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Abstract. To study the heterogeneous nature of lifetimes of certain
mechanical or engineering processes, a mixture model of some suitable
lifetime distributions may be more appropriate and appealing as com-
pared to simple models. This paper considers mixture of Topp-Leone
distributions under classical and Bayesian perspective based on com-
plete sample. The new distribution which exhibits decreasing and up-
side down bathtub shaped density while the distribution has the ability
to model lifetime data with decreasing, increasing and upside down
bathtub shaped failure rates. We derive several properties of the new
distribution such as moments, moment generating function, conditional
moment, mean deviation, Bonferroni and Lorenz curves and the order
statistics of the proposed distribution. Moreover, we estimate the pa-
rameters of the model by using frequentist and Bayesian approaches.
For Bayesian analysis, five loss functions, namely the squared error loss
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function (SELF), weighted squared error loss function (WSELF), mod-
ified squared error loss function (MSELF), precautionary loss function
(PLF), and K-loss function (KLF) and uniform as well as gamma pri-
ors are considered to obtain the Bayes estimators and posterior risk of
the unknown parameters of the model. Furthermore, credible intervals
(CIs) and highest posterior density (HPD) intervals are also obtained.
Monte Carlo simulation study is done to access the behavior of these
estimators. For the illustrative purposes, a real-life application of the
proposed distribution to a tensile strength data set is provided.

AMS Subject Classification: 60E05
Keywords and Phrases: Bayes estimators; Bayesian intervals; Loss
functions; Mixture distribution; Posterior risks, Uniform prior.

1 Introduction

Of late, profound interest has been shown towards methodological devel-
opment and practical applications of finite mixtures of lifetime distribu-
tions. Mixture models are quite versatile and thus have been frequently
used in many real life applications. For example, Mendenhall and Hader
(1958), while referring to practical situations encountered by engineers,
pointed out that the failure of a system or a device may be divided into
two or more different types of causes. Further, Acheson and McElwee
(1952) categorized the failures of electronic tube into gaseous defects,
mechanical defects, and normal deterioration of the cathode in order to
know the proportion of failure due to a certain cause. Another example
is that of an engineering system which consists of different subsystems.
These subsystems may be homogeneous or heterogeneous. Heterogene-
ity nature of such systems can not be captured by a single probability
models but it can be captured through mixture models.

A very important reason for which mixture models are receiving great
attention is owing to the fact that majority of the commonly used distri-
butions prove to be irrelevant with respect to population comprising of
numerous subpopulations, that is, when we consider a population con-
sisting of several subpopulations mixed in an unknown proportion. Take
for example, a population of the lifetime of certain electrical elements
or medicines which is divided into a number of subpopulations depend-
ing upon the possible causes of failures. Direct application of mixture
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models is feasible in situations where data are given only from overall
mixture distributions. This type of direct application are mostly used
whether data arising from the field of medicine, botany, zoology, paleon-
tology, agriculture, economics, life testing, reliability, survival analysis
etc. Various features of mixture models-type-I and type-II mixture mod-
els have been discussed in detail by Li (1983) and Li and Sedransk (1988).
TypeI mixture models are those in which the probability distributions of
the mixture model belongs to the same family while in type-II mixture
models probability distributions do not belong to the same family. Re-
searchers have successfully used mixture models in areas such as crime
and justice, wind shear, engineering, physical, chemical and biological
sciences [ see Harris (1983); Kanji (1985); Jones and McLachlan (1990),
Ateya (2014); Zhang and Huang( 2015); Benaicha and Chaker(2014);
Aslam et al.(2015)].

In the last few decades, researchers have focused their attention
to Bayesian approaches to mixture models, especially mixture mod-
els with finite and infinite components. It was Newcomb (1886) who
first developed the concept of the finite mixture distribution for mod-
eling outliers. Many researchers considered classical analysis of a two-
component mixture models in their studies. For example, Sankaran and
Nair (2005) studied finite mixture of the Pareto distribution. Nadara-
jah and Kotz (2005) discussed the information matrix for a mixture of
two Pareto distributions. Sultan et al. (2007) studied mixture of two
inverse Weibull distributions. Kalantan and Alrewely (2019) studied 2-
Component Laplace Mixture Model based on complete sample. With
regard to censoring schemes based on Bayesian estimation of parame-
ters of mixture models, readers may refer to the works of Saleem et al.
(2010), Feroze and Aslam (2014), Ali (2014), Tahir et al. (2016, 2019),
Sindhu et al.(2017, 2018), Attoui et al. (2018), Aslam et al.(2018, 2020),
Cheema and Aslam (2020) and references cited there in. These contri-
butions in mixture models are great motivations for the recent study.

Wide applicability of mixture modeling, motivates us to develop a
two-component mixture of Topp-Leone (TCMTL) distribution for effi-
cient modeling of tensile strength of polyester fibers data. The most
frequently used hazard rate function in survival and reliability analysis
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is the bathtub-shaped one (Demiris et al. (2011)). Thus it imperative to
have simple distributions capable of modelling bathtub-shaped hazard
rates. The simplest one parameter distribution available in literature
which exhibits bathtub-shaped hazard rates is the Topp-Leone distri-
bution with support on (0,1) due to Topp and Leone (1955). Papke
and Wooldridge (1996) observed that variables bounded between zero
and one arise naturally in many economic setting such as the fraction
of total weekly hours spent on working, the proportion of income spent
on non-durable consumption, pension plan participation rates, industry
market shares, television rating, fraction of land area allocate to agricul-
ture, etc. Furthermore, when the reliability is measured as percentage
or ratio, it is important to have models defined on the unit interval (see
Genc, 2013) in order to have plausible results. Other motivations are
that the proposed TCMTL distribution is capable of modeling increas-
ing and bathtub shaped hazard rate and one real data application shows
that it compares well with other three competing lifetime distributions
in modeling tensile strength of polyester fibers data.
The purpose of this article is two fold. First we derive some basic prop-
erties of the 2-component mixture of Topp-Leone distributions such as
moments, moment generating function, conditional moment, mean de-
viation, Bonferroni and Lorenz curves and the order statistics. Next, we
estimate the parameters of the model by using frequentist and Bayesian
approaches. For Bayesian analysis, five loss functions and uniform as
well as gamma and beta priors are considered to obtain the Bayes es-
timators and posterior risk of the unknown parameters of the model.
Besides, credible intervals (CIs) and highest posterior density (HPD)
intervals are also obtained. To the best of our knowledge, 2-component
mixture of Topp-Leone distributions is not discussed before using the
aforementioned methods of estimation. Through this paper, we purport
to provide some guidelines on selecting the best estimator that may be
of significant interest to applied statisticians/practitioners/engineers.
The article is organized as follows. In the next section, we introduce
the 2-component mixture of Topp-Leone distributions. Some statistical
properties of the 2-component mixture of Topp-Leone distributions are
presented in Section 3. In Section 4, classical and Bayesian methods of
estimation are discussed. Monte Carlo simulation study is carried out
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to compare the different methods of estimation in Section 5. The po-
tentiality of the new model is illustrated by means of an application to
real data in Section 6. Finally, some concluding remarks are addressed
in Section 7.

2 2-Component Mixture of Topp-Leone Distri-
bution

Let X is a random variable which follows Topp-Leone distribution as

fi(x) = λi(2− 2x)(2x− x2)λi−1, 0 < x < 1, λi > 0, i = 1, 2

where λi (i = 1, 2) are the parameter of Topp-Leone distribution. A
finite mixture of 2-component densities with mixing weight p can be
written as

f(x) = pf1(x) + (1− p)f2(x), 0 < p < 1. (1)

So the above equation can be written as

f(x) = 2pλ1(1−x)[x(2−x)]λ1−1 + 2λ2(1− p)(1−x)[x(2−x)]λ2−1, (2)

and the cumulative distribution function for 2-component mixture of
Topp-Leone distribution is given by

F (x) = pF1(x) + (1− p)F2(x), 0 < p < 1

= p[x(2− x)]λ1 + (1− p)[x(2− x)]λ2 . (3)

The survival function and hazard rate function of the 2-component mix-
ture of Topp-Leone distribution are, respectively, given by

S(x) = 1− p[x(2− x)]λ1 − (1− p)[x(2− x)]λ2 (4)

and

h(x) =
2pλ1(1− x)[x(2− x)]λ1−1 + 2λ2(1− p)(1− x)[x(2− x)]λ2−1

1− p[x(2− x)]λ1 − (1− p)[x(2− x)]λ2

. (5)
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We denote a random variable X following the two component mix-
ture Topp-Leone (TCMTL) distribution with parameters p, λ1 and λ2

by X ∼ TCMTL(p, λ1, λ2). The proposed distribution reduces to the
Topp-Leone distribution if p = 1.

Figures 1, 2 and 3 display plots of the density and hrf of TCMTL
distribution for different values of p, λ1 and λ2 . The plots reveal that
the TCMTL density is bi-modal and left-skewed unimodal, while the
hazard rate shape of TCMTL distribution is increasing and bathtub
shaped (U- shaped).
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Figure 1: Plots of the density function for selected values of parameters.
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Figure 2: Plots of the density and hazard function for selected values
of parameters.
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Figure 3: Plots of the hazard function for selected values of parameters.

3 Statistical and mathematical properties

In this section, we devoted to some statistical and mathematical prop-
erties of the TCMTL distribution. Bonferroni and Lorenz curves are
provided in Appendix B.
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3.1 Moments and moment generating function

The moments, incomplete moments, moment generating function, skew-
ness and kurtosis of a probability distribution are important tools to
illustrate flexibility of the distribution. The nth moments the TCMTL
distribution is given by

E(Xn) =

∫ 1

0
xnf(x)dx = 2pλ1

∫ 1

0
xn+λ1−1(1− x)(2− x)λ1−1dx

−2(1− p)λ2

∫ 1

0
xn+λ2−1(1− x)(2− x)λ2−1dx

= 2pλ1[J(n+ λ1, λ1)− J(n+ λ1 + 1, λ1)]

+2(1− p)λ2[J(n+ λ2, λ2)− J(n+ λ2 + 1, λ2)],

where

J(a, b) = 2a+b−1

∫ 1/2

0
za−1(1− z)b−1dz = 2a+b−1Bet

(
a, b;

1

2

)
,

andBet(., .; .) denotes the incomplete beta function defined byBet(a, b; u) =∫ u
0 x

a−1(1− x)b−1dx. So we have

µ′n = E(Xn) = pλ1 2n+2λ1

{
Bet

(
n+ λ1, λ1;

1

2

)
− 2Bet

(
n+ λ1 + 1, λ1;

1

2

)}
+ (1− p)λ2 2n+2λ2

{
Bet

(
n+ λ2, λ2;

1

2

)
− 2Bet

(
n+ λ2 + 1, λ2;

1

2

)}
. (6)

Here, we obtain the first six moments, standard deviation (SD), coeffi-
cient of variation (CV ), coefficient of skewness (CS) and coefficient of
kurtosis (CK) of the TCMTL distribution. The mean, variance, CV ,
CS, and CK are given by

σ2 = µ′2 − µ2, CV =
σ

µ
=

√
µ′2 − µ2

µ
=

√
µ′2
µ2
− 1,

CS =
E[(X − µ)3]

[E(X − µ)2]3/2
=
µ′3 − 3µµ′2 + 2µ3

(µ′2 − µ2)3/2
,
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and

CK =
E[(X − µ)4]

[E(X − µ)2]2
=
µ′4 − 4µµ′3 + 6µ2µ′2 − 3µ4

(µ′2 − µ2)2
,

respectively. Table 1 lists the first six moments along with CS and CK
of the TCMTL distribution for some selected parameters values. These
values can be obtained numerically using R. One can see from Table 1
that upto sixth order raw moments are increasing with respect to all
considered parameter values, while standard deveiation (SD), coefficient
of variation (CV), skewness (CS)and kurtosis (CK) are decreasing with
respect to all considered parameter values.

Table 1: Moments of the TCMTL distribution for some selected pa-
rameter values

µ′r (p, λ1, λ2) = (0.5, 0.5, 0.5) (p, λ1, λ2) = (0.6, 2, 2) (p, λ1, λ2) = (0.8, 3, 3)

µ′1 0.2146 0.4667 0.5428
µ′2 0.0959 0.2666 0.3357
µ′3 0.0547 0.1714 0.2262
µ′4 0.0355 0.1190 0.1619
µ′5 0.0250 0.0873 0.1212
µ′6 0.0185 0.0667 0.0939
SD 0.2231 0.2211 0.2025
CV 1.0400 0.4738 0.3730
CS 1.1513 0.1253 0.0711
CK 3.4939 2.1800 2.2658

The moment generating function of TCMTL distribution can be
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computed as

MX(t) = pλ1

∞∑
i=0

ti 2i+2λ1

i!

{
Bet

(
i+ λ1, λ1;

1

2

)}
(7)

−
{
Bet

(
i+ λ1 + 1, λ1;

1

2

)}
+ (1− p)λ2

∞∑
i=0

ti 2i+2λ2

i!

{
Bet

(
i+ λ2, λ2;

1

2

)}
−
{
Bet

(
i+ λ2 + 1, λ2;

1

2

)}
.

3.2 Conditional moment and mean deviation

Here, we introduce an important lemma which will be used in the next
section.

Lemma 1. Let X be a random variable with pdf given in (2) and
let Jn(t) =

∫ t
0 x

nf(x)dx. Then we have

Jn(t) = pλ12n+2λ1

{
Bet

(
n+ λ1, λ1;

t

2

)}
−
{
Bet

(
n+ λ1 + 1, λ1;

t

2

)}
+ λ2(1− p)2i+2λ2

{
Bet

(
n+ λ2, λ2;

t

2

)}
−
{
Bet

(
n+ λ2 + 1, λ2;

t

2

)}
. (8)

Proof. Using the equation (2), we have

Jn(t) =

∫ t

0
xnf(x)dx = 2pλ1

∫ t

0
xn+λ1−1(1− x)(2− x)λ1−1dx

−2(1− p)λ2

∫ t

0
xn+λ2−1(1− x)(2− x)λ2−1dx

= 2pλ1[It(n+ λ1, λ1)− It(n+ λ1 + 1, λ1)]

+2(1− p)λ2[It(n+ λ2, λ2)− It(n+ λ2 + 1, λ2)]

where

It(a, b) =

∫ t

0
ya−1(2− y)b−1dy.
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The proof is complete.
The nth conditional moments of the TCMTL distribution is given

by

ηn(t) = E[Xn|x > t] =
1

1− F (t)

∫ ∞
t

xnf(x)dx =
1

S(t)
[E(Xn)− Jn(t)].

It can be expressed using (4), (6) and (7). The same remark hold for
the nth reversed moments of the 2-component mixture of Topp-Leone
distribution is given by

mn(t) = E[Xn|x ≤ t] =
1

F (t)

∫ t

0
xnf(x)dx =

1

F (t)
Jn(t).

4 Parameter Estimation

In this section, we obtain the estimation of the parameters of TCMTL
via three methods: maximum likelihood, bootstrap and Bayesian.

4.1 Maximum Likelihood estimators

Suppose x1, x2, . . . , xn is a random sample from the TCMTL distribution
with unknown parameters p, λ1 and λ2. The likelihood function of
TCMTL distribution is given by :

L(p, λ1, λ2) =

n∏
1=1

f(xi).

Assume that r is another parameter such that r ∈ {0, 1, 2, . . . , n}, we
have

L(p, λ1, λ2, r) ∝ (pλ1)r ((1− p)λ2)n−r e−λ1∆1−λ2∆2 , (9)

where

∆1 = −
r∑
i=1

log(2xi − x2
i )

and

∆2 = −
n∑

i=r+1

log(2xi − x2
i ).
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So the log-likelihood function is given as

l(p, λ1, λ2, r) = r(log p+ log λ1) + (n− r)(log(1− p) + log λ2)

−λ1∆1 − λ2∆2.

Without loss of generality, we assume that r̂ ∈ {0, 1, 2, . . . , n}. Tak-
ing the partial derivatives of the log-likelihood function with respect to
parameter vector (p, λ1, λ2), the MLEs of the parameters p, λ1 and λ2

are obtained by equating them to zero. The MLEs are obtained as

p̂ =
r̂

n
, λ̂1 =

r̂

∆1
, λ̂2 =

n− r̂
∆2

.

4.2 Bootstrap estimation

The uncertainty in the parameters of the fitted distribution can be es-
timated by parametric (resampling from the fitted distribution) or non-
parametric (resampling with replacement from the original data set)
bootstraps resampling method ( Efron and Tibshirani (1994)). These
two parametric and nonparametric bootstrap procedures are described
below.
Parametric bootstrap procedure:

1. Estimate θ (vector of unknown parameters), say θ̂ , employing the
MLE procedure based on a random sample.

2. Generate a bootstrap sample {x∗1, . . . , x∗m} using θ and obtain its

bootstrap estimate, say θ̂∗, from the bootstrap sample based on
the MLE procedure.

3. Repeat Step 2 NBOOT times.

4. Order θ̂∗1, . . . , θ̂∗NBOOT as θ̂∗(1), . . . , θ̂∗(NBOOT ). Then, obtain γ-
quantiles and 100(1−α)% confidence intervals for the parameters.

In case of the TCMTL distribution, the parametric bootstrap estima-
tors (PBs) of p, λ1 and λ2 are p̂PB, λ̂1PB and λ̂2PB, respectively.

Nonparametric bootstrap procedure
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1. Generate a bootstrap sample {x∗1, . . . , x∗m} with replacement from
the original data set. Obtain the bootstrap estimate of θ with the
MLE procedure, say θ̂∗, using the bootstrap sample.

2. Repeat Step 2 NBOOT times.

3. Order θ̂∗1, . . . , θ̂∗NBOOT as θ̂∗(1), . . . , θ̂∗(NBOOT ). Then, obtain γ-
quantiles and 100(1−α)% confidence intervals for the parameters.

In case of TCMTL distribution, the nonparametric bootstrap estimators
(NPBs) of p, λ1 and λ2 are p̂NPB, λ̂1NPB and λ̂2NPB, respectively.

4.3 Bayesian Estimation:

Bayesian inference procedure have been taken into consideration by
many statistical researchers, especially, researchers in the field of survival
analysis and reliability engineering. This section discusses the Bayes pro-
cedure to derive the point and interval estimates of the parameters p,
λ1 and λ2 based on complete sample. In our Bayesian analysis, we have
assumed five loss functions namely, squared error loss function (SELF),
weighted squared error loss function (WSELF), modified squared error
loss function (MSELF), precautionary loss function (PLF) and K-loss
function (KLF). The expression of the loss functions and the correspond-
ing Bayes estimators and posterior risk functions are provided in Table 2
[see, Ahmad et al. (2020) and Dey et al. (2015, 2017)]. It may be noted
that if all the parameters p, λ1 and λ2 are unknown, conjugate prior may
not exists. In such cases, there are several ways to choose the priors.
However, if one has adequate information about the parameter(s), it is
better to choose informative prior(s), otherwise, it is preferable to use
noninformative prior(s). Thus it is not unreasonable to propose uniform
priors and independent gamma and beta priors for the parameters to
estimate the Bayes estimators and posterior risks, because gamma and
beta distributions are very flexible.
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Table 2: Bayes estimator and posterior risk under different loss func-
tions

loss function Bayes estimator Posterior risk

L1 = SELF = (θ − d)2 E(θ|x) V ar(θ|x)

L2 = WSELF = (θ−d)2

θ (E(θ−1|x))−1 E(θ|x)− (E(θ−1|x))−1

L3 = MSELF =
(
1− d

θ

)2 E(θ−1|x)
E(θ−2|x)

1− E(θ−1|x)2

E(θ−2|x)

L4 = PLF = (θ−d)2

d

√
E(θ2|x) 2

(√
E(θ2|x)− E(θ|x)

)
L5 = KLF =

(√
d
θ −

√
θ
d

) √
E(θ|x)
E(θ−1|x)

2
(√

E(θ|x)E(θ−1|x)− 1
)

Suppose that the likelihood function associated with main model
f(x,Θ), where Θ = (Θ1, ...,Θk) is a parameter vector, is given as
L(Θ, data). Under the assumption of independent prior distributions
π(Θi) (i = 1, ..., k), the joint posterior distribution is given as

π∗(Θ|data) = K
k∏
i=1

π(Θi)L(Θ, data),

where

K =
1∫

·· ·
∫ ∏k

i=1 π(Θi)L(Θ, data)dΘ1...dΘk

.

Moreover, the marginal posterior pdf of parameter θi (i = 1, ..., k),
can be given

π(Θi|data) =

∫
...

∫
π∗(Θ|data)dΘj1 ...dΘjk , (10)

where i, j1, ..., jk = 1, ..., k, i 6= j1... 6= jk and also Θi is ith member of a
vector Θ.

In the next, we consider two prior distributions for the parameters of
TCMTL distribution. In each case, we provide exact Bayesian estimator
and associated posterior risk under the assumption of loss functions in
Table 2.
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4.3.1 Bayes estimators under uniform priors based on differ-
ent loss functions

We assume that the parameters p, λ1 and λ2 of TCMTL distribution
have independent uniform prior distributions as given by

p ∼ U(0, 1), λ1 ∼ U(0,∞), λ2 ∼ U(0,∞),

Hence, the joint prior density function is formulated as follows:

π(p, λ1, λ2) ∝ 1; 0 < p < 1, λ1 > 0, λ2 > 0. (11)

The joint posterior distribution in terms of a given likelihood function
L(data) and joint prior distribution π(p, λ1, λ2) is defined as

π∗(p, λ1, λ2|data) ∝ π(p, λ1, λ2)L(data). (12)

Hence, we get joint posterior density of parameters p, λ1 and λ2 for
complete sample data by combining the likelihood function (9) and joint
prior density (11). Therefore, the joint posterior density function is given
by

π∗(p, λ1, λ2|x, r̂) = K (pλ1)r̂ ((1− p)λ2)n−r̂ e−λ1∆1−λ2∆2

where K is given as

K−1 =

∫ 1

0

∫ ∞
0

∫ ∞
0

(pλ1)r̂ ((1− p)λ2)n−r̂ e−λ1∆1−λ2∆2dλ1dλ2dp.

=
Be(r̂ + 1, n− r̂ + 1)Γ(r̂ + 1)Γ(n− r̂ + 1)

∆r̂+1
1 ∆n−r̂+1

2

,

and

∆1 = −
r̂∑
i=1

log(2xi − x2
i ),∆2 = −

n∑
i=r̂+1

log(2xi − x2
i ).

Hence, the marginal posterior density of parameters p, λ1 and λ2 are in
explicit form as

p|(x, r̂) ∼ Beta(r̂ + 1, n− r̂ + 1),
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λ1|(x, r̂) ∼ Gamma(r̂ + 1,∆1),

and
λ2|(x, r̂) ∼ Gamma(n− r̂ + 1,∆2).

4.3.2 Bayes estimators and posterior risk based on SELF

The most used loss function is SELF which is symmetrical loss function
and assigns equal losses to over estimation and underestimation. The
Bayes Estimators and the corresponding posterior risk under SELF can
be obtain as

p̂ = E[p|x] =
Beta(r̂ + 2, n− r̂ + 1)

Beta(r̂ + 1, n− r̂ + 1)

and

ρ(p̂) = E[p2|x]− E[p|x]2 =
Beta(r̂ + 3, n− r̂ + 1)

Beta(r̂ + 1, n− r̂ + 1)

−
[Beta(r̂ + 2, n− r̂ + 1)

Beta(r̂ + 1, n− r̂ + 1)

]2
respectively. Similarly, the Bayes estimator of λi(i = 1, 2) and associated
posterior risk are given respectively, as follows:

λ̂1 = E[λ1|x] =
r̂ + 1

∆1
, λ̂2 = E[λ2|x] =

n− r̂ + 1

∆2
,

and

ρ(λ̂1) = E[λ2
1|x]− E[λi|x]2 =

Γ(r̂ + 3)

Γ(r̂ + 1)∆2
1

−
(
r̂ + 1

∆1

)2

,

ρ(λ̂2) = E[λ2
2|x]− E[λ2|x]2 =

Γ(n− r̂ + 3)

Γ(n− r̂ + 1)∆2
2

−
(
n− r̂ + 1

∆2

)2

.

4.3.3 Bayes estimators and posterior risk based on WSELF

The Bayes estimators and the corresponding posterior risk underWSELF
can be obtain as

p̂ = E[p−1|x]−1 =
Beta(r̂ + 1, n− r̂ + 1)

Beta(r̂, n− r̂ + 1)
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and

ρ(p̂) = E[p|x]−E[p−1|x]−1 =
Beta(r̂ + 2, n− r̂ + 1)

Beta(r̂ + 1, n− r̂ + 1)
−Beta(r̂ + 1, n− r̂ + 1)

Beta(r̂, n− r̂ + 1)

respectively. Similarly, the Bayes estimator of λi(i = 1, 2), and associ-
ated posterior risk are given respectively, as follows:

λ̂1 = E[λ−1
1 |x]−1 =

r̂

∆1
, λ̂2 = E[λ−1

2 |x]−1 =
n− r̂
∆2

,

and

ρ(λ̂1) = E[λ1|x]− E[λ−1
1 |x]−1 =

r̂ + 1

∆i
− r̂

∆1
,

ρ(λ̂2) = E[λ2|x]− E[λ−1
2 |x]−1 =

n− r̂ + 1

∆2
− n− r̂

∆2
.

4.3.4 Bayes estimators and posterior risk based on MSELF

The Bayes estimators and the corresponding posterior risk underMSELF
can be obtain as

p̂ =
E[p−1|x]

E[p−2|x]
=

Beta(r̂, n− r̂ + 1)

Beta(r̂ − 1, n− r̂ + 1)

and

ρ(p̂) = 1−E[p−1|x]2

E[p−2|x]
= 1−

(
Beta(r̂, n− r̂ + 1)

)2
Beta(r̂ + 1, n− r̂ + 1)Beta(r̂ − 1, n− r̂ + 1)

respectively. Similarly, the Bayes estimator of λi(i = 1, 2), and associ-
ated posterior risk are given respectively, as follows:

λ̂1 =
E[λ−1

1 |x]

E[λ−2
1 |x]

=
r̂ − 1

∆1
, λ̂2 =

E[λ−1
2 |x]

E[λ−2
2 |x]

=
n− r̂ − 1

∆2
,

and

ρ(λ̂1) = 1− E[λ−1
1 |x]2

E[λ−2
1 |x]

= 1− r̂ − 1

r̂
,

ρ(λ̂2) = 1− E[λ−1
2 |x]2

E[λ−2
2 |x]

= 1− n− r̂ − 1

n− r̂
.
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4.3.5 Bayes estimators and posterior risk based on PLF

The Bayes estimators and the corresponding posterior risk underWSELF
can be obtained as

p̂ =
√
E[p2|x] =

√
Beta(r̂ + 3, n− r̂ + 1)

Beta(r̂ + 1, n− r̂ + 1)

and

ρ(p̂) = 2

(√
E[p2|x]− E[p|x]

)
= 2

(√
Beta(r̂ + 3, n− r̂ + 1)

Beta(r̂ + 1, n− r̂ + 1)
− Beta(r̂ + 2, n− r̂ + 1)

Beta(r̂ + 1, n− r̂ + 1)

)
,

respectively. Similarly, the Bayes estimator of λi(i = 1, 2) and associated
posterior risk are given respectively, as follows:

λ̂1 =
√
E[λ2

1|x] =

√
Γ(r̂ + 3)

Γ(r̂ + 1)∆2
1

, λ̂2 =
√
E[λ2

2|x] =

√
Γ(n− r̂ + 3)

Γ(n− r̂ + 1)∆2
2

,

and

ρ(λ̂1) = 2

(√
E[λ2

1|x]− E[λ1|x]

)
= 2

(√
Γ(r̂ + 3)

Γ(r̂ + 1)∆2
1

− Γ(r̂ + 2)

Γ(r̂ + 1)∆1

)
,

ρ(λ̂2) = 2

(√
E[λ2

2|x]−E[λ2|x]

)
= 2

(√
Γ(n− r̂ + 3)

Γ(n− r̂ + 1)∆2
2

− Γ(r̂ + 2)

Γ(r̂ + 1)∆2

)
,

4.3.6 Bayes estimators and posterior risk based on KLF

The Bayes Estimators and the corresponding posterior risk under KLF
can be obtain as

p̂ =

√
E[p|x]

E[p−1|x]
=

√
Beta(r̂ + 2, n− r̂ + 1)

Beta(r̂, n− r̂ + 1)
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and

ρ(p̂) = 2

(√
E[p|x]E[p−1|x]− 1

)
= 2

(√
Beta(r̂ + 2, n− r̂ + 1)Beta(r̂, n− r̂ + 1)(

Beta(r̂ + 1, n− r̂ + 1)
)2 − 1

)
respectively. Similarly the Bayes estimator of λi(i = 1, 2), and associated
posterior risk are given respectively, as follows:

λ̂1 =

√
E[λ1|x]

E[λ−1
1 |x]

=

√
r̂(r̂ + 1)

∆2
1

, λ̂2 =

√
E[λ2|x]

E[λ−1
2 |x]

=

√
(n− r̂)(n− r̂ + 1)

∆2
2

,

and

ρ(λ̂1) = 2

(√
E[λ1|x]E[λ−1

1 |x]− 1

)
= 2

(√
r̂ + 1

r̂
− 1

)
,

ρ(λ̂2) = 2

(√
E[λ2|x]E[λ−1

2 |x]− 1

)
= 2

(√
n− r̂ + 1

n− r̂
− 1

)
.

4.4 Bayes estimators and posterior risk based under the
beta and gamma priors

We assume that the parameters p, λ1 and λ2 of TCMTL distribution
have independent prior distributions as

p ∼ Beta(a, b), λ1 ∼ Gamma(c, d), λ2 ∼ Gamma(e, f),

where a,b,c,d,e and f are positive constants. Hence, the joint prior
density function is formulated as follows:

π(p, λ1, λ2) ∝ pa−1(1− p)b−1λc−1
1 λe−1

2 e−(dλ1+fλ2); (13)

0 < p < 1, λ1 > 0, λ2 > 0.

We call this joint prior distribution as informative prior(IP). We can now
get the joint posterior density of parameters p, λ1 and λ2 for complete
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sample data by combining the likelihood function (9) and joint prior
density (13). Therefore, the joint posterior density function is given by

π∗(p, λ1, λ2|x, r̂) = Kpr̂+a−1(1− p)n−r̂+b−1(λ1)r̂+c−1(λ2)n−r̂+e−1

× e−λ1(∆1+d)−λ2(∆2+f),

where K = Be(r̂+a,n−r̂+b)Γ(r̂+c)Γ(n−r̂+e)
∆r̂+a

1 ∆n−r̂+e
2

. Hence, the marginal posterior

density of parameters p, λ1 and λ2 have known densities as

p|(x, r̂) ∼ Beta(r̂ + a, n− r̂ + b), λ1|(x, r̂) ∼ Gamma(r̂ + c,∆1 + d),

and
λ2|(x, r̂) ∼ Gamma(n− r̂ + e,∆2 + f).

4.4.1 Bayes estimators and posterior risk based on SELF

The Bayes estimators and the corresponding posterior risk under SELF
can be obtain as

p̂ = E[p|x] =
Beta(r̂ + a+ 1, n− r̂ + b)

Beta(r̂ + a, n− r̂ + b)

and

ρ(p̂) = E[p2|x]− E[p|x]2 =
Beta(r̂ + a+ 2, n− r̂ + b)

Beta(r̂ + a, n− r̂ + b)

−
[Beta(r̂ + a+ 1, n− r̂ + b)

Beta(r̂ + a, n− r̂ + b)

]2
respectively. Similarly, the Bayes estimator of λi(i = 1, 2), and associ-
ated posterior risk are given respectively, as follows:

λ̂1 = E[λ1|x] =
r̂ + c

∆1 + d
, λ̂2 = E[λ2|x] =

n− r̂ + b

∆2 + f
,

and

ρ(λ̂1) = E[λ2
1|x]− E[λ1|x]2 =

Γ(r̂ + c+ 2)

Γ(r̂ + c)(∆1 + d)2
−
(
r̂ + c

∆1 + d

)2

,

ρ(λ̂2) = E[λ2
2|x]− E[λ2|x]2 =

Γ(n− r̂ + e+ 2)

Γ(n− r̂ + e)(∆2 + f)2
−
(
n− r̂

∆2 + f

)2

.
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4.4.2 Bayes estimators and posterior risk based on WSELF

The Bayes estimators and the corresponding posterior risk underWSELF
can be obtain as

p̂ = E[p−1|x]−1 =
Beta(r̂ + a, n− r̂ + b)

Beta(r̂ + a− 1, n− r̂ + b)

and

ρ(p̂) = E[p|x]− E[p−1|x]−1 =
Beta(r̂ + a+ 1, n− r̂ + b)

Beta(r̂ + a, n− r̂ + 1b)

− Beta(r̂ + a, n− r̂ + b)

Beta(r̂ + a− 1, n− r̂ + b)

respectively. Similarly, the Bayes estimator of λi(i = 1, 2), and associ-
ated posterior risk are given respectively, as follows:

λ̂1 = E[λ−1
1 |x]−1 =

r̂ + c− 1

∆1 + d
, λ̂2 = E[λ−1

2 |x]−1 =
n− r̂ + e− 1

∆2 + f
,

and

ρ(λ̂) = E[λ1|x]− E[λ−1
1 |x]−1 =

r̂ + c

∆1 + d
− r̂ + c− 1

∆1 + d
,

ρ(λ̂i) = E[λi|x]− E[λ−1
i |x]−1 =

n− r̂ + e

∆2 + f
− n− r̂ + e− 1

∆2 + f
.

4.4.3 Bayes estimators and posterior risk based on MSELF

The Bayes estimators and the corresponding posterior risk underMSELF
can be obtain as

p̂ =
E[p−1|x]

E[p−2|x]
=
Beta(r̂ + a− 1, n− r̂ + b)

Beta(r̂ + a− 2, n− r̂ + b)

and

ρ(p̂) = 1−E[p−1|x]2

E[p−2|x]
= 1−

(
Beta(r̂ + a− 1, n− r̂ + b)

)2
Beta(r̂ + a, n− r̂ + b)Beta(r̂ + a− 2, n− r̂ + b)
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respectively. Similarly, the Bayes estimator of λi(i = 1, 2), and associ-
ated posterior risk are given respectively, as follows:

λ̂1 =
E[λ−1

1 |x]

E[λ−2
1 |x]

=
r̂ + c− 2

∆1 + d
, λ̂2 =

E[λ−1
2 |x]

E[λ−2
2 |x]

=
n− r̂ + e− 2

∆2 + f
,

and

ρ(λ̂1) = 1− E[λ−1
1 |x]2

E[λ−2
1 |x]

= 1− r̂ + c− 2

r̂ + c− 1
,

ρ(λ̂2) = 1− E[λ−1
2 |x]2

E[λ−2
2 |x]

= 1− n− r̂ + e− 2

n− r̂ + e− 1
.

4.4.4 Bayes estimators and posterior risk based on PLF

The Bayes estimators and the corresponding posterior risk under PLF
can be obtain as

p̂ =
√
E[p2|x] =

√
Beta(r̂ + a+ 2, n− r̂ + b)

Beta(r̂ + a, n− r̂ + b)

and

ρ(p̂) = 2

(√
E[p2|x]− E[p|x]

)
= 2

(√
Beta(r̂ + a+ 2, n− r̂ + b)

Beta(r̂ + a, n− r̂ + b)
− Beta(r̂ + a+ 1, n− r̂ + b)

Beta(r̂ + a, n− r̂ + b)

)
respectively. Similarly, the Bayes estimator of λi(i = 1, 2), and associ-
ated posterior risk are given respectively, as follows:

λ̂1 =
√
E[λ2

1|x] =

√
Γ(r̂ + c+ 2)

Γ(r̂ + c)(∆1 + d)2
, λ̂2 =

√
E[λ2

2|x] =

√
Γ(n− r̂ + e+ 2)

Γ(n− r̂ + e)(∆2 + f)2
,

and

ρ(λ̂1) = 2

(√
E[λ2

1|x]− E[λ1|x]

)
= 2

(√
Γ(r̂ + c+ 2)

Γ(r̂ + c)(∆1 + d)2
− Γ(r̂ + c+ 1)

Γ(r̂ + c)(∆1 + d)

)
,
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ρ(λ̂2) = 2

(√
E[λ2

2|x]− E[λ2|x]

)
= 2

(√
Γ(n− r̂ + e+ 2)

Γ(n− r̂ + e)(∆2 + f)2
− Γ(n− r̂ + e+ 1)

Γ(n− r̂ + e)(∆2 + f)

)
.

4.4.5 Bayes estimators and posterior risk based on KLF

The Bayes estimators and the corresponding posterior risk under KLF
can be obtain as

p̂ =

√
E[p|x]

E[p−1|x]
=

√
Beta(r̂ + a+ 1, n− r̂ + b)

Beta(r̂ + a− 1, n− r̂ + b)

and

ρ(p̂) = 2

(√
E[p|x]E[p−1|x]− 1

)
= 2

(√
Beta(r̂ + a+ 1, n− r̂ + b)Beta(r̂ + a− 1, n− r̂ + b)(

Beta(r̂ + a, n− r̂ + b)
)2 − 1

)
respectively. Similarly the Bayes estimator of λi(i = 1, 2), and associated
posterior risk are given respectively, as follows:

λ̂1 =

√
E[λ1|x]

E[λ−1
1 |x]

=

√
(r̂ + c)(r̂ + c− 1)

(∆1 + d)2
,

λ̂2 =

√
E[λ2|x]

E[λ−1
2 |x]

=

√
(n− r̂ + e)(n− r̂ + e− 1)

(∆2 + f)2
,

and

ρ(λ̂i) = 2

(√
E[λi|x]E[λ−1

i |x]− 1

)
= 2

(√
r̂ + c

r̂ + c− 1
− 1

)

ρ(λ̂i) = 2

(√
E[λi|x]E[λ−1

i |x]− 1

)
= 2

(√
n− r̂ + e

n− r̂ + e− 1
− 1

)
.



24 O. KHARAZMI, S. DEY AND D. KUMAR

5 Simulation

In this section, we provide some simulation results based on maximum
likelihood and Bayesian methods.

5.1 Simulation study for Maximum likelihood method

We consider the performance of the MLEs of the parameters with re-
spect to sample size n and for different parameter values for the TCMTL
distribution. Let p̂, λ̂1 and λ̂2 be the MLEs of the parameters p, λ1

and λ2, respectively. We calculate the mean squared errors (MSEs)
and bias of the MLEs of the parameters p, λ1 and λ2 based on simula-
tion results of 2000 independence replications. Results of the simulation
study are summarized in Table 3 for different values of n, p, λ1 and λ2.
From Table 3, we observe that with the increase in the values of p and
λ1, MSEs decrease. Also, with the decrease in the values of λ2, MSEs
decrease. While, when p decreases and λ1 and λ2 increases, MSEs of p
and λ1 increases whereas MSEs of λ2 decreases. Further, as the sample
size increases, the average biases and the MSEs decrease. It verifies the
consistency properties of MLEs.

5.2 Simulation study for Bayesian method

This section is devoted to calculate the bias and posterior risk values
of Bayes estimators under different loss functions based on Monte Carlo
simulation. We generated samples of different sizes n = {40, 50, 60, 70, 100}
from the TCMTL distribution for real value of parameters (i) (p, λ1, λ2) =
(0.5, 2, 3) and (ii) (p, λ1, λ2) = (0.45, 4, 5). Tables 4 and 5 report the
bias and posterior risk values of Bayes estimators under prior distribu-
tions defined in (11) and aforementioned five loss functions as shown
in Table 2. These results provided by considering hyper parameters
values as (a, b) = (2, 1), (c, d) = (4, 2), (e, f) = (6, 2) for case (i) and
(a, b) = (10, 1), (c, d) = (8, 2), (e, f) = (12, 1) for case (ii) based on 10000
replicates of MCMC procedure in OpenBUGS software. The posterior
risk is reported for different loss functions which is different from mean
squared error because posterior risk is more comprehensive measure for
comparison of different loss functions in Bayesian setup. It is evident
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Table 3: MSE and bias (values in parentheses) of the MLEs of the
parameters p, λ1 and λ2.

p = 0.5 λ1 = 2 λ2 = 3
n 40 0.2660 (-0.0563) 0.6715 (-0.3981) 1.4307 (1.0646)

50 0.2638 (-0.0480) 0.6324 (-0.3822) 1.4198 (1.0450)
60 0.2624 (-0.0441) 0.6164 (-0.3498) 1.3922 (1.0011)
70 0.2550 (-0.0362) 0.6261 (-0.3614) 1.4087 (1.0095)
100 0.2315 (-0.0359) 0.6181 (-0.3438) 1.3404 (0.9047)

p = 0.45 λ1 = 4 λ2 = 5
n 40 0.3202 ( -0.2880) 1.9729 (-1.8759) 0.2660 (-0.0867)

50 0.3205 (-0.2738) 1.9159 (-1.8179) 0.2671 (-0.0829)
60 0.3273 (-0.2653) 1.8785 (-1.7791) 0.2651 (-0.0830)
70 0.3153 (-0.2143) 1.7129 (-1.8118) 0.2557 (-0.0851)
100 0.3021 (-0.2271) 1.6489 (-1.7481) 0.2117 (-0.0821)

p = 0.65 λ1 = 3 λ2 = 1
40 0.0879 (-0.2965) 0.5461 (0.7390) 0.2534 (0.5034)
50 0.0620 (-0.2491) 0.3922 (0.6262) 0.1812 (0.4256)
60 0.0467 (-0.2162) 0.2992 (0.5470) 0.1376 (0.3709)
70 0.0368 (-0.1919) 0.2389 (0.4888) 0.1091 (0.3303)
100 0.0213 (-0.1459) 0.1415 (0.3761) 0.0636 (0.2523)

p = 0.65 λ1 = 5 λ2 = 1
40 0.0071 (-0.0843) 0.14226 (0.3772) 0.0986 (0.3140)
50 0.0050 (-0.0706) 0.1096 (0.3311) 0.0678 (0.2603)
60 0.0037 (-0.0612) 0.0882 (0.2969) 0.0501 (0.2238)
70 0.0029 (-0.0543) 0.0730 (0.2702) 0.0389 (0.1972)
100 0.0017 (-0.0414) 0.0468 (0.2162) 0.0218 (0.1476)

p = 0.5 λ1 = 5 λ2 = 2
40 0.1204 (-0.3470) 4.1462 (2.0362) 0.5812 (0.7624)
50 0.0943 (-0.3072) 3.1551 (1.7763) 0.4389 (0.6625)
60 0.0770 (-0.2776) 2.5127 (1.5852) 0.3488 (0.5906)
70 0.0644 (-0.2538) 2.0411 (1.4287) 0.2861 (0.5349)
100 0.0422 (-0.2055) 1.2682 (1.1262) 0.1799 (0.4242)

from Tables 4 and 5 that MSELF and KLF have smaller posterior risk
as compare to other loss functions. As the sample size increases, the
posterior risk of all Bayes estimates decreases which verifies the consis-
tency properties of all the estimators. We also observe from Tables 4
and 5 that in the case of parameter p, SELF performs better than their
counterparts in terms of posterior risk, while in case of parameters (λ1

and λ2), both the loss functions MSELF and KLF perform equally and
they have the least posterior risks as compared to other loss functions.
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Table 4: Bias and posterior risk values of Bayesian estimators under
different loss functions based on simulation data set for different sample
sizes.

n = 40 p = 0.5 λ1 = 2 λ2 = 3

Loss function Estimate Risk Estimate Risk Estimate Risk

SELF -0.0081 0.0027 0.4720 0.1375 -0.4281 0.1424

WSELF -0.0137 0.0055 0.4162 0.0558 -0.4830 0.0549

MSELF -0.0194 0.0117 0.3603 0.0231 -0.5372 0.0215

PLF -0.0054 0.0054 0.4996 0.0553 -0.5004 0.0551

KLF -0.0109 0.0114 0.4439 0.0230 -0.4557 0.0217

n = 50 p = 0.5 λ1 = 2 λ2 = 3

SELF -0.0044 0.0023 0.4553 0.1121 -0.4478 0.1121

WSELF -0.0092 0.0048 0.4098 0.0438 -0.4916 0.0438

MSELF -0.0141 0.0099 0.3645 0.0188 -0.5355 0.0175

PLF -0.0021 0.0046 0.4780 0.0454 -0.5220 0.0437

KLF -0.0068 0.0097 0.4324 0.0188 -0.4698 0.0174

n = 60 p = 0.5 λ1 = 2 λ2 = 3

SELF -0.0020 0.0020 0.4550 0.0925 -0.4760 0.0916

WSELF -0.0060 0.0039 0.4173 0.0377 -0.5123 0.0362

MSELF -0.0010 0.0080 0.3795 0.0156 -0.5484 0.0145

PLF -0.0019 0.0039 0.4737 0.0375 -0.5263 0.0361

KLF -0.0040 0.0080 0.4360 0.0155 -0.4942 0.0145

n = 70 p = 0.5 λ1 = 2 λ2 = 3

SELF -0.0027 0.0016 0.4470 0.0740 -0.4798 0.0828

WSELF -0.0060 0.0032 0.4171 0.0299 -0.5122 0.0324

MSELF -0.0093 0.0066 0.3874 0.0123 -0.5441 0.0128

PLF -0.0011 0.0032 0.4621 0.0302 -0.5379 0.0327

KLF -0.0044 0.0066 0.4320 0.0123 -0.4960 0.0130

n = 100 p = 0.5 λ1 = 2 λ2 = 3

SELF -0.0039 0.0011 0.4365 0.05531 -0.5072 0.0585

WSELF -0.0062 0.0023 0.4138 0.0226 -0.5307 0.0234

MSELF -0.0086 0.0048 0.3912 0.0093 -0.5540 0.0095

PLF -0.0027 0.0023 0.4478 0.0226 -0.5522 0.0234

KLF -0.0050 0.0047 0.4251 0.0093 -0.5190 0.0095
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Table 5: Bias and posterior risk values of Bayesian estimators under
different loss functions based on simulation data set for different sample
sizes.

n = 40 p = 0.45 λ1 = 4 λ2 = 5

Loss function Estimate Risk Estimate Risk Estimate Risk

SELF 0.0984 0.0025 0.5610 0.4343 0.4522 0.5656

WSELF 0.0937 0.0046 0.4656 0.0954 0.3477 0.1045

MSELF 0.0890 0.0087 0.3701 0.0214 0.2425 0.0197

PLF 0.1007 0.0046 0.6084 0.0947 -0.3916 0.1032

KLF 0.0960 0.0085 0.5131 0.0213 0.3997 0.0194

n = 50 p = 0.45 λ1 = 4 λ2 = 5

SELF 0.0906 0.0021 0.5748 0.3681 0.2914 0.4457

WSELF 0.0866 0.0040 0.4953 0.0795 0.2064 0.0850

MSELF 0.0825 0.0076 0.4170 0.0174 0.1207 0.0165

PLF 0.0930 0.0039 0.6149 0.0801 -0.3851 0.0839

KLF 0.0886 0.0074 0.5349 0.0176 0.2487 0.0163

n = 60 p = 0.45 λ1 = 4 λ2 = 5

SELF 0.0824 0.0019 0.5431 0.2860 0.1947 0.3989

WSELF 0.0789 0.0035 0.4800 0.0631 0.1184 0.0764

MSELF 0.0753 0.0066 0.4168 0.0141 0.0423 0.0149

PLF 0.0841 0.0035 0.5744 0.0627 -0.4256 0.0765

KLF 0.0806 0.0066 0.5114 0.0140 0.1564 0.0149

n = 70 p = 0.45 λ1 = 4 λ2 = 5

SELF 0.0781 0.0016 0.5518 0.2480 0.1130 0.2967

WSELF 0.0750 0.0031 0.4972 0.0546 0.0547 0.0583

MSELF 0.0718 0.0060 0.4426 0.0121 -0.0038 0.0116

PLF 0.0796 0.0030 0.5789 0.0543 -0.4211 0.0579

KLF 0.0765 0.0059 0.5244 0.0121 0.0838 0.0115

n = 100 p = 0.45 λ1 = 4 λ2 = 5

SELF 0.0708 0.0011 0.5550 0.1961 -0.0662 0.2088

WSELF 0.0686 0.0022 0.5122 0.0428 -0.1086 0.0424

MSELF 0.0664 0.0043 0.4697 0.0094 -0.1511 0.0087

PLF 0.0719 0.0022 0.5765 0.0430 -0.4235 0.0422

KLF 0.0697 0.0042 0.5336 0.0094 -0.0875 0.0086

6 Application of TCMTL

The goal here is to show the application of TCMTL model under the
methods (maximum likelihood, bootstrap and Bayesian) discussed in the
Section 4 via a real data set. In order to achieve this goal, we consider a
real data set related to 30 measurements of tensile strength of polyester
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fibers taken from Quesenberry and Hales (1980). The data are:
0.023, 0.032, 0.054, 0.069, 0.081, 0.094, 0.105, 0.127, 0.148, 0.169,

0.188, 0.216, 0.255, 0.277, 0.311, 0.361, 0.376, 0.395, 0.432, 0.463, 0.481,
0.519, 0.529, 0.567, 0.642, 0.674, 0.752, 0.823, 0.887, 0.926.

Graphical measure: The total time test (TTT ) plot due to Aarset
(1987) is an important graphical approach to verify whether the data
can be applied to a specific distribution or not. The TTT plot for
this data set presented in Figure 5 indicates that the empirical hazard
rate functions of tensile strength of polyester fibers data is upside-down
bathtub shaped. Therefore, the TCMTL distribution is appropriate to
fit these data.
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Figure 4: Scaled-TTT plot of the tensile strength of polyester fibers
data set.

We compare the fits of the TCMTL distribution with some com-
petative models (Topp-Leone (TL), Beta and Kumaraswamy (Ku)) and
their densities are given by:

fTL(x) = 2αxα−1(1− x)(2− x)α−1, 0 < x < 1,

fBeta(x) =
xα−1(1− x)β

Beta(a, b)
, 0 < x < 1,
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fKu(x) = αβxα−1(1− xα)β−1, 0 < x < 1.

In Table 6, we report the MLEs of the parameters and the goodness
of fit measures, namely Kolmogorov-Smirnov (KS), Anderson-Darling
(A∗) and Cramér-von Mises (W ∗) statistics and its p-value (parenthesis)
for the given data set. Based on the results in Table 6, we conclude that
the TCMTL distribution provides the best fit with the lowest values of
these statistics. For a visual comparison, the histogram of the data set,
fitted pdf of the TCMTL distribution are plotted in Figure 5. Also, the
plots of empirical and fitted cdf function, P − P plot and Q − Q plot
for the TCMTL are displayed in Figure 5.

Table 6: Parameter estimates and goodness of fit measures with corre-
sponding p-values

Model MLEs of parameters A∗ W ∗ K.S

TCMTL p̂ = 0.0591 λ̂1 = 64.328 0.1236 (0.999) 0.0172 ( 0.999) 0.061(0.999)

λ̂2 = 1.0446
Topp− Leone α̂ = 1.0392 0.3277 (0.9153) 0.0332 (0.9666) 0.0665 ( 0.9981)

Beta α̂ = 0.9666, β̂ = 1.6204 0.1703 (0.9966) 0.0221 (0.9953) 0.0669 (0.9979)

Kumaraswamy α̂ = 0.9627, β̂ = 1.6084 0.1633 (0.9975) 0.0207 (0.9969) 0.0650 (0.9987)

6.1 Bootstrap inference for TCMTL parameters

In this section, we obtain point and 95% confidence interval (CI) for
the parameters of the TCMTL distribution by parametric and non-
parametric bootstrap methods. We provide results of bootstrap methods
in Table 7 for tensile strength data set.

Table 7: Bootstrap point and interval estimation of the parameters p,
λ1 and λ2 for the tensile strength data.

parametric bootstrap non-parametric bootstrap
point estimation CI point estimation CI

p 0.064 (0, 0.517) 0.078 (0, 0.447)
λ1 92.790 (7.50, 362) 96.785 (27.52, 168.27)
λ2 1.048 ( 0.505, 2.090) 1.041 (0, 1.742)
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Figure 5: Histogram and fitted density plot, plot of empirical and fitted
cdf , P −P plot and Q−Q plot for the tensile strength of polyester fibers
data set.

Next, we report Bayes estimates and associated posteriors risks based
on five loss functions and different priors in Tables 8, 9, 10 and 11. Tables
9 and 11 provides 95% credible and HPD intervals for each parameter
of the TCMTL distribution. The posterior samples extracted by using
Gibbs sampling technique. Moreover, we provide the posterior summary
plots in Figures 8, 9 and 10. These plots confirm that the convergence of
Gibbs sampling process is occurred. By comparing the results (Tables
8-11) of uniform priors and IP in terms of their respective posterior
risks and interval estimates for the parameters under the assumed loss
functions, we may conclude that Bayes estimates and interval estimates
based on uniform priors are more efficient than the IP. For the case
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of parameter p, it is observed that SELF performs better than their
counterparts in terms of posterior risk, while in case of parameters (λ1

and λ2), both the loss functions MSELF and KLF perform equally and
they have the least posterior risks as compared to other loss functions.

Table 8: Bayesian estimates and their posterior risks of the parameters
under different loss functions based on tensile strength of polyester fibers
data set (under the beta and gamma priors)

Bayes P̂ λ̂1 λ̂2

Loss functions Estimate Risk Estimate Risk Estimate Risk

SELF 0.0550 8.485e-05 64.3744 2.3216 1.1393 0.0422

WSELF 0.0535 0.0015 64.3383 0.0362 1.1020 0.0373

MSELF 0.0520 0.0287 64.3020 0.0006 1.0645 0.0340

PLF 0.0558 0.0015 64.3925 0.0361 1.1581 0.0367

KLF 0.0543 0.0286 64.3564 0.0006 1.1205 0.0336

Table 9: Credible and HPD intervals of the parameters p, λ1 and λ2

for tensile strength of polyester fibers data set (under beta and gamma
priors).

Credible interval HPD interval
p (0.0484, 0.0611 ) (0.0373, 0.0729)
λ1 (63.330, 65.430 ) (61.560,67.340)
λ2 (0.9905, 1.2760 ) (0.7588, 1.5350)
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Table 10: Bayesian estimates and their posterior risks of the parame-
ters under different loss functions based on tensile strength of polyester
fibers data set (under the uniform priors).

Bayes P̂ λ̂1 λ̂2

Loss functions Estimate Risk Estimate Risk Estimate Risk

SELF 0.0676 5.073e-06 64.0371 0.0014 1.1924 0.0201

WSELF 0.0675 7.938e-05 64.3363 2.199e-05 1.1770 0.0154

MSELF 0.0674 0.0012 64.0378 3.431e-07 1.1630 0.0119

PLF 0.0676 7.505e-05 64.0373 2.201e-05 1.2008 0.0168

KLF 0.0675 0.0012 64.0560 3.434e-07 1.1847 0.0130

Table 11: Credible and HPD intervals of the parameters p, λ1 and
λ2 for tensile strength of polyester fibers data set (under the uniform
priors).

Credible interval HPD interval
p (0.0665 0.0693 ) ( 0.06284, 0.07000)
λ1 (64.0100 64.0500) (64.0010,64.1100)
λ2 (1.0850 1.2680) (1.0010, 1.4710)

0 2000 4000 6000 8000 10000

0
.0

3
0
.0

5
0
.0

7
0
.0

9

p

0 2000 4000 6000 8000 10000

5
8

6
0

6
2

6
4

6
6

6
8

7
0

lambda1

0 2000 4000 6000 8000 10000

0
.6

1
.0

1
.4

1
.8

lambda2

Figure 6: Plots of Bayesian analysis and performance of Gibbs sam-
pling for tensile strength of polyester fibers data set. Trace plots of each
parameter of TCMTL distribution.
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Figure 7: Plots of Bayesian analysis and performance of Gibbs sam-
pling for tensile strength of polyester fibers data set. Autocorrelation
plots of each parameter of TCMTL distribution.
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Figure 8: Plots of Bayesian analysis and performance of Gibbs sam-
pling for tensile strength of polyester fibers data set. Histogram plots of
each parameter of TCMTL distribution.

7 Conclusion

In this study, we have presented the classical and Bayesian methods of
estimation of TCMTL distribution. In addition, we have derived some
statistical properties of TCMTL distribution. From simulation study
and real-life data analysis, we may conclude that the Bayesian estimation
has an advantage because of its small posterior risks as compared to the
MLE method. If we compare the estimates with respect to loss functions,
the MSELF and KLF performs better as compared to their counterparts.
Thus, for the TCMTL distribution, either MSELF or KLF is a suitable
choice for the estimation of parameters. It is also observed that, under
different loss functions, uniform prior performs better as compared to
IP. In future, this work can be extended using 3-component mixture
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of TL distribution or some more flexible probability distribution using
informative and non-informative priors based on censored data.
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Appendix: A

R and OpenBUGS codes

x=c(0.023, 0.032, 0.054, 0.069, 0.081, 0.094, 0.105, 0.127, 0.148, 0.169, 0.188,
0.216, 0.255, 0.277, 0.311, 0.361, 0.376, 0.395, 0.432, 0.463, 0.481, 0.519, 0.529,
0.567, 0.642, 0.674, 0.752, 0.823, 0.887, 0.926)
output < − fitdist( x,”TL”,start=list(t=u1,l1=u2,l2=u3))
summary(output); plot(output); gofstat(output); ks.test(x,”pTL”, 0.0591,64,328,
1,0446).
n=length(x)
model{
for (i in 1:n) { x[i]∼dTL(x[i],t,l1,l2)

}
t ∼ dunif(0,1)
l1 ∼ dgamma(0.0001,0.0001)



40 O. KHARAZMI, S. DEY AND D. KUMAR

l2 ∼ dgamma(0.0001,0.0001)
}

Appendix: B

Bonferroni and Lorenz curves

Bonferroni and Lorenz curves are used to measure the inequality of the dis-
tribution of a random variable X. They are applied in many fields such as
economics, reliability, demography, insurance, etc. These index are defined as:

B(P ) =
1

Pµ

∫ Q

0

xf(x)dx

and

L(P ) =
1

µ

∫ Q

0

xf(x)dx,

respectively, whereQ = F−1(P ). IfX has the pdf in (2), then, Bonferroni curve
of the 2-component mixture of Topp-Leone distribution can be computed as

B(P ) =
pλ122λ1+1

Pµ

{
Bet

(
λ1 + 1, λ1;

Q

2

)
− 2Bet

(
λ1 + 2, λ1;

Q

2

)}
+

(1− p)λ122λ2+1

Pµ

{
Bet

(
λ2 + 1, λ1;

Q

2

)
− 2Bet

(
λ2 + 2, λ2;

Q

2

)}
.

The Lorenz curve of the TCMTL distribution is

L(P ) =
pλ122λ1+1

µ

{
Bet

(
λ1 + 1, λ1;

Q

2

)
− 2Bet

(
λ1 + 2, λ1;

Q

2

)}
+

(1− p)λ122λ2+1

µ

{
Bet

(
λ2 + 1, λ1;

Q

2

)
− 2Bet

(
λ2 + 2, λ2;

Q

2

)}
.

The area between the line L(F (x)) = F (x) and the Lorenz curve, known as the
area of concentration, may be regarded as a measure of inequality of income,
so it is important in insurance, economics and other fields like reliability and
medicine. Figures 4 and 5 show some shapes for L(P ) and B(P ) functions.
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Figure 9: Some plots of Lorenz curve for selected parameter values.

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

lambda_1=3, lambda_2=4

Q

B
o
n
fe

rr
o
n
i 
c
u
rv

e

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

Q

B
o
n
fe

rr
o
n
i 
c
u
rv

e

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

Q

B
o
n
fe

rr
o
n
i 
c
u
rv

e

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

Q

B
o
n
fe

rr
o
n
i 
c
u
rv

e

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

Q

B
o
n
fe

rr
o
n
i 
c
u
rv

e

p = 0.1
p = 0.2
p = 0.3
p = 0.4
p = 0.5

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

p=0.1, lambda_2=4

Q

B
o
n
fe

rr
o
n
i 
c
u
rv

e

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

Q

B
o
n
fe

rr
o
n
i 
c
u
rv

e

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

Q

B
o
n
fe

rr
o
n
i 
c
u
rv

e

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

Q

B
o
n
fe

rr
o
n
i 
c
u
rv

e

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

Q

B
o
n
fe

rr
o
n
i 
c
u
rv

e

lambda_1 = 1
lambda_1 = 2
lambda_1 = 3
lambda_1 = 4
lambda_1 = 5

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

p=0.2, lambda_1=2

Q

B
o
n
fe

rr
o
n
i 
c
u
rv

e

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

Q

B
o
n
fe

rr
o
n
i 
c
u
rv

e

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

Q

B
o
n
fe

rr
o
n
i 
c
u
rv

e

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

Q

B
o
n
fe

rr
o
n
i 
c
u
rv

e

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

Q

B
o
n
fe

rr
o
n
i 
c
u
rv

e

lambda_2 = 1
lambda_2 = 2
lambda_2 = 3
lambda_2 = 4
lambda_2 = 5

Figure 10: Some plots of Bonferroni curve for selected parameter val-
ues.
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