$\delta(2)$-Ideal Euclidean Hypersurfaces of Null L_{1}-2-Type

A. Mohammadpouri*
University of Tabriz
\section*{R. Hosseinoughli}
University of Tabriz

Abstract

We say that an isometric immersion hypersurface x: $M^{n} \rightarrow$ \mathbb{E}^{n+1} is of null L_{k}-2-type if $x=x_{1}+x_{2}, x_{1}, x_{2}: M^{n} \rightarrow \mathbb{E}^{n+1}$ are smooth maps and $L_{k} x_{1}=0, L_{k} x_{2}=\lambda x_{2}, \lambda$ is non-zero real number, L_{k} is the linearized operator of the $(k+1)$ th mean curvature of the hypersurface, i.e., $L_{k}(f)=\operatorname{tr}\left(P_{k} \circ\right.$ Hessian $\left.f\right)$ for $f \in C^{\infty}(M)$, where P_{k} is the k th Newton transformation, $L_{k} x=\left(L_{k} x_{1}, \ldots, L_{k} x_{n+1}\right), x=\left(x_{1}, \ldots, x_{n+1}\right)$. In this article, we classify $\delta(2)$-ideal Euclidean hypersurfaces of null $L_{1}-2$ type.

AMS Subject Classification: 53A05; 53B20, 53C21.
Keywords and Phrases: Finite type hypersurfaces, L_{1} operator, $\delta(2)$ ideal hypersurfaces.

1 Introduction

Let $x: M^{n} \rightarrow \mathbb{E}^{n+1}$ be an isometrically immersed Euclidean hypersurface. It is well-known that the Laplacian of M is the first element of n-term sequence of operators $L_{0}=\Delta, L_{1}, \ldots, L_{n-1}$, where L_{k} is the linearized operator of the first variation of the $(k+1)$ th mean curvature (see

[^0][11, 12]). These operators are formulated by $L_{k}(f)=\operatorname{tr}\left(P_{k} \circ \operatorname{Hessian} f\right)$ for any $f \in C^{\infty}(M)$, where P_{k} is the k th Newton transformation related to the second fundamental from of M. Motivated by this consideration, S.M.B. Kashani [6] developed the idea of finite type submanifold to L_{k}-finite type hypersurface in the Euclidean space.

The position vector x and the $(k+1)$ th mean curvature vector \vec{H}_{k+1} of M^{n} in \mathbb{E}^{n+1} are related by generalized Beltrami's formula:

$$
L_{k} x=c_{k} \vec{H}_{k+1}
$$

where $c_{k}=(n-k)\binom{n}{k}$ (see [1]). When $k=0$, this turns into the classical Beltrami's formula $\Delta x=n \vec{H}$. This states the well-known result: M^{n} is a k-minimal hypersurface of \mathbb{E}^{n+1} if and only if its coordinate functions are L_{k}-harmonic, i.e.,

$$
L_{k} x=0
$$

Particularly, k-minimal hypersurfaces of \mathbb{E}^{n+1} are made by eigenfunctions of the operator L_{k} with eigenvalue zero. There are many examples of k-minimal hypersurfaces in the space forms (see for instance [14]).

From [6], we see that a right spherical cylinder $\mathbb{R} \times \mathbb{S}^{n-1}$ in \mathbb{E}^{n+1} is composed of both L_{k}-harmonic function and eigenfunction of L_{k} with a single nonzero eigenvalue, say λ, when $0<k<n-1$. Therefore, the position vector x of a right spherical cylinder $\mathbb{R} \times \mathbb{S}^{n-1}$ takes the following simple spectral decomposition

$$
\begin{equation*}
x=x_{1}+x_{2}, L_{k} x_{1}=0, L_{k} x_{2}=\lambda x_{2} \tag{1}
\end{equation*}
$$

for some non-constant smooth maps x_{1} and x_{2}.
Baesd on L_{k}-finite type theory, a Euclidean hypersurface is said to be of null L_{k}-2-type if its position vector takes the spectral resolution (1). Similarly, a Euclidean hypersurface is said to be of L_{k}-1-type if its position vector satisfies the condition $L_{k} x=\lambda x$ (cf. [6, 7, 9, 8]). According to the genralized Takahashi's theorem [7], a L_{k}-1-type hypersurface of a Euclidean space is either a k-minimal Euclidean hypersurface or an open part of a hypersphere. Specially, because of the simplicity of null L_{k}-2-type hypersurfaces, after the classification of the L_{k}-1-type hypersurfaces, it seems reasonable to propose the following problem.

Problem: Classify all null L_{k}-2-type hypersurfaces in Euclidean spaces.

Until now, only few results have been obtained concerning this problem. In [7], the first author and Kashani obtained the first results. They proved that there exists no null $L_{n-1}-2$-type Euclidean hypersurface, specially, there is no null L_{1}-2-type Euclidean surface. When $k \neq n-1$, they also showed that every null L_{k}-2-type Euclidean hypersurface with at most two distinct principal curvatures is a right circular cylinder.

Now, assume that M is a Riemannian n-manifold. Denote by $K(\pi)$ the sectional curvature of a 2 -plane section $\pi \subset T_{p} M, p \in M$. The scalar curvature τ at p is defined by $\tau(p)=\sum_{i<j} K\left(e_{i} \wedge e_{j}\right)$, where e_{1}, \ldots, e_{n} is an orthonormal basis of $T_{p} M$. By choosing e_{1}, \ldots, e_{r}, a r-orthonormal basis of the r-plane section L^{r}, the scalar curvature $\tau\left(L^{r}\right)$ is defined by

$$
\tau\left(L^{r}\right)=\sum_{i<j} K\left(e_{i} \wedge e_{j}\right), \quad 1 \leq i, j \leq r
$$

For an integer $r \in[2, n-1]$, the δ-invariant $\delta(r)$ of M is defined by

$$
\delta(r)(p)=\tau(p)-\inf \left\{\tau\left(L^{r}\right)\right\}
$$

where L^{r} runs into all r-plane sections of $T_{p} M$.
For any n-dimensional submanifold M in \mathbb{E}^{m}, Chen [3] proved that the δ-invariant $\delta(2)$ satisfies the following inequality

$$
\begin{equation*}
\delta(2) \leq \frac{n^{2}(n-2)}{2(n-1)}\|H\|^{2} . \tag{2}
\end{equation*}
$$

The equality case of (2) is called the $\delta(2)$-equality. The classification of submanifolds in the Euclidean space \mathbb{E}^{m} which satisfy the $\delta(2)$-equality condition is an interesting and important subject to research (see [4]). A submanifold M^{n} in \mathbb{E}^{m} is called $\delta(2)$-ideal if it satisfies the $\delta(2)$-equality.

Inspired by the above observation, it was proved in [5] that a null 2-type hypersurfaces in \mathbb{E}^{n+1} is an open part of a spherical cylinder $\mathbb{S}^{n-1} \times \mathbb{R}$ if and only if it is $\delta(2)$-ideal.

The main purpose of this paper is to extend this classification result to null L_{1}-2-type hypersurfaces as follows.

Theorem 1.1. A null L_{1}-2-type hypersurface in the Euclidean space \mathbb{E}^{n+1} with $n \geq 3$, is an open part of a spherical cylinder $\mathbb{S}^{n-1} \times \mathbb{R}$ if and only if it is $\delta(2)$-ideal.

Note that from the before mentioned, if $n=2$, there is no null L_{1}-2-type surface in \mathbb{E}^{3}.

2 Null L_{1}-2-type Hypersurfaces

Let $x: M^{n} \rightarrow \mathbb{E}^{n+1}$ be an isometric immersion, with Gauss map N. Denote by ∇ and $\bar{\nabla}$ the Levi-Cevita connections on M^{n} and \mathbb{E}^{n+1}, respectively. The formulas of Gauss, Weingarten and Codazzi are given respectively by

$$
\begin{aligned}
\bar{\nabla}_{X} Y & =\nabla_{X} Y+\langle S X, Y\rangle N, \\
S X & =-\bar{\nabla}_{X} N, \\
\left(\nabla_{X} S\right) Y & =\left(\nabla_{Y} S\right) X,
\end{aligned}
$$

for $X, Y \in \mathfrak{X}\left(M^{n}\right)$, where $S: \mathfrak{X}\left(M^{n}\right) \rightarrow \mathfrak{X}\left(M^{n}\right)$ is the shape operator of M^{n} arises from the Gauss map N.
The equation of Gauss is given by

$$
R(X, Y) Z=\langle S Y, Z\rangle S X-\langle S X, Z\rangle S Y
$$

for $X, Y, Z \in \mathfrak{X}\left(M^{n}\right)$ where R is the Riemann curvature tensor. The eigenvalues of S are called the principal curvatures of M^{n}.
Let $\left\{k_{1}, \ldots, k_{n}\right\}$ be the n principal curvatures of M^{n}. Associated to the principal curvatures, the 2 th mean curvature H_{2} of the hypersurface is defined by

$$
\binom{n}{2} H_{2}=\sum_{i_{1}<i_{2}}^{n} \kappa_{i_{1}} \kappa_{i_{2}} .
$$

H_{2} defines an intrinsic invariant which is relevant to the scalar curvature of M^{n}.

Related to the shape operator S, the classical Newton transformation $P_{1}: \mathfrak{X}\left(M^{n}\right) \rightarrow \mathfrak{X}\left(M^{n}\right)$ is defined by

$$
\begin{equation*}
P_{1}=\binom{n}{2} H_{2} I-S . \tag{3}
\end{equation*}
$$

Now, consider the second-order linear differential operator

$$
L_{1}: C^{\infty}(M) \rightarrow C^{\infty}(M)
$$

which is given by

$$
L_{1}(f)=\operatorname{tr}\left(P_{1} \circ \operatorname{Hessian} f\right)
$$

For isometric immersion $x: M^{n} \rightarrow \mathbb{E}^{n+1}$, it is well-known (see [1]),

$$
\begin{equation*}
L_{1} x=n(n-1) \overrightarrow{H_{2}}, \tag{4}
\end{equation*}
$$

where $\overrightarrow{H_{2}}=H_{2} N$ defines the 2th mean curvature vector field. By formula in [1] page 122, we find

$$
\begin{align*}
L_{1} \overrightarrow{H_{2}}= & -\binom{n}{2} H_{2} \nabla H_{2}-2\left(S \circ P_{1}\right)\left(\nabla H_{2}\right) \\
& -\left(H_{2} \operatorname{tr}\left(S^{2} \circ P_{1}\right)-L_{1} H_{2}\right) N . \tag{5}
\end{align*}
$$

Suppose that M is of null L_{1}-2-type hypersurface, from (4) we get

$$
\begin{equation*}
L_{1} \overrightarrow{H_{2}}=\lambda \overrightarrow{H_{2}} \tag{6}
\end{equation*}
$$

By combining (5) and (6) we obtain

$$
\begin{align*}
& \left(S \circ P_{1}\right) \nabla H_{2}=\frac{n(1-n)}{4} H_{2} \nabla H_{2}, \tag{7}\\
& L_{1} H_{2}-H_{2} \operatorname{tr}\left(S^{2} \circ P_{1}\right)=\lambda H_{2} . \tag{8}
\end{align*}
$$

Consequently, ∇H_{2} is an eigenvector of $S \circ P_{1}$ whenever $\nabla H_{2} \neq 0$.
For the proof of our theorem we need the following lemma from [10].
Lemma 2.1. Let M be a hypersurface of a Euclidean space. Then the 2th mean curvature vector field $\overrightarrow{H_{2}}$ satisfies the condition $L_{1} \overrightarrow{H_{2}}=\lambda \overrightarrow{H_{2}}$ for some constant λ if and only if M is one of the following hypersurfaces
(a) a L_{1}-biharmonic hypersurface,
(b) a L_{1}-1-type hypersurface,
(c) a null L_{1}-2-type hypersurface.

3 Proof of Theorem 1.1

Suppose that M is a null L_{1}-2-type hypersurface of \mathbb{E}^{n+1}, which is $\delta(2)$-ideal. Because M is a $\delta(2)$-ideal, there is an orthonormal frame $\left\{e_{1}, \ldots, e_{n}\right\}$ such that the shape operator with respect to this frame takes the following form [Lemma 3.2 of [2]]

$$
S=\left(\begin{array}{ccccc}
\alpha & 0 & 0 & \cdots & 0 \tag{9}\\
0 & \beta & 0 & \cdots & 0 \\
0 & 0 & \alpha+\beta & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & \alpha+\beta
\end{array}\right)
$$

for some functions α and β on M.
If H_{2} is constant, then M is non 1-minimal from lemma 2.1. So, (8) implies that $\operatorname{tr}\left(S^{2} \circ P_{1}\right)$ is constant. Since H_{2} and $\operatorname{tr}\left(S^{2} \circ P_{1}\right)$ are constant, it follows from (9) that M is isoparametric. According to a well-known result of Segre [13], any isoparametric hypersurface of \mathbb{E}^{n+1} has l distinct principal curvatures with $l \leq 2$. If $l=0$, then M is 1 minimal which is impossible by lemma 2.1. (9) shows easily that case $l=1$ does not occur. So, $l=2$. Therefore, from (9) we conclude that one of the principal curvatures is simple. Thus, M is locally isometric to $\mathbb{S}^{n-1} \times \mathbb{R}$ by Theorem 3.12 of [7].

From now on we assume that H_{2} is non-constant. First, from (3) and (9) we see that the classical Newton transformation P_{1} satisfies

$$
P_{1}=\left(\begin{array}{ccccc}
(n-2) \alpha+(n-1) \beta & 0 & 0 & \cdots & 0 \\
0 & (n-2) \beta+(n-1) \alpha & 0 & \cdots & 0 \\
0 & 0 & (n-2)(\alpha+\beta) & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & (n-2)(\alpha+\beta)
\end{array}\right)
$$

Therefore, we have

$$
S \circ P_{1}=\left(\begin{array}{ccccc}
\alpha((n-2) \alpha+(n-1) \beta) & 0 & 0 & \cdots & 0 \tag{10}\\
0 & \beta((n-2) \beta+(n-1) \alpha) & 0 & \cdots & 0 \\
0 & 0 & (n-2)(\alpha+\beta)^{2} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & (n-2)(\alpha+\beta)^{2}
\end{array}\right)
$$

and

$$
S^{2} \circ P_{1}=\left(\begin{array}{ccccc}
\alpha^{2}((n-2) \alpha+(n-1) \beta) & 0 & 0 & \cdots & 0 \tag{11}\\
0 & \beta^{2}((n-2) \beta+(n-1) \alpha) & 0 & \cdots & 0 \\
0 & 0 & (n-2)(\alpha+\beta)^{3} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & (n-2)(\alpha+\beta)^{3}
\end{array}\right) .
$$

Put $\nabla H_{2}=\sum_{i=1}^{n} \lambda_{i} e_{i}$ for some functions $\lambda_{1}, \ldots, \lambda_{n}$ on M, then from (10) we have

$$
\begin{aligned}
\left(S \circ P_{1}\right) \nabla H_{2}= & \sum_{i=1}^{n} \lambda_{i}\left(S \circ P_{1}\right) e_{i} \\
= & \alpha(\beta+(n-2)(\alpha+\beta)) \lambda_{1} e_{1}+\beta(\alpha+(n-2)(\alpha+\beta)) \lambda_{2} e_{2} \\
& +\sum_{i=3}^{n}(n-2)(\alpha+\beta)^{2} \lambda_{i} e_{i} \\
= & \left((3-n) \alpha \beta+(2-n) \beta^{2}\right) \lambda_{1} e_{1}+((3-n) \alpha \beta \\
& \left.+(2-n) \alpha^{2}\right) \lambda_{2} e_{2}+(n-2)(\alpha+\beta)^{2} \nabla H_{2} .
\end{aligned}
$$

Thus, Eq. (7) yields

$$
\begin{aligned}
\left((n-2)(\alpha+\beta)^{2}+\frac{1}{4} n(n-1) H_{2}\right) \nabla H_{2} & =\left((n-3) \alpha \beta+(n-2) \beta^{2}\right) \lambda_{1} e_{1} \\
& +\left((n-3) \alpha \beta+(n-2) \alpha^{2}\right) \lambda_{2} e_{2} .
\end{aligned}
$$

Hence, $\lambda_{3}=\cdots=\lambda_{n}=0$ and

$$
\begin{align*}
& {\left[(n-2)(\alpha+\beta)^{2}+\frac{1}{4} n(n-1) H_{2}+(3-n) \alpha \beta+(2-n) \beta^{2}\right] \lambda_{1}=0} \tag{12}\\
& {\left[(n-2)(\alpha+\beta)^{2}+\frac{1}{4} n(n-1) H_{2}+(3-n) \alpha \beta+(2-n) \alpha^{2}\right] \lambda_{2}=0}
\end{align*}
$$

Since ∇H_{2} is a nonzero, which implies at least one of λ_{1} and λ_{2} does not vanish. If both λ_{1} and λ_{2} do not vanish, then we find either $\alpha=\beta$ or $\alpha=-\beta$. If $\alpha=\beta$, then M has at most two distinct principal curvatures, so from [7] we know that any null L_{1}-2-type hypersurfaces with at most two distinct principal curvatures have constant 2-th mean curvature, this is a contradiction. If $\alpha=-\beta$, then $H_{2}=\frac{4 \beta^{2}}{n(n-1)}$. Hence, we get

$$
n(n-1) H_{2}=\operatorname{tr}\left(S \circ P_{1}\right)=-2 \beta^{2}=-\frac{n(n-1)}{2} H_{2},
$$

which implies $H_{2}=0$, but this is impossible.
Therefore, we have either
(a) $\lambda_{1} \neq 0$ and $\lambda_{2}=0$, or
(b) $\lambda_{2} \neq 0$ and $\lambda_{1}=0$.

We only need to consider the case (a), case (b) can be done in a similar arguments as case (a).

First, from relation (12) we obtain that

$$
\begin{equation*}
H_{2}=\frac{4 \alpha((\alpha+\beta) n-2 \alpha-\beta)}{n(1-n)} \tag{13}
\end{equation*}
$$

On the other hand, since $\operatorname{tr}\left(S \circ P_{1}\right)=n(n-1) H_{2}$, by using (10) we can write

$$
\begin{align*}
H_{2}=\frac{1}{n(n-1)} & {[\alpha((n-2) \alpha+\beta(n-1))+\beta((n-2) \beta} \\
& \left.+\alpha(n-1)+(n-2)^{2}(\alpha+\beta)^{2}\right] \tag{14}
\end{align*}
$$

Comparing (13) and (14), then after a straightforward computation, we find that there exist real numbers in terms of n, say a_{1}, a_{2}, such that $\{\alpha, \beta\}=\left\{a_{1} \sqrt{H_{2}}, a_{2} \sqrt{H_{2}}\right\}$. Note that since ∇H_{2} is a nonzero without loss of generality, we may assume that $H_{2}>0$.

Next, by taking e_{1} in the direction of ∇H_{2}, the shape operator satisfies

$$
S=\left(\begin{array}{ccccc}
a_{1} \sqrt{H_{2}} & 0 & 0 & \cdots & 0 \\
0 & a_{2} \sqrt{H_{2}} & 0 & \cdots & 0 \\
0 & 0 & a_{3} \sqrt{H_{2}} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & a_{3} \sqrt{H_{2}}
\end{array}\right),
$$

where $a_{3}=a_{1}+a_{2}$. Moreover, we have

$$
\begin{equation*}
e_{1}\left(H_{2}\right) \neq 0, \quad e_{k}\left(H_{2}\right)=0, \quad \forall k>1 \tag{15}
\end{equation*}
$$

We put $\nabla_{e_{i}} e_{j}=\sum_{k=1}^{n} \omega_{i j}^{k} e_{k}$, then using the equation of Codazzi for $X=e_{i}$ and $Y=e_{j}$ we get

$$
\left(\nabla_{e i} S\right) e_{j}=\frac{a_{j}}{2} \frac{e_{i}\left(H_{2}\right)}{\sqrt{H_{2}}} e_{j}+\sqrt{H_{2}} \sum_{k}\left(a_{j}-a_{k}\right) \omega_{i j}^{k} e_{k}
$$

Then, we consider the special cases of i and j.

For $i=1, j=2$, one obtains

$$
\frac{a_{2}}{2} e_{1}\left(H_{2}\right) e_{2}+H_{2} \sum_{k}\left(a_{2}-a_{k}\right) \omega_{12}^{k} e_{k}=H_{2} \sum_{k}\left(a_{1}-a_{k}\right) \omega_{21}^{k} e_{k} .
$$

Under the identification the coefficients corresponding to $\left\{e_{1}, \ldots, e_{n}\right\}$, we have the following

$$
\begin{align*}
& \omega_{12}^{1}=0 \tag{16}\\
& e_{1}\left(H_{2}\right)+2\left(1-\frac{a_{1}}{a_{2}}\right) H_{2} \omega_{21}^{2}=0, \tag{17}\\
& a_{1} \omega_{12}^{k}=a_{2} \omega_{21}^{k}, \quad k \geq 3 \tag{18}
\end{align*}
$$

Similarly, for $i=1, j \geq 3$, we obtain the following

$$
\begin{array}{lr}
\omega_{1 j}^{1}=0, & j \geq 3, \\
\omega_{1 j}^{2}=\left(1-\frac{a_{2}}{a_{1}}\right) \omega_{j 1}^{2}, & j \geq 3, \tag{20}\\
a_{j} e_{1}\left(H_{2}\right) \delta_{j k}+2 a_{2} H_{2} \omega_{j 1}^{k}=0, & j, k \geq 3 .
\end{array}
$$

Finally, for $i=2, j \geq 3$ we get

$$
\begin{align*}
& \omega_{2 j}^{1}=\left(1-\frac{a_{1}}{a_{2}}\right) \omega_{j 2}^{1}, \quad j \geq 3, \tag{21}\\
& \omega_{2 j}^{2}=0, \quad j \geq 3, \\
& \omega_{j 2}^{k}=0, \quad j, k \geq 3 .
\end{align*}
$$

From (15), we see easily $\left[e_{2}, e_{j}\right]\left(H_{2}\right)=0$. So, we have

$$
\sum_{k}\left(\omega_{2 j}^{k}-\omega_{j 2}^{k}\right) e_{k}\left(H_{2}\right)=0 .
$$

Again, using (15), we get $\omega_{2 j}^{1}=\omega_{j 2}^{1}$, for $j \geq 3$. Combining this with (21) yields

$$
\begin{equation*}
\omega_{2 j}^{1}=\omega_{j 2}^{1}=0 \tag{22}
\end{equation*}
$$

Since $\left\{e_{k}\right\}_{k=1}^{n}$ is an orthonormal basis, we have

$$
\begin{align*}
0=e_{i}\left\langle e_{j}, e_{k}\right\rangle= & \left\langle\nabla_{e_{i}} e_{j}, e_{k}\right\rangle+\left\langle e_{j}, \nabla_{e_{i}} e_{k}\right\rangle=\omega_{i j}^{k}+\omega_{i k}^{j}, \\
& \forall i, j, k=1, \ldots, n \tag{23}
\end{align*}
$$

By using (23), we derive that

$$
\begin{array}{ll}
\omega_{11}^{1}=0, & \omega_{12}^{2}=0, \\
\omega_{1 j}^{j}=0, & j \geq 3 \\
\omega_{21}^{1}=0, & \omega_{22}^{2}=0, \quad \omega_{2 j}^{j}=0, \quad j \geq 3 \tag{26}\\
\omega_{k 1}^{1}=0, & \omega_{k 2}^{2}=0, \quad \omega_{k j}^{j}=0, \quad j, k \geq 3 .
\end{array}
$$

Combining (23) with (16), (17) and (22) we find that

$$
\begin{equation*}
\omega_{11}^{2}=0, \quad \omega_{22}^{1}=\left(\frac{a_{2}}{2\left(a_{2}-a_{1}\right)}\right) \frac{e_{1}\left(H_{2}\right)}{H_{2}}, \quad \omega_{j 1}^{2}=0, \quad j \geq 3 . \tag{27}
\end{equation*}
$$

By applying (20) and (27) we obtain

$$
\begin{equation*}
\omega_{1 j}^{2}=0, \quad j \geq 3 \tag{28}
\end{equation*}
$$

Moreover, it follows from (23), (28) and (18) that

$$
\omega_{12}^{j}=0, \quad \omega_{21}^{j}=0, \quad j \geq 3
$$

In the same way, we derive that

$$
\begin{equation*}
\omega_{11}^{j}=0, \quad \omega_{22}^{j}=0, \quad \omega_{j j}^{1}=\left(\frac{a_{1}+a_{2}}{2 a_{2}}\right) \frac{e_{1}\left(H_{2}\right)}{H_{2}}, \quad j \geq 3 \tag{29}
\end{equation*}
$$

Now, it follows from the Codazzi's equation that

$$
\sum_{k}\left(a_{j}-a_{k}\right) \omega_{i j}^{k} e_{k}=\sum_{k}\left(a_{i}-a_{k}\right) \omega_{j i}^{k} e_{k}, \quad i, j \geq 3 .
$$

Therefore, we get

$$
\omega_{i j}^{1}=\omega_{j i}^{1}, \quad \omega_{i j}^{2}=\omega_{j i}^{2}, \quad i, j \geq 3
$$

Then, (15), (16) and (25) imply that $\left[e_{1}, e_{2}\right]\left(H_{2}\right)=0$. Hence, we have

$$
e_{2} e_{1}\left(H_{2}\right)=0 .
$$

From (15), (19) and (26) we also have

$$
e_{j} e_{1}\left(H_{2}\right)=0, \quad j \geq 3 .
$$

Applying Gauss's equation to $\left\langle R\left(e_{1}, e_{2}\right) e_{1}, e_{2}\right\rangle,\left\langle R\left(e_{1}, e_{j}\right) e_{1}, e_{j}\right\rangle$ and $\left\langle R\left(e_{2}, e_{j}\right) e_{2}, e_{j}\right\rangle$, we respectively obtain that

$$
\begin{align*}
e_{1}\left(\frac{e_{1}\left(H_{2}\right)}{H_{2}}\right)+\frac{a_{2}}{2\left(a_{1}-a_{2}\right)}\left(\frac{e_{1}\left(H_{2}\right)}{H_{2}}\right)^{2}+2 a_{1}\left(a_{1}-a_{2}\right) H_{2} & =0 \tag{30}\\
e_{1}\left(\frac{e_{1}\left(H_{2}\right)}{H_{2}}\right)-\frac{a_{1}+a_{2}}{2 a_{2}}\left(\frac{e_{1}\left(H_{2}\right)}{H_{2}}\right)^{2}-2 a_{1} a_{2} H_{2} & =0 \\
\left(\frac{e_{1}\left(H_{2}\right)}{H_{2}}\right)^{2}-4 a_{2}\left(a_{1}-a_{2}\right) H_{2} & =0 \tag{31}
\end{align*}
$$

On the other hand, from (17), (24), (29) and the definition of L_{1}, we find

$$
\begin{equation*}
L_{1} H_{2}=b\left[e_{1}\left(e_{1}\left(H_{2}\right)\right)+\frac{c\left(e_{1}\left(H_{2}\right)\right)^{2}}{H_{2}}\right] \sqrt{H_{2}}, \tag{32}
\end{equation*}
$$

for some real numbers b and c.
Now, using (8), (11) and (32), we obtain that

$$
\begin{equation*}
b\left[e_{1}\left(e_{1}\left(H_{2}\right)\right)+\frac{c\left(e_{1}\left(H_{2}\right)\right)^{2}}{H_{2}}\right] \sqrt{H_{2}}=d H_{2}^{2} \sqrt{H_{2}}+\lambda H_{2} \tag{33}
\end{equation*}
$$

for some real numbers b, c and d.
By substituting (31) into (30), we get

$$
\begin{equation*}
e_{1}\left(e_{1}\left(H_{2}\right)\right)=\left[\frac{2 a_{1}-3 a_{2}}{2}\left(a_{1}+a_{2}\right)\right] H_{2}^{2} . \tag{34}
\end{equation*}
$$

Also, substituting (31) into equation (33) gives

$$
\begin{equation*}
e_{1}\left(e_{1}\left(H_{2}\right)\right)=\left[\frac{b c a_{2}\left(a_{1}-a_{2}\right)-d}{b}-\frac{\lambda}{H_{2} \sqrt{H_{2}}}\right] H_{2}^{2} \tag{35}
\end{equation*}
$$

By comparing (34) and (35), we conclude that H_{2} is constant, which is a contradiction.

This completes the proof of the theorem.

References

[1] L.J.Alías, N.Gürbüz, An extension of Takahashi theorem for the linearized operators of the higher order mean curvatures, Geom. Dedicata, 121, (2006), 113-127.
[2] B.Y.Chen, Some pinching and classification theorems for minimal submanifolds, Arch. Math. 60 (1993), 568-578.
[3] B.Y.Chen, Some new obstructions to minimal and Lagrangian isometric immersions, Japan. J. Math, 26 (2000), 105-127.
[4] B.Y.Chen, Pseudo-Riemannian Geometry, $\delta(r)$-Invariants And Applications, World Scientific, Hackensack, New Jersey, 2011.
[5] B.Y.Chen, O.J.Garay, $\delta(2)$-ideal null 2-type hypersurfaces of Euclidean space are spherical cylinders, Kodai Math. J, 35 (2012), 382-391.
[6] S.M.B.Kashani, On some L_{1}-finite type (hyper)surfaces in \mathbb{R}^{n+1}, Bull. Korean Math. Soc, 46, 1 (2009), 35-43.
[7] A.Mohammadpouri, S.M.B.Kashani, On some L_{k}-finite-type Euclidean hypersurfaces, ISRN Geom, (2012), 23 p.
[8] A.Mohammadpouri, S.M.B.Kashani, Quadric hypersurfaces of $L_{r^{-}}$ finite type, Beitrge zur Algebra und Geometrie, (2012), 625-641.
[9] A.Mohammadpouri, S.M.B.Kashani, F. Pashaie, On some L_{1}-finite type Euclidean surfaces, Acta Math. Vietnam, 38 (2013) 303-316.
[10] A.Mohammadpouri, F. Pashaie, On the classification of hypersurfaces in Euclidean spaces satisfying $L_{r} \vec{H}_{r+1}=\lambda \vec{H}_{r+1}$, Proyecciones, (2016), 1-10.
[11] R.C.Reilly, Variational properties of functions of the mean curvatures for hypersurfaces in space forms, J.Differential Geom, 8, 3 (1973), 465-477.
[12] H.Rosenberg, Hypersurfaces of constant curvature in space forms, Bull. Sci. Math, 117, (1993), 211-239.
[13] B.Segre, Famiglie di ipersuperficie isoparametrische negli spazi euclidei ad un qualunque numero di dimensioni, Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur, 27, (1938), 203-207.
[14] B.G.Yang, X.M.Liu, r-minimal hypersurfaces in space forms, J. Geom. Phys, 59, (2009), 685-692.

Akram Mohammadpouri

Assistant professor of Mathematics
Faculty of Mathematical Sciences, University of Tabriz
Tabriz, Iran
E-mail: pouri@tabrizu.ac.ir

Rahim Hosseinoughli

Ph.D Student of Mathematics
Faculty of Mathematical Sciences, University of Tabriz
Tabriz, Iran
E-mail: r.hoseinoghli@tabrizu.ac.ir

[^0]: Received: July 2020; Accepted: May 2021

 * Corresponding Author

