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Abstract. In this paper we present some fixed point theorems for map-
pings satisfying contractive conditions on C∗-algebra-valued b-metric
spaces. Specifically we extend some fixed point results on metric spaces
to C∗-algebra valued case and prove the related fixed point theorems.
Also several theorems in existence of n-periodic points are given.
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1 Introduction

Forty years ago, Bogdan Rzepecki [12], presented a generalized metric
dE on a set X in a way that dE : X× X → S where E is a Banach space
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and S is a normal cone with partial order � . In that article, the author
generalized the fixed point theorems of Maia type [10]. Seven years later,
Shy-Der Lin [5] presented the notion metric spaces by substituting real
numbers with cone in the metric function. In 2007, the notion of cone
metric spaces (CMS) by replacing real numbers with an ordering Banach
space was declared by Huang and Zhang [3]. In 2013 Liu and Xu [7]
came to some new conclusions by substituting the usual real contraction
constant with a vector constant and scalar multiplication with vector
multiplication and confirmed that their results were different from those
in cone metric spaces. Lately, many results on fixed point theorems
have been developed in cone metric spaces [6],[1]. Ma et al. introduced
the concept of C∗-algebra-valued metric spaces and give a fixed point
theorem for C∗-algebra-valued contraction mappings [9]. In [8], C∗-
algebra-valued b-metric spaces were presented and some applications
related to operator and integral equations were given. To make it clear,
now we remind some fundamental definitions, notations, and conclusions
of C∗-algebras. The descriptions of C∗-algebras can be attained in [11].

A complete normed algebra is called aBanach algebra.An involution
on an algebra E is a conjugate-linear map e→ e∗ on E, such that e∗∗ = e
and (eg)∗ = g∗e∗ for all e, g ∈ E. The pair (E, ∗) is called an involutive
algebra, or a ∗-algebra. A Banach ∗-algebra is a ∗-algebra E together
with a complete submultiplicative norm such that ‖e∗‖ = ‖e‖ (e ∈ E). If,
in addition, E has a unit such that ‖1‖ = 1, we call E a unital Banach ∗-
algebra. A C∗-algebra is a unital Banach ∗-algebra such that, ‖e∗e‖ =
‖e‖2(e ∈ E).

An element a of a C∗-algebra E is positive if e = e∗ and its spectrum
σ(e) ⊂ IR+. We write e � 0 to mean that e is positive, and denote by
E

+ the set of positive elements of E.

Theorem 1.1. [11] Let E be a C∗-algebra and e ∈ E+. Then there exists
a unique element g ∈ E+ such that g2 = e.

If E is a C∗-algebra, we make Eh = {t ∈ E : t = t∗} a poset by
defining e � g to mean g − e ∈ E

+. The relation � is translation-
invariant; that is, e � g ⇒ e + k � g + k for all e, g, k ∈ Eh. Also,
e � g ⇒ re � rg for all r ∈ IR+, and e � g ⇔ −e � −g. Let

E
′ = {e ∈ E : eg = ge, ∀g ∈ E} , and E′+ = E

+ ∩ E′.
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Theorem 1.2. [9] If E is a C∗-algebra, then

1. The set E+ is equal to {e∗e | e ∈ E}.

2. If e, g ∈ Eh and k ∈ E, then e � g ⇒ k∗ek � k∗gk.

3. If 0E � e � g, then ‖e‖ ≤ ‖g‖.

4. If E, is unital and e, g are positive invertible elements, then

e � g ⇒ 0E � g−1 � e−1.

Notice that in a C∗-algebra, one cannot conclude that eg � 0E wher-
ever e, g � 0E.

Definition 1.3. Let E be a C∗-algebra, and P be a nonempty set. Let
b ∈ E′+ such that ‖b‖ ≥ 1. A mapping D =: P × P → E

+ is said to be
a C∗-algebra-valued b-metric on P if the following conditions hold for
all e, g, k ∈ P :

1. D(e, g) = 0E if and only if e = g.
2. D(e, g) = D(g, e).
3. D(e, k) � b[D(e, g) +D(g, k)].

The triple (P,E, D) is called a C∗-algebra-valued b-metric space with
coefficient b. By definition a C∗-algebra-valued metric space is a C∗-
algebra-valued I-metric space for identity element I. In fact, an ordinary
C∗-algebra valued metric space is a C∗-algebra valued b-metric space
but, the following example illustrates that, in general, a C∗-algebra-
valued b-metric space is not necessary a C∗-algebra-valued metric space.

Example 1.4. P = lp is the set of all sequences {en} in IR such that∑∞
n=1 |en|

p <∞ where 0 < p < 1. If E = M2(IR) and e = {en}, g = {gn}
in lp, define D : P × P → E as follows:

D(e, g) =

(
(
∑∞

n=1 |en − gn|
p)

1
p 0

0 (
∑∞

n=1 |en − gn|
p)

1
p
.

)

We have D is a C∗-algebra-valued b-metric with coefficient

b =

(
2

1
p 0

0 2
1
p

)
such that ‖b‖ = 2

1
p . But D is not a usual C∗-algebra-

valued metric on P.
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Definition 1.5. Let (P,E, D) be a C∗-algebra-valued b-metric space,
t ∈ P , and {tn} a sequence in P . Then:

1. {tn} converges to t with respect to D whenever for any ε > 0,
there is an N ∈ IN such that ‖(D(tn, t)‖ < ε for all n > N . We
denote this by Limn→∞tn = t or tn → t.

2. {tn} is a Cauchy sequence with respect to D if for each ε > 0,
there is an N ∈ IN such that ‖(D(tn, tm)‖ < ε for all n,m > N.

3. (P,E, D) is complete if every Cauchy sequence in P is convergent
with respect to D.

Definition 1.6. Suppose that (P,E, D) is a C∗-algebra-valued b-metric
space. We call a mapping F : P → P is a contractive mapping on P , if
there exists an λ ∈ E with ‖λ‖ < 1 such that D(Ft, Fs) � λ∗D(t, s)λ
for all t, s ∈ P.

Theorem 1.7. [9] If (P,E, D) is a complete C∗-algebra-valued b-metric
space and F is a contractive mapping, then F has a unique fixed point
in P for F .

Theorem 1.8. [9] Let (P,E, D) be a complete C∗-algebra-valued metric
space. Suppose that a mapping F : P → P satisfies

D(Ft, Fs) � λ[D(Ft, s) + D(Fs, t)], for all t, s ∈ P where λ ∈ E′+
and ‖λ‖ < 1

2
. Then there exists a unique fixed point in P .

Theorem 1.9. [8] Let (P,E, D) be a complete C∗-algebra-valued b-
metric space. Suppose that a mapping F : P → P satisfies

D(Ft, Fs) � λ[D(Ft, t) + D(Fs, s)], for all t, s ∈ P where λ ∈ E′+
and ‖λ‖ < 1

2
. Then there exists a unique fixed point in P .

2 Main Results

As we mentioned before, many researchers investigated fixed point theo-
rems in C∗-algebra-valued metric spaces. In this section, we prove some
fixed point theorems for mapping with different contractive conditions
in the setting of these spaces.
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Definition 2.1. A mapping F on a C∗-algebra-valued b-metric space
(P,E, D) is said to be orbitally continuous if Limi→∞F

ni(t) = z implies
that Limi→∞F (Fni)(t) = Fz for any t in P, where {ni}i≥1 ⊂ IN . The
C∗-algebra-valued b-metric space (P,E, D) is named F -orbitally com-
plete if every cauchy sequence of the form {Fni(t)}i∈IN , t ∈ E converges
on (P,E, D).

In the following, under some appropriate conditions, we generalize
[11,theorem 2.3] from the ordinary metric space to the C∗-algebra case.

Theorem 2.2. Let F : P → P be an orbitally continuous mapping over
C∗-algebra-valued metric space (P,E, D) and (P,E, D) is F -orbitally
complete such that

U(t, s)−D(Ft, s) � λ∗D(t, s)λ (1)

where λ ∈ E+ with ‖λ‖ < 1 and every t, s ∈ P, when

U(t, s) ∈ {D(t, F t), D(Ft, Fs), D(Fs, s)}.

Then, for all t ∈ P, we have {Fn(t)} → z when z is a fixed point of F .

Proof. Fix t0 ∈ P. For n ≥ 1 set t1 = Ft0 and recursively
tn+1 = F (tn) = Fn+1(t0). It is clear that the sequence {tn}n∈IN , is
Cauchy when the equation tn+1 = tn holds for some n ∈ IN . Consider
the case tn+1 6= tn for all n ∈ IN . By replacing t, s with tn−1 , tn in (1),
respectively, one can get

U(tn−1, tn)−D(Ftn−1, tn) � λ∗D(tn−1, tn)λ

but ‖λ‖ < 1 , so this case yields contradiction. Thus

D(tn, tn+1) � λ∗D(tn−1, tn)λ

By B, we denote the element D(t1, t0) in E. So we have

D(tn, tn+1) � λ∗D(tn, tn−1)λ � (λ∗)2D(tn−1, tn−2)λ
2

� . . . � (λ∗)nD(t1, t0)λ
n = (λ∗)nBλn.
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So for n+ 1 > m, we get

D(tn+1, tm) � D(tn+1, tn) +D(tn, tn−1) + . . .+D(tm+1, tm)

=
n∑

k=m

(λ∗)kBλk =
n∑

k=m

(λ∗)kB
1
2B

1
2λk

=
n∑

k=m

(B
1
2λk)∗(B

1
2λk) �

n∑
k=m

‖B
1
2 ‖2‖λk‖2I

� ‖B
1
2 ‖2

n∑
k=m

‖λ‖2kI � ‖B
1
2 ‖2 ‖λ‖

2k

1− ‖λ‖
→ 0

as m → ∞. Therefore {tn} is a Cauchy sequence in (P,E, D). By the
completeness of (P,E, D) there exists z ∈ P such that limn→∞tn = z.
Since (P,E, D) is F -orbitally complete,

Limn→∞tn = Limn→∞F
n(t0) = z.

Since F is orbitally continuous, we have

F (z) = Limn→∞F (Fn(t0)) = Limn→∞F
n+1(t0) = z.

Then, z is a fixed point for F . �
Motivated by the ideas and results presented in [2], for b-metric

spaces, we state and prove the following theorem in a C∗-algebra-valued
b-metric space.

Theorem 2.3. Suppose that F be an orbitally continuous self-map in
the C∗-algebra-valued b-metric space (P,E, D) and exist e1, e2, e3, e4 in
E such that self mapping F satisfies the conditions

‖ e1 + e3 − IE ‖< 1
‖b‖ , e1 + e3 � IE, 0E � e2 − e4.

e1D(Ft, Fs) + (I − e1)[D(t, F t) +D(s, Fs)] + e2[D(s, F t) +D(t, Fs)]

� e3D(t, s) + e4D(t, F 2t) (2)

for all t, s ∈ P. Then, F has at least one fixed point.

Proof. Let t0 ∈ P be arbitrary. Construct a sequence {tn} as follows:
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tn+1 := Ftn; n = 0, 1, 2, . . .
Put t = tn and s = tn+1 in (2), then

e1D(tn+1, tn+2) + (I − e1)[D(tn, tn+1) +D(tn+1, tn+2)]

+ e2[D(tn+1, tn+1) +D(tn, tn+2)]

� e3D(tn, tn+1) + e4D(tn, tn+2).

By a simple calculation, one can get

D(tn+1, tn+2) + (e2 − e4)D(tn, tn+2) � (e3 + e1 − I)D(tn, tn+1)

which implies that

D(tn+1, tn+2) � kD(tn, tn+1) (3)

where k = e3 + e1 − I. Taking account of (3), we have get inductively
D(tn, tn+1) � kD(tn−1, tn) � k2D(tn−2, tn−1) � · · · � knD(t0, t1).

In the following, we prove that {tn}n∈IN is a Cauchy sequence.

D(tn, tn+p) � bD(tn, tn+1) + b2D(tn+1, tn+2) + . . .

+ bp−2D(tn+p−3, tn+p−2) + bp−1D(tn+p−2, tn+p−1)

+ bpD(tn+p−1, tn+p)

� bknD(t0, t1) + b2kn+1D(t0, t1) . . .

+ bp−2kn+p−3D(t0, t1) + bp−1kn+p−2D(t0, t1)

+ bpkn+p−1D(t0, t1)

= (bkn + b2kn+1 + . . .+ bp−1kn+p−2 + bpkn+p−1)D(t0, t1).

So, by theorem 1.2 we have

‖D(tn, tn+p)‖ ≤ (‖ b ‖ ‖ k ‖n + ‖ b ‖2‖ k ‖n+1 + . . .

+ ‖ b ‖p−1‖ k ‖n+p−2 + ‖ b ‖p‖ k ‖n+p−1) ‖ D(t0, t1) ‖

=
1

‖ b ‖n−1
n+p−1∑
i=n

‖ b ‖i‖ k ‖i ‖ D(t0, t1) ‖

≤ 1

‖ b ‖n−1
∞∑
i=n

‖ b ‖i‖ k ‖i ‖ D(t0, t1) ‖→ 0
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as n → ∞. Thus {tn}n∈IN is a Cauchy sequence. As in the proof of
previous theorem, regarding the construction tn = Fnt0 together with
the fact that (P,E, D) is F -orbitally complete, there is z ∈ P such that
tn → z. Again by the orbital continuity of F, we deduce that tn → Fz.
Hence z = Fz. �

Example 2.4. Let P = [−1, 1] and E = M2×2(IR) with ‖E‖ = maxij |eij |
where eij are entries of the matrix E ∈ M2×2(IR). Then (P,E, D) is a
C∗-algebra-valued b-metric space with

b =

[
2 0
0 2

]
where the involution is given by E∗ = (E)T ,

D(t, s) =

[
|t− s|2 0

0 |t− s|2
]

and partial ordering on E is given as[
e11 e12
e21 e22

]
�
[
g11 g12
g21 g22

]
⇐⇒ eij ≤ gij ∀i, j = 1, 2

Define a mapping F : P → P by Ft =
1

2
t+

1

3
and let e1 = 1, e2 = e4 = 0

and e3 =
1

2
. F satisfies hypothesis of last theorem. Then F has at least

one fixed point F (
2

3
) =

2

3
.

Let IN be the set of positive integer and (P,E, D) be a C∗-algebra-
valued metric space. The point t0 ∈ P is an n-periodic point of
F : P → P if t0 = Fnt0 and t0 6= F kt0 for k = 1, 2, 3, ..., n− 1 for some
n ∈ IN.

The orbit of F at a point t is defined by OF (t) = {Fnt : n ≥ 0}.
Suppose that Φ is the set of all nondecreasing ϕ : E+ → E

+ such that
ϕ(t) ≺ t for all t ∈ E+.
Obviously ϕ(t) = γ∗tγ ∈ Φ for all γ ∈ E, where ‖γ‖ < 1.
We discuss the existence of fixed points for above mappings F where

D(Ft, Fs) +D(Fs, Fz) � ϕ(D(t, s) +D(s, z)) (4)
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for t, s, z ∈ P with t 6= s 6= z 6= t, and ϕ ∈ Φ; By definition of n-periodic
point we obtain the next result.

Lemma 2.5. Let F : P → P be a mapping on a C∗-algebra-valued
metric space (P,E, D). Then F it0 6= F jt0 for any n-periodic point t0 ∈ P
of F, where 0 ≤ i ≤ j ≤ n− 1.

Theorem 2.6. Suppose that F is a self mapping on the complete C∗-
algebra-valued metric space (P,E, D) and satisfying in (4).
Then

(1) There are at most two distinct fixed points for F, in P ;

(2) The number of 2-periodic points for F, in P is zero or two;

(3) If n ≥ 3 then F has any n-periodic points in P ;

(4) If F has an orbit without 2-periodic points then F has a fixed
point in P.

Proof. Suppose that F has three distinct fixed points, t, s, z, in P. Then

D(t, z) +D(z, s) � ϕ(D(t, z) +D(z, s)) ≺ D(t, z) +D(z, s),

which is a contradiction.

If s ∈ P is a 2-periodic point of F. Then Fs is also a 2-periodic point
of F distinct from s. We assert that F has the only two 2-periodic points
s and Fs.

Now suppose that z ∈ P is another 2-periodic point of F such that
s 6= z 6= Fs. Thus we have Fs 6= Fz 6= F 2s 6= Fs. Then

D(s, z) +D(z, Fs) = D(F 2s, F 2z) +D(F 2z, F 3s)

� ϕ2(D(F 2s, F 2z) +D(F 2z, Fs))

≺ D(s, z) +D(z, Fs),

which is a contradiction. Thus F has exactly two 2-periodic points.
Now we show that F has any n-periodic point for n ≥ 3. If t0 ∈ P is an
n-periodic point of F for n ≥ 3, then
tk = F kt0, Dk = D(tk, tk+1) + D(tk+1, tk+2) for all 0 ≤ k ≤ n. By
Lemma 2.5, we infer that

Dk � ϕ(D(tk−1, tk) +D(tk, tk+1)) ≺ Dk−1,
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for all 1 ≤ k ≤ n. We have that

D0 = Dn � ϕ(Dn−1) ≺ Dn−1 � ... ≺ D0,

which is a contradiction.

Suppose that, there exists a point t0 ∈ P which is F has no 2-periodic
points in OF (t0). Set tn = Fnt0, Dn = D(tn, tn+1) + D(tn+1, tn+2) for
any n ≥ 0. If there exists some n ≥ 0 with tn = tn+1, then tn is a fixed
point of F ; if tn 6= tn+1 for any n ≥ 0, we get

Dn � ϕ(Dn−1) � ϕ2(Dn−2) � ... � ϕn(D0).

For each i, j, l ∈ IN such that i > j ≥ l, by the triangular inequality, we
have

D(ti, tj) �
i−1∑
n=l

Dn �
i−1∑
n=l

ϕn(D0) �
∞∑
n=1

(γ∗)nD0γ
n

‖D(ti, tj)‖ ≤
∞∑
n=1

‖γ‖2n‖D0‖.

Since ‖γ‖ < 1 then {tn}n≥0 is a Cauchy sequence in P . It follows from
completeness of (P,E, D) that there exists a point a ∈ P such that
limn→∞tn = a. Obviously, there exists some integer k ∈ IN with tn 6= a
for all n ≥ k. Therefore

D(tn+1, Fa) +D(Fa, F tn+2) � ϕ(D(tn, a) +D(a, tn+2))

≺ D(tn, a) +D(a, tn+2)→ 0

as n → ∞, which implies that limn→∞tn = Fa. Hence Fa = a. This
completes the proof. �

Corollary 2.7. Let F : P → P be a mapping on a complete C∗-algebra-
valued metric space (P,E, D) such that

D(Ft, Fs) +D(Fs, Fz) +D(Fz, F t) � ϕ(D(t, s) +D(s, z) +D(z, t))

for all t, s, z ∈ P with t 6= s 6= z 6= t, where ϕ ∈ Φ. Then the conclusions
of Theorem 2.6 holds.
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