
[
f l (p, t)− χlrl−1 (p, t)

]
= hH (p, t)Rl

(
~rl−1(p, t)

)
.

Applying the inverse Sumudu transform yields

rl (p, t) = χlrl−1 (p, t) + S−1
[
hH (p, t)Rl

(
~rl−1(p, t)

)]
.

Choosing H (p, t) = 1 in above equation yields

rl (p, t) = χlrl−1 (p, t) + S−1
[
h
[
S [rl−1 (p, t)]− wαS

[
D2
prl−1 (p, t)

]]]
,

r1 (p, t) = hπ2k (β) sin (πp)
tα

Γ(α+ 1)
.

r2 (p, t) = hπ2k (β) sin (πp)
tα

Γ(α+ 1)
+ h2π2k (β) sin (πp)

tα

Γ(α+ 1)

+ h2π4k (β) sin (πp)
t2α

Γ(2α+ 1)
.
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r3 (p, t) = hπ2k (β) sin (πp)
tα

Γ(α+ 1)
+ h2π2k (β) sin (πp)

tα

Γ(α+ 1)

+ h2π4k (β) sin (πp)
t2α

Γ(2α+ 1)
+ h2π2k (β) sin (πp)

tα

Γ(α+ 1)

+ h3π2k (β) sin (πp)
tα

Γ(α+ 1)
+ h3π4k (β) sin (πp)

t2α

Γ(2α+ 1)

+ h2π4k (β) sin (πp)
t2α

Γ(2α+ 1)
+ h3π4k (β) sin (πp)

t2α

Γ(2α+ 1)

+ h3π6k (β) sin (πp)
t3α

Γ(3α+ 1)
.

Therefore the series solution is determined as

r(p, t;β) = r0 (p, t;β) +

∞∑
l=1

rl(p, t;β).

The following approximate solution is obtained at h = −1

r (p, t;β) = k (β) sin (πp)− π2k (β) sin (πp)
tα

Γ (α+ 1)

+ π4k (β) sin (πp)
t2α

Γ (2α+ 1)
− π6k (β) sin (πp)

t3α

Γ (3α+ 1)
+ . . .

= k (β) sin (πp)
∞∑
j=0

(−1)j π2jtjα

Γ(jα+ 1)
.

Similarly, the solution for the Problem (17) is determined as

r (p, t;β) = k (β) sin (πp)
∞∑
j=0

(−1)j π2jtjα

Γ(jα+ 1)
.

The approximate solutions SHAM of order 11 are compared and plotted
for α = 0.9, 0.95, 1, p = 0.25 and t = 0.25 and β = (0.75 + 0.25β; 1.25−
0.25β) in Figure 1.

Example 5.2. Consider the following fuzzy problem [19]:{
CDα

t r̃ (p, t) = 1
2p

2D2
p r̃ (p, t) , 0 < p < 1, t > 0, 0 < α ≤ 1

r̃ (p, 0) = g̃ (p) = k̃p2, 0 < p < 1.
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Figure 1: The approximate solutions for Example 1
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The general definitions of the fuzzy problems{
CDα

t r (p, t) = D2
pr (p, t) , 0 < p < 1, t > 0, 0 < α ≤ 1

r (p, 0) = g (p) = k (β) p2, 0 < p < 1.
(18)

{
CDα

t r (p, t) = D2
pr (p, t) , 0 < p < 1, t > 0, 0 < α ≤ 1

r (p, 0) = g (p) = k (β) p2, 0 < p < 1.

(19)
Application of the Sumudu transform to both sides problem (18) yields

S [r (p, t)]− wαS
[

1

2
p2D2

pr (p, t)

]
− r (p, 0) = 0.

The operator N is

N
[
φ (p, t; e)

]
= S

[
φ (p, t; e)

]
− wαS

[
1

2
p2D2

pφ (p, t; e)

]
= 0, t > 0, 0 ≤ e ≤ 1

and thus

Rl
(
~rl−1(p, t)

)
= S [rl−1 (p, t)]− wαS

[
1

2
p2D2

prl−1 (p, t)

]
= 0, t > 0

The deformation equation of order l becomes

S [rl (p, t)− χlrl−1 (p, t)] = hH (p, t)Rl
(
~rl−1(p, t)

)
.

Applying the inverse Sumudu transform yields

rl (p, t) = χlrl−1 (p, t) + S−1
[
hH (p, t)Rl

(
~rl−1(p, t)

)]
.

Taking H (p, t) = 1 in above equation yields

rl (p, t) = χlrl−1 (p, t) + S−1
[
h

[
S [rl−1 (p, t)]− wαS

[
1

2
p2D2

prl−1 (p, t)

]]]
,

r1 (p, t) = −hp2k (β)
tα

Γ(α+ 1)
.

r2 (p, t) = −hp2k (β)
tα

Γ (α+ 1)
− h2p2k (β)

tα

Γ(α+ 1)
+ h2p2k (β)

t2α

Γ(2α+ 1)
.
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r3 (p, t) = −hp2k (β)
tα

Γ (α+ 1)
− h2p2k (β)

tα

Γ(α+ 1)
+ h2p2k (β)

t2α

Γ(2α+ 1)

− h2p2k (β)
tα

Γ (α+ 1)
− h3p2k (β)

tα

Γ(α+ 1)
+ h3p2k (β)

t2α

Γ(2α+ 1)

+ h2p2k (β)
t2α

Γ (2α+ 1)
+ h3p2k (β)

t2α

Γ(2α+ 1)
− h3p2k (β)

t3α

Γ(3α+ 1)
.

Therefore the series solution is determined as

r(p, t;β) = r0 (p, t;β) +
∞∑
l=1

rl(p, t;β).

The following approximate solution is obtained at h = −1

r (p, t;β) = k (β) p2 + k (β) p2
tα

Γ (α+ 1)
+ k (β) p2

t2α

Γ (2α+ 1)

+ k (β) p2
t3α

Γ (3α+ 1)
+ . . .

= k (β) p2
∞∑
j=0

tjα

Γ(jα+ 1)

= k (β) p2Eα(t).

Similarly, the solution of Problem (19) in terms of one parameter Mittag-
Leffler function Eα(t) is given by

r (p, t;β) = k (β) p2
∞∑
j=0

tjα

Γ(jα+ 1)
= k (β) p2Eα(t).

The approximate solutions SHAM of order 11 are compared and plotted
for α = 0.9, 0.95, 1, p = 1 and t = 0.25 and β = (0.75 + 0.25β; 1.25 −
0.25β) in Figure 2.

6 Conclusion

In this research, the approximate analytical solutions of the fuzzy prob-
lems including fuzzy fractional heat-like equation is constructed by im-
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Figure 2: The approximate solutions for Example 2
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plementing the proposed Sumudu homotopy analysis method. The ad-
vantages of this method are requiring less computational work and im-
plementing without any difficulty as well as being effective and powerful.
The numerical examples illustrated that the convergence and accuracy
of the solution is very high.

In the future work, this study is extended to determining the solu-
tions of fuzzy space fractional and fuzzy time space fractional differential
equations.
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