
Journal of Mathematical Extension
Vol. 16, No. 2, (2022) (10)1-38
URL: https://doi.org/10.30495/JME.2022.1732
ISSN: 1735-8299
Original Research Paper

A Bi-Level Programming Model for Protecting
an Important Node in a Network

H. R. Maleki ∗

Shiraz University of Technology

Z. Maleki
Shiraz University of Technology

R. Akbari
Shiraz University of Technology

Abstract. Protecting important nodes in a network against natural
disasters, security threats, attacks, and so on is one of the main goals of
network planners. In this paper, a new model is presented for protecting
an important node (NMPN) in a typical network based on a defensive
location problem where the threatening agent (t-agent) can reinforce its
power at some nodes. The NMPN is a bi-level programming problem.
At the upper level, the planner agent (p-agent) try to find the best lo-
cations for protecting resources in order to protect the important node.
The lower level problem is represented as the shortest path problem in
the network in which the edges are weighted with positive values and
sometimes negative values. Thus, the Bellman-Ford algorithm is applied
to solve the lower level problem. The NMPN is an NP-hard problem.
In this work, the genetic, ant colony optimization, binary artificial bee
colony with differential evolution, artificial bee colony algorithms, and
a modified tabu search (MTS) algorithm are used to solve it. A test
problem is randomly generated to investigate the performance of the

Received: July 2020; Accepted: March 2021
∗Corresponding Author

1

2 H. R. MALEKI, Z. MALEKI AND R. AKBARI

metaheuristic algorithms in this paper. Parameters of the metaheuris-
tic algorithms are tuned by the Taguchi method for solving the test
problem. Also, the ANOVA test and Tukey’s test are used to compare
the performance of the metaheuristic algorithms. The best results are
obtained by the MTS algorithm.

AMS Subject Classification: 90C10; 90B80; 68T20

Keywords and Phrases: Competitive facility location problem, Bi-
level programming, Meta-heuristic algorithms

1 Introduction

Important nodes in a network should be protected. Usually, huge bud-
gets are being taken to protect these nodes. For this purpose, a p-agent
tries to find the best locations (or nodes) for placing protecting facili-
ties. An appropriate location of protecting facilities may increase the
resilience ability to protect the important node (which is called target
node here) against potential threats such as natural disasters, deliber-
ate attacks, etc. The location of protecting facilities must be determined
with respect to the possible threats and existing restrictions on the re-
sources and budgets. Against, a t-agent plans to access the target node.
Usually, the more important achieving target node is for the t-agent, the
more budgets and facilities are devoted by the t-agent for this object.
One of the t-agent’s plannings (tactics) to achieve the target node could
be that the t-agent considers appropriate and secure places to reinforce
itself during its movement towards the target. So, the p-agent must
plan to protect the target node with respect to the t-agent’s strategies
for achieving the target node.

Facility location theory is one of the issues that is widely used in
everyday life. In facility location problems, the objective is to deter-
mine the location of a set of facilities to minimize the cost of a set of
demands with respect to some set of constraints. Usually, facility lo-
cation problems are formulated for determining the optimal location of
warehouses, distribution centers, hospitals, post offices, etc. The study
of location theory was formally begun by Weber [30]. Weber located a
warehouse so that the total distance of customers from this warehouse
was minimized. This issue was not much considered until 1983. In 1983,
the study of location theory was resumed with the publication of the

A BI-LEVEL PROGRAMMING MODEL FOR PROTECTING ... 3

article by Hakimi [12]. This paper was aimed to locate switch centers in
a communication network and police stations on a highway. Afterward,
with respect to the importance of location and allocating (resources al-
location) resources correctly in saving costs and improving the efficiency
in service delivery, numerous researches have been done in this regard
[2, 11, 10, 13, 16, 27, 32].

Many research types about facility location problem have been done
with this assumption that there is a monopoly in an environment be-
tween facilities [31]. But, another type of location problem, in which a
decision-maker locates facilities based on the location of other compet-
itive facilities, is called the competitive facility location (CFL) problem
[31]. In other words, in the CFL problem, there is competition instead
of monopoly between facilities. In such competitive environments, the
rivals compete with each other to gain more share of the market. Nowa-
days, due to the lack of monopoly in the production of a product by a
manufacturer or service delivery by an organization, studying competi-
tive location models are more important than before.

Different classifications of the CFL problems have been proposed
from different viewpoints. For example, Kress and Pesch divided the
CFL problems based on the theoretical aspects of the game into static
and dynamic categories [20]. Also, Revelle and Eiselt classified the CFL
problems based on the location space into the d-dimensional and net-
work classes [22]. Given that, an optimal location of all facilities is an
equilibrium state in the CFL problems, and a categorization of the CFL
problems is based on the type of equilibrium state, equilibrium state
for the CFL problems is described as Nash equilibrium or Stackelberg
equilibrium. The CFL problems based on Nash equilibrium are inves-
tigated by numerous researchers such as Hotelling and Eaton [9, 15].
On the other hand, the CFL problems based on Stackelberg equilibrium
have been studied by multiple researchers such as Hakimi, Dreznzer,
and Karkazis [8, 12, 18]. In this case, the CFL problems are formulated
as a bi-level programming problem to obtain a Stackelberg equilibrium
point.

In a bi-level programming problem, two decision decision-makers ex-
ist and decide sequentially. The decision-maker in the first level and
the decision-maker in the second level are called leader and follower, re-

4 H. R. MALEKI, Z. MALEKI AND R. AKBARI

spectively. In a bi-level programming problem, at first leader and then
follower specify their strategy based on their profit. For a good intro-
duction of the bi-level programming problem, we refer the readers to
[6].

In 2007, a defensive location problem (DLP) was introduced by Uno
and Katagiri, which is placed in the class of CFL problems [28]. In
this problem, the defender wants to locate defensive facilities in some of
the predetermined sites in order to prevent aggressors from reaching a
strategic site. This strategic site is called core. In contrast, the invader
looks for a proper path to achieve the core with respect to the specified
strategy by the defender. They formulated the DLP as a bi-level pro-
gramming problem. Given the fact that the defender may defend from
several cores against the invader, thus they formulated a multi-objective
defensive location problem.

In 2009, Berman investigated a defensive maximal covering problem
on a network [3]. In this paper, it is assumed that a decision-maker
(leader) wants to locate p facilities on the nodes of a network in order
to provide maximum coverage of demands at the nodes of the network.
Also, the decision-maker selects the facilities sites with this assumption
that one of the network links will become unusable. In this problem, the
leader’s objective is to cover most demands after the elimination of a
link. In contrast, the follower’s objective is the elimination of the most
damaging link.

In 2011, Uno and Kato formulated a multi-objective stochastic de-
fensive location problem [29]. In this problem, the site and energy of
the invader are considered as random variables. They used an interac-
tive fuzzy satisfying method with a tabu search algorithm to obtain a
satisfying solution for their problem.

In 2015, Khanduzi et al. formulated the continuous single-objective
defensive location problem (CDLP) and proposed a hybrid tabu search
algorithm to solve it [19]. In this problem, a decision-maker wants to
locate different kinds of defensive facilities on nodes of a network to
prevent the invader from reaching the core. Also, they solved it with a
hybrid algorithm of the tabu search algorithm and Levenberg-Marquardt
algorithm.

In 2016, Maleki et al. proposed a novel hybrid algorithm for solving

A BI-LEVEL PROGRAMMING MODEL FOR PROTECTING ... 5

CDLP [21]. Their proposed hybrid algorithm integrates the imperial-
ist competitive algorithm and Boyden-Fletcher-Golden-Shano (BFGS)
algorithm. They have shown that the hybrid algorithm can find high-
quality solutions for the CDLP problems.

In this paper, a new model based on DLP is presented where the t-
agent can reinforce itself in some nodes of the network. This model may
be applied in various fields such as computer networks security, flood
control in a river, etc. In the following as an example, the modeling of
the flood control problem in a river is explained as the NMPN. Suppose
that a dam has been constructed on a river. Thus, there exists the
possibility of the flood and increasing water volume in the river due
to the dam break or the emergency gates opening. In modeling this
problem as the NMPN, the p-agent is river engineers, and the t-agent
is the flood. Also, the target node is a town that is along the river. In
this problem, the river engineers want to reduce the amount of entering
water volume from the overflowing river to the town. They can control
the flood in the river by creating flood diversion channels in candidate
sites with respect to existing constraints. The initial power of the t-
agent can be equal to the amount of water volume that is entered into
the river by the flood. The water volume of the overflowing river can be
decreased due to water storage in the river and water guidance to the
flood diversion channels. Also, besides the entry of a subsidiary branch
into the river or the entry of floods of the surrounding catchment areas
increases the volume of the river water, which can be considered as a
place for the power reinforcement of the t-agent.

In NMPN, the p-agent intends to keep the t-agent away from the
target node as much as possible. Thus, the p-agent locates protecting
facilities with specified protecting capacity on some of the candidate
sites with respect to the t-agent strategies and the existing constraints.
In contrast, the t-agent exists in a specific site with some power. The
t-agent wants to achieve the target node and needs the power to move
on the network. Also, the t-agent’s power is reduced in dealing with
the p-agent’s protecting facilities. Therefore, it can move towards the
target node until it has power. In NMPN, the t-agent approaches the
target node as much as possible, even by power reinforcement in its

6 H. R. MALEKI, Z. MALEKI AND R. AKBARI

path toward the target node. In other words, the t-agent reinforces its
power at the specified site provided that it can reach the target node
or closer node to the target with power reinforcement. It is assumed
that the p-agent locates protecting facilities on the nodes of a network.
The t-agent’s site, the target node, and the power reinforcement site
of the t-agent are considered as the nodes of the network. The t-agent
must find a proper path towards the target node on the network where
weights of edges have positive and sometimes negative values.

Since DLP is a non-deterministic polynomial (NP)-time-hard prob-
lem, thus NMPN is NP-hard too [28]. Therefore, we can use meta-
heuristic algorithms to obtain the proper solutions for this problem.
Metaheuristic algorithms are typically used for generating high-quality
solutions in a proper time. In this paper, the genetic algorithm(GA),
the ant colony optimization (ACO) algorithm, the binary artificial bee
colony with differential evolution (BABC-DE) algorithm, the artificial
bee colony (ABC) algorithm, and the MTS algorithm are used for solv-
ing the NMPN.

The innovations in this paper are as follows: The NMPN has been
stated and modeled. The ABC, BABC-DE, ACO, MTS, and genetic
algorithms are used for solving NMPN. A new method is proposed for
obtaining heuristic information of the ACO algorithm. A new evalua-
tion function is proposed that is applied in decreasing steps of protecting
facilities of the tabu search algorithm. Moreover, the Taguchi method
is used to perform the parameter tuning of the mentioned algorithms.

The rest of this paper is organized as follows: The NMPN is for-
mulated as a bi-level programming problem in section 2. In section
3, solution approaches for solving the NMPN are described in details.
Section 4 is devoted to the introduction of the Taguchi method. A com-
putational experiment is performed in section 5. Finally, conclusions are
given in Section 6.

A BI-LEVEL PROGRAMMING MODEL FOR PROTECTING ... 7

2 Formulation of NMPN

The NMPN can be stated as a problem to determine whether a protect-
ing facility should be located on a node of network or not when a t-agent
with finite power wants to approach the target node as much as possi-
ble. In this section, the NMPN is formulated as a bi-level programming
problem. In this modeling, it is assumed that the capacity of the t-agent
to store power is α”, there exists α′ units of power at a specific site to
reinforce t-agent’s power, and α′ ≤ α”. The t-agent must pay the cost to
reinforce its power at the power reinforcement place. Since power rein-
forcement of the t-agent at the place of the power reinforcement needs to
purchase and set up equipment. Hence, the t-agent reinforces its power
at the specific site provided that it can reach the target node or closer
node to the target. This cost can be used for purchasing and setting up
the needed equipment to reinforce the power of the t-agent at the place
of the power reinforcement.
In the following, the notations and assumptions applied in the formula-
tion of NMNP are stated, and then the mathematical model of NMNP
is presented.
Parameters
G: Network that the p-agent must locate its protecting facilities on it
G= (V ,E).
V : Set which contains nodes of the network. This set is equal to
{v1, ..., vn}.
E: Set which contains the edges of the network G and |E| = r.
t: The node of G that the p-agent must protect from it against the t-
agent.
ve: The node of G that the t-agent reinforces its power on it.
ξ: The node of G which the t-agent is on it (the nth node of G).
eij : The connector edge between two nodes vi and vj of the network G.
wij : Weight of edge eij that is a positive value.
pvt: Set of all paths from the node v to the target node t.
el(p): The lth edge in path p.
vλ(p): The λth node from selected path p by the t-agent.
α(vλ(p)|q): The power of the t-agent in the λth node of the path p.
ᾱ: The initial power of the t-agent.
α
′′
: The capacity of the t-agent for power storage.

8 H. R. MALEKI, Z. MALEKI AND R. AKBARI

α′: Amount of power that is provided to reinforce the t-agent’s power
on node ve.
β1: The capacity of each protecting facility.
c̄: The power reinforcement cost of the t-agent on node ve.
Decision vector
q: Vector q = (q1, ..., qe−1, qe+1, ..., qn−1) is the decision vector of the
p-agent. If there is no protecting facility on node i, then qi = 0. Other-
wise, qi = 1.
p: Vector p is the decision vector of the t-agent. This vector determines
the path that the t-agent selects to reach t or the closest node to t as
much as possible. In other words, the λth component of vector p repre-
sents the λth node in the path p.
ye: This variable is the decision variable of the t-agent. The value of this
variable shows whether the t-agent reinforces itself on node ve or not.
If the t-agent reinforces its power on node ve, then ye = 1, otherwise
ye = 0.
Assumption
• The distance from v to the target node t, dt(v), is defined by the sum-
mation of the weights of edges in the shortest path from node v to the
target node t. In other words

dt(v) = min
p∈P vt

∑
eij∈p

wij

where P vt is a set of all paths from the node v to the target node t.
• It is impossible to put protecting facility on nodes ξ and ve.
• The initial power of the t-agent is ᾱ before leaving ξ.
• The amount of power available to reinforce the t-agent’s power on
node ve is α′ units.
• The t-agent consumes its power in the two following ways:

1. By moving t-agent on the edge eij , its power is decreased by the
amount wij .

2. when the t-agent passes the edge eij (j 6= e), its power is reduced
by β1 in case that a protecting facility was located on node vj .

A BI-LEVEL PROGRAMMING MODEL FOR PROTECTING ... 9

Also, if the t-agent moves on the edge eie, the t-agent’s power will be
increased by β2 units, which β2 is the amount of power that the t-agent
can obtain on node ve.
Therefore, if the t-agent moves from vi to vk , then the power of the
t-agent is reduced as follows:

w̄(eik, q) =

{
wik + β1qk k 6= e
wie − β2 k = e

where β2 is calculated as follows:

β2 = min{α′, α′′ − (ᾱ−
γ∑
l=1

w̄(el(p), q))}

• The t-agent can be in λth node of path p, if the t-agent’s power in
λth node of path p is no negative, i.e.

α(vλ(p)|q) = ᾱ−
λ∑
l=1

w̄(el(p), q) ≥ 0.

• When the t-agent’s power reaches zero, the t-agent dies.

Mathematical formulation
Because the t-agent wants to approach the target node as much as pos-
sible; Thus the t-agent’s objective function is defined as follows:

f I(q,p) = min{dt(v)| α(v|q) ≥ 0}

Also, if the t-agent can reach the closer node to the target node with
power reinforcement, then it reinforces its power on node Ve. In other
words, the t-agent pays the cost of the power reinforcement to reach the
closer node to the target node. Thus, another objective function of the
t-agent c̄(ye) is as follows:

c̄(ye) = c̄ye

If the objective function of the p-agent is displayed with fd(q,p), then
fd(q,p) satisfies in the following relation:

fd(q,p) + f I(q,p) = 0

10 H. R. MALEKI, Z. MALEKI AND R. AKBARI

In the following, the p-agent’s feasible set is formulated. The constraints
of the p-agent can be the cost of building and setting up facilities, staff
allocation, budget restrictions, and so on. In this problem, we assume
that the constraints of the p-agent are linear. If A ∈ Rm×n−2 and
b ∈ Rm×1 denote the coefficients matrix and the right-hand side vector,
respectively, then the feasible set of the p-agent is defined as follows:

FD = {q = (q1, ..., qe−1, qe+1, ..., qn−1)|Aq ≤ b}

where elements of matrix A and vector b are no negative. The feasible
solutions set of the t-agent includes all paths from ξ to t that is shown
by SI. Therefore, the general form of the NMPN is as follows:

max
q

fd(q,p)

where p solves

min
ye

c̄(ye)

min
p

fd(q,p)

s.t. q ∈ FD, p ∈ SI

The t-agent wants to minimize two objective functions c̄(ye) and fd(q,p).
The lexicographic method is an appropriate method for solving the sec-
ond level problem, Since the minimization of the objective function
fd(q,p) is preferred to the minimization of the objective function c̄(ye)
by the t-agent.

Here, the structure of NMPN is illustrated with an example. Con-
sider a network with 8 nodes and 10 edges. Suppose node 1 is the target
node, the t-agent is on node 8, and the t-agent can reinforce its power on
node 4. This network is represented in Fig 1. Also, suppose that α

′′
=

ᾱ = 15, α′ = 7, β1 = 2, A = [a11, a12, a13, a15, a16, a17] = [1, 1, 1, 1, 1, 1]
and b = 6. If p-agent’s decision vector be q = (q1, q2, q3, q5, q6, q7) =
(0, 0, 1, 0, 1, 1), then the t-agent reaches the target node by using power
reinforcement on node 4 and the t-agent must pay cost of power rein-
forcement on node 4. Also, path 8→ 7→ 4→ 2→ 1 is selected to reach
node 1 by the t-agent. But, if the t-agent on node 4 can not reinforce
its power, then the t-agent stops on node 2, which is 10 units away from
the target (node 1).

A BI-LEVEL PROGRAMMING MODEL FOR PROTECTING ... 11

Figure 1: network with 8 nodes and 10 edges

3 The methodology of solving the NMPN

With regard to the presence of a power reinforcement node, the net-
work of the NMPN includes edges with positive and sometimes nega-
tive weights. The objective function value, fd(q,p), for given location
q ∈ FD is computed through finding the following:
1- Shortest paths from ξ to all nodes for location q and
2- Shortest paths from all nodes to t without considering the possibility
of the t-agent’s power reinforcement when no protecting facilities are
located.
The Dijkstra algorithm finds the shortest paths from a source node to
other nodes in a network that the weights of the edges are positive [5].
The complexity of the Dijkstra algorithm is O(r + nlogn). Thus, the
Dijkstra algorithm is used to find shortest paths from all nodes to t.
The Bellman-Ford algorithm is usually used to find the shortest path
from a source node to other nodes of the network, when network edges
are weighted with negative and positive values [5]. The computational
complexity of the Bellman-Ford algorithm is equal to O(rn). Hence,
the Bellman-Ford algorithm determines the shortest paths from ξ to
all nodes for location q. The NMPN is an NP-hard problem. Hence,
the metaheuristic algorithms are a proper choice to solve this problem.
Constraints handling is an important topic that must be considered in
solving optimization problems with metaheuristic algorithms. Usually,
a repairing strategy can be applied where search operators used in meta-
heuristic algorithms generate infeasible solutions.

12 H. R. MALEKI, Z. MALEKI AND R. AKBARI

In this paper, the GA, the ACO algorithm, the BABC-DE algorithm, the
ABC algorithm, and the MTS algorithm are used for solving the NMPN.
The repairing strategy used in these algorithms is proposed by Sakawa.
For more information, readers are referred to [23]. In the following, the
application of these algorithms to solve the NMPN is explained briefly.

3.1 Genetic algorithm

The GA is a metaheuristic algorithm that has been applied for solving
many optimization problems. The GA has been developed by John Hol-
land in the 1970s [14]. Each solution is represented by a chromosome
in GA. Each chromosome consists of several genes. Usually, each gene
represents the amount of a variable. The selection, crossover, and muta-
tion operators are the main operators of GA which are used to produce
a new population. In the crossover, two chromosomes (is called parents)
exchange some of their parts in order to produce a pair of new chromo-
somes. The Mutation operator is applied to create unexpected changes
in the value of some genes. In the following, the GA is investigated to
solve the NMPN.

Initial population

The GA starts by generating an initial population of solutions. Vari-
ous methods have been suggested for generating the initial population
that one of these methods is the generation of the initial population of
solutions, randomly. In this study, the initial population is generated
randomly in GA.

Selection

This operator determines which individuals of the population are chosen
in order to participate in crossover and mutation operations and how
many offsprings are produced by each individual of the population. ”The
better is an individual, the higher is its chance of being a parent.” is a
basic principle of selection methods. The roulette wheel is used in this
paper as one of the implementation methods of the selection operator.

A BI-LEVEL PROGRAMMING MODEL FOR PROTECTING ... 13

We refer readers to [26], for more information about the roulette wheel
selection method.

Crossover

Crossover is a binary and sometimes n-ary operator that is applied in
GA to transfer some characteristics of the two parents to their offsprings.
A crossover point is selected randomly in the 1-point crossover. Then
portions of two parents that lie beyond the crossover point are exchanged
to generate two new offsprings. Suppose that two selected parents are
as follows:

parent1 = [qm1, ...qmi−1, qmi, qmi+1, ..., qmn−1]

parent2 = [qd1, ...qdi−1, qdi, qdi+1..., qdn−1]

Also, suppose that the ith component is selected as a crossover point.
Thus the generated offsprings are as follows:

offspring1 = [qm1, ...qmi−1, qmi, qdi+1, ..., qdn−1]

offspring2 = [qd1, ...qdi−1, qdi, qmi+1..., qmn−1]

In the GA, the production rate of new offsprings by the crossover oper-
ator is called the crossover rate and is denoted by pc. In other words,
if the population size is shown with Npop, then pc ×Npop new offsprings
should be produced by using the crossover operator.

Mutation

The mutation is a unary operator. In other words, it is applied to a
single individual of the population. The rate of production of offsprings
by mutation operator is called mutation rate, which is represented by
pm. Therefore, the number of generated offsprings by mutation operator
is pm × Npop. Uniform mutation as the simplest mutation operator is
performed by choosing a gene randomly, and then the value of this gene
is changed by the flip operator.

14 H. R. MALEKI, Z. MALEKI AND R. AKBARI

Next generation

The replacement strategy is used to decide which individuals remain in
the population and which individuals are replaced with new offsprings.
One of the replacement strategies is the elitism strategy that is per-
formed by selecting the best individuals between the parents and the
offsprings in order to generate a better population.

Stopping criteria

In this paper, iterations number is the stopping criteria of the algorithm.

The implementation of the GA to solve the NMPN is as follows:
Step 0: Determine appropriate values of crossover rate (pc), mutation
rate (pm), size of the population (Npop), number of iterations (IT), and
input parameters of the NMPN.
Step 1: Generate an initial population of solutions with size Npop.
Step 2: Apply repair operator for the infeasible solutions of the initial
population and evaluate all feasible solutions.
Step 3: Generate pc ×Npop new solutions by the crossover operator.
Step 4: Apply repair operator for the infeasible solutions generated by
the crossover operator and then evaluate all feasible solutions.
Step 5: Generate pm ×Npop new solutions by mutation operator.
Step 6: Apply the repair operator for the infeasible solutions generated
by the mutation operator and evaluate all feasible solutions.
Step 7: Add a unit to the counter of iterations.
Step 8: Apply the elitism strategy to select appropriate individuals who
are survived.
Step 9: Repeat steps 3-8 until the maximum number of iterations is
established.

3.2 Ant colony optimization algorithm

Dorigo developed an ant colony optimization (ACO) algorithm in 1997
[7]. The ACO algorithm is a population based meta-heuristic algo-
rithm that mimics the foraging behavior of ants in their colony. Every
ant leaves a trail of pheromone on his movement path that evaporates
quickly. But it remains as a track in a short time. Each ant chooses a

A BI-LEVEL PROGRAMMING MODEL FOR PROTECTING ... 15

Figure 2: Routing Diagram for Ants in the NMPN

path from the nest towards the food source with respect to the concen-
tration amount of pheromone on the paths.

The ACO algorithm is inspired by the interaction between ants in a
colony to find the shortest path from the nest towards the food source.
In nature, a colony of ants may find the shortest path from the nest
towards a food source through the pheromone concentration amount
on the paths. The ACO algorithm is an iterative algorithm for solving
combinatorial optimization problems. At each iteration of the algorithm,
every ant constructs a solution, and then the pheromone of the selected
paths will be updated. In the following, we use the binary ACO algo-
rithm to solve the NMPN.

Ant colony optimization algorithm for solving NMPN

In this algorithm to solve the NMPN, an ant constructs a solution by
stepping on the described routing graph in Fig 2. In other words, the
construction of a solution in the ACO algorithm is obtained by the ant’s
movement from the nth node to the first node on the routing graph.
Also, every ant moves from node i to node i− 1 through the upper path
i0 or the lower path i1. If an ant chooses path i0, it means that there
is no protecting facility on the ith node of the network. Also, if an ant
chooses path i1, it means that a protecting facility is located on the ith
node of the network. In other words, an ant selects a path, but its result
is the location of the protecting facilities on the nodes of the network
of NMPN. At the first, the initial value of pheromone is determined
on paths i0 and i1. Afterward, two phases of solution construction and
pheromone update are repeated. When all ants find a solution, then each
ant reports the quality of its solution through depositing pheromone on

16 H. R. MALEKI, Z. MALEKI AND R. AKBARI

its movement path. Suppose that the initial pheromone value on paths
i0 and i1 of the routing graph is determined as follows:

τ0i0 =
γ

ni
, τ0i1 =

γ

ni
, i = 2, ..., n− 1, i 6= e

τ010 = γ, τ011 = γ

where γ is a constant coefficient and ni is the number of output edges
of node vi in the network.

Solution Construction

Suppose that q′ = (q′1, q
′
2, ...q

′
e−1, q

′
e+1, ..., q

′
n−1) is a solution of the NMPN

which is constructed by an ant in the ACO algorithm. An ant deter-
mines the value of the component q′i of solution vector q′ by choosing
one of the two available paths for movement from node i to node i− 1.
Ants use a probability law to choose one of two paths i0 and i1, on the
routing graph in Fig 2. This law is determined through heuristic and
pheromone information of the paths i0 and i1. The heuristic information
about choosing the path i1 can be found as follows:

ηi1 =
max
i
dt(vi)− dt(vi)

max
i
dt(vi)−min

i
dt(vi)

Also, heuristic information of path i0 can be obtained as follows:

ηi0 =

m∑
j=1

aij −min
i

m∑
j=1

aij

max
i

m∑
j=1

aij −min
i

m∑
j=1

aij

The pheromone information of path i1(i0) i.e. τi1(τi0) is a criterion to
locate(not to locate) protecting facility on the ith node of the network
based on the history of the movement in the past. The path i0 is selected
b kth ant with probability:

pki0 =
ταi0η

β
i0

1∑
j=0

ταijη
β
ij

(1)

A BI-LEVEL PROGRAMMING MODEL FOR PROTECTING ... 17

The kth ant selects path i1 with probability:

pki1 =
ταi1η

β
i1

1∑
j=0

ταijη
β
ij

(2)

where α and β are two parameters that represent the relative importance
of the pheromone and heuristic information, respectively.

Pheromone Update

Suppose that q = (q1, ..., qe−1, qe+1, ..., qn−1) is a solution of the NMPN.
The pheromone update rule for paths i0 and i1 is as follows:
If qi = 1, then pheromone of paths i0 and i1 are updated as follows:

τnewi1 = τi1 + (1− 1

fd(q,p)
), τnewi0 = τi0 (3)

If qi = 0, then pheromone of paths i0 and i1 are updated as follows:

τnewi0 = τi0 + (1− 1

fd(q,p)
), τnewi1 = τi1 (4)

Pheromone on the edges of the routing graph evaporate to search differ-
ent paths of the graph by using the following formula:

τ = (1− ρ)τ, ρ ∈ (0, 1] (5)

where ρ is the evaporation coefficient.
The implementation of the ACO algorithm is as follows:
Step 0: Determine the number of ants in a colony(Nant), pheromone
evaporation rate (ρ), the relative importance of heuristic information
(α), the relative importance of pheromone information(β), number of
iterations (IT), and coefficient of initial pheromone value on routing
graph edges (γ). Input parameters of the NMPN. Let the best solution
equal to −∞.
Step 1: Produce a solution for each ant in the colony by using (1) and
(2).
Step 2: Apply repair operator for infeasible solutions.

18 H. R. MALEKI, Z. MALEKI AND R. AKBARI

Step 3: Evaluate feasible solutions.
Step 4: Update the pheromone of the selected paths by using (3) and
(4).
Step 5: Evaporate the pheromone on the edges of the routing graph by
using (5).
Step 6: Update the best solution.
Step 7: Repeat steps 1-6 until the maximum number of iteration is es-
tablished.

3.3 Artificial bee colony algorithm

The artificial bee colony (ABC) algorithm is a swarm based approach
that is proposed for optimizing continuous numerical functions in 2005
by Karoboga [17]. The ABC algorithm simulates the foraging behavior
of honey bees in searching for food sources. There are three types of
artificial bees in the ABC algorithm: employed, onlooker, and scout
bees. Each food source is allocated to an employed bee which produces
a modification on the position of her food source with respect to local
information. If the nectar amount of the new food source is more than
the previous one, the employed bee memorizes the new position and
forgets the old one. When the employed bees come back to the hive,
they share their information through waggle dance with onlooker bees.
Each onlooker bee uses the information of the employed bees to select a
food source probabilistically. An onlooker bee searches a new food source
in the neighborhood of her selective food source in order to achieve a
food source with more nectar. The scout bees fly in the search space
randomly. Employed, onlooker, and scout bees are three iterative steps
in each iteration of the ABC algorithm.

Artificial bee colony algorithm for solving NMPN

Here, the ABC algorithm is investigated to solve the NMPN. Half of a
colony includes employed bees, and another half consists of the onlooker
bees in the ABC algorithm. The number of employed bees is equal to
the number of food sources. In the ABC algorithm, each food source
and its nectar amount represents a solution and quality of the solution

A BI-LEVEL PROGRAMMING MODEL FOR PROTECTING ... 19

in the optimization problems, respectively.
At first, SN position of food sources qi = (qi1, ..., qe−1, qe−1, ..., qn−1) are
generated randomly in ABC algorithm by:

qij = qminj + rand(0, 1)(qmaxj − qminj) (6)

where qmaxj and qminj are lower and upper bounds of the jth component of
solutions qi, respectively. Each food source is allocated to an employed
bee. We propose the following transfer function to shift the solution
from continuous space to binary space.

qij =

{
1

exp (qij)−exp (−qij)
exp (qij)+exp (−qij) > 0

0
exp (qij)−exp (−qij)
exp (qij)+exp (−qij) ≤ 0

(7)

Employed bee phase

Each employed bee searches for a new food source in the neighborhood
of her food source in order to find a food source with more amount of
nectar as follows:

q̂ij = qij(t) + φij(qij(t)− qkj(t)), (8)

where qk(t)(k ∈ {1, 2, ..., SN}, k 6= i) is a neighbor of qi(t) selected
randomly and φij is a random number in [−1, 1].

Onlooker bee phase

When all employed bees completed the search process, they share ob-
tained information about the nectar amount of their food sources with
onlooker bees through waggle dance. Then each onlooker bee chooses a
food source by the roulette wheel. The probability of selecting ith food
source is obtained as follows:

pi =
fiti

SN∑
i=1

fiti

(9)

where fiti is the nectar amount (fitness) of the ith food source. Then,
a food source can be generated in the neighborhood of the selected food

20 H. R. MALEKI, Z. MALEKI AND R. AKBARI

source qi as follows:

q̃ij = qij(t) + ψij(qij(t)− qkj(t))

where qk(t)(k ∈ {1, 2, ..., SN}) is a neighbor of qi(t) selected randomly
and ψij is a random number in the range of [−1, 1]. The transfer function
(7) is used to convert the obtained solution to a solution in binary space.

Scout bee phase

One of the steps in the ABC algorithm is to abandon food sources with-
out any improvements in their amount of nectar in a predetermined
number of cycles and replace them with a new food source that is gen-
erated randomly. The value of the predetermined number of cycles for
the abandonment of a food source is called the abandonment limit. The
new food source is discovered by a scout bee as follows:

qij = qminj + rand(0, 1)(qmaxj − qminj) (10)

The implementation of the ABC algorithm to solve the NMPN is fol-
lowed by:
Step 0: Input parameters of the NMPN. Also, initialize the number of
iterations (IT), population size of solutions (SN), and abandonment
limit (AL).
Step 1: Generate an initial population of solutions qij , i = 1, ..., SN, j =
1, ..., n− 1, j 6= e, by using (6).
Step 2: Apply repair operator for infeasible solutions.
Step 3: Evaluate the fitness value of the initial solutions qi, i = 1, ..., SN .
Step 4: Generate new solutions q̂ij , i = 1, ..., SN, j = 1, ..., n− 1, j 6= e
for the employed bees by using (8).
Step 5: Apply repair operator for infeasible solutions q̂i, i = 1, ..., SN .
Step 6: Evaluate fitness value of q̂i, i = 1, ..., SN .
Step 7: Use the greedy selection procedure between q̂i and qi.
Step 8: Calculate probability values pi, i = 1, ..., SN, for the solutions
qi by using (9).
Step 9: Produce solutions q̃i, i = 1, ..., SN , from the selected solutions
qi by using values pi and roulette wheel selection method.
Step 10: Apply repair operator for infeasible solutions q̃i.

A BI-LEVEL PROGRAMMING MODEL FOR PROTECTING ... 21

Step 11: Evaluate fitness value of q̃i.
Step 12: Use the greedy selection procedure between q̃i and qi.
Step 13: Specify abandoned solutions and replace them with new solu-
tions generated randomly using (10).
Step 14: Update the best found solution.
Step 15: Repeat Steps 4 − 14 until the convergence condition of the
maximum number of iterations is established.

3.4 Binary artificial bee colony with differential evolution
algorithm

A binary artificial bee colony with differential evolution (BABC-DE) al-
gorithm has been designed for solving binary knapsack problem in 2009
by Cao et al. [4]. The differential evolution (DE) algorithm is pro-
posed by Storn and Price in 1995 [24]. The BABC-DE algorithm is a
hybridization of the artificial bee colony algorithm and differential evo-
lution algorithm to obtain a more efficent algorithm than ABC and DE.
The BABC-DE algorithm is a modified version of the ABC algorithm.
Similar to the ABC algorithm employed, onlooker, and scout bees are
three iterative phases in the BABC-DE algorithm. In the BABC-DE
algorithm, mutation and crossover operators of the DE algorithm are
used in the onlooker bee phase. Also, a binary operator is used in the
employed bee phase of the BABC-DE algorithm [4]. In the design of
this operator, the memory and neighbor information are considered si-
multaneously to increase the efficiency of the BABC-DE algorithm.

Artificial bee colony with differential evolution algorithm
for solving NMPN

At first, SN food sources qi = (qi1, ..., qie−1, qie+1, ..., qin−1), i = 1, ..., SN,
are generated randomly, in the BABC-DE algorithm. In this paper, ini-
tial food sources are generated as follows:

qij =

{
0 φij > 0
1 φij ≤ 0

(11)

where φij is a random number in the range of [0,1].

22 H. R. MALEKI, Z. MALEKI AND R. AKBARI

Employed bee phase

In the employed bee phase, solution q̂i is generated by solution qi as
following:

q̂ij = mod(qk1j + |qij(t)− qk2j(t)|, 2) (12)

where function mod(·, 2) calculates the remainder of the division of the
first part by 2, k1, k2 ∈ {1, ..., SN} are selected randomly and are held
in k1 6= k2 6= i.

Onlooker bee phase

In the BABC-DE algorithm, an onlooker bee chooses the ith food source
with probability value p̂i that is calculated as follows:

p̂i =
fiti

SN∑
i=1

fiti

(13)

where fiti is fitness of the ith food source. Then, the onlooker bee
determines a neighbor food source around the chosen one by mutation
and crossover operator. The proposed mutation operator by Cao is
defined as follows:

q̃i =

{
M(qgb(t)) r < w

M(qk(t)) r ≥ w (14)

where r is a random number within [0,1], integer number k 6= i is selected
randomly from set {1, ..., SN}. OperatorM(·) is a binary swap mutation
operator described in Table (1). The food source qgb(t) is the best

Table 1: Binary mutation operator in BABC-DE

Step 1 select two integers,u, v ∈ {1, 2, ..., e− 1, e + 1, ..., n− 1}, u 6= v, randomly.
Step 2 If qiu(t) = qiv(t) then qiu(t) = ((qiu(t) + 1)mod2)
Step 3 If qiu(t) 6= xiv(t) then qiu(t) = ((qiu(t) + 1)mod2) and qiv(t) = ((qiv(t) + 1)mod2)

food source in the iteration t. Also, the selective coefficient w is used
to control the frequency of mutation on food sources qgb(t) and qk(t)
in order to prevent premature convergence. In iteration t, w can be
obtained as follows:

w = wstart −
wstart − wend

IT
× t

A BI-LEVEL PROGRAMMING MODEL FOR PROTECTING ... 23

where IT is the number of iterations. After obtaining a mutated indi-
vidual, a crossover individual is obtained by:

uij =

{
q̃ij rj ≤ CR or j = jrand
qij(t) otherwise

(15)

where rj , j = 1, ..., e−1, e+1, ..., n−1, is a random number in the range
of [0,1]. Integer number jrand, jrand 6= e, is generated randomly within
[1, e − 1] or [e + 1, n − 1] which is selected randomly. Also, CR is the
crossover rate in the range of [0,1].

Scout bee phase

In the BABC-DE algorithm, the scout bee phase is designed to avoid
trapping algorithm in local optimal. If the ith food source does n’t im-
prove in a certain number of iterations, then the food source qi would
replace with a new food source that is generated by (11).
Implementation of the BABC-DE algorithm is described by using the
following steps:
Step 0: Initialize the population size of solutions (SN), number of itera-
tions (IT), wstart, wend, and abandonment limit (AL). Input parameters
of the NMPN.
Step 1: Initialize SN solutions by using (11).
Step 2: Apply repair operator for infeasible solutions.
Step 3: Evaluate fitness value of each of the SN solutions.
Step 4: Find the best solution qgb(t).
Step 5: Generate solution q̂i(t) using (12).
Step 6: Apply repair operator for q̂i(t), if q̂i(t) is infeasible .
Step 7: Evaluate fitness value of solution q̂i(t).
Step 8: Apply a greedy selection mechanism between qi(t) and q̂i(t).
Step 9: Update qgb(t), if fitness value of qi(t) is more than fitness value
of qgb(t).
Step 10: Repeat SN times, steps 5− 9.
Step 11: Select solution qi(t) probabilistically by using calculated values
p̂i through (13) and roulette wheel selection mechanism.
Step 12: Generate mutated solution q̃i(t) by (14).
Step 13: Generate crossover solution ui(t) by (15).
Step 14: Apply repair operator for solution ui(t), if ui(t) is infeasible.

24 H. R. MALEKI, Z. MALEKI AND R. AKBARI

Step 15: Evaluate fitness value of solution ui(t).
Step 16: Apply a greedy selection mechanism between qi(t) and ui(t).
Step 17: Update qgb(t), if fitness value of qi(t) is more than fitness value
of qgb(t).
Step 18: Repeat SN times, steps 11− 17.
Step 19: Generate a new solution by using (11) for replacing with solu-
tion qi(t), if qi(t) has not been improved in AL trials.
Step 20: Let t = t+ 1.
Step 21: Repeat Steps 4 − 20 until the convergence condition of the
maximum number of iterations is established.

3.5 Modified tabu search algorithm

Here, a modified tabu search algorithm is investigated to solve the
NMPN. Assume that the set SM is defined as follows:

SM = {±ti| i = 1, ..., e− 1, e+ 1, ..., n− 1},

where t1 = (1, ..., 0), ..., and tn−1 = (0, ..., 1). Each member of SM is
called move. Assume that, set of neighbors q is defined as follows:

N(q) = q + SM

Let tabu list T be a set with a specific size that consists of recent chosen
moves. No members of T can be selected until specific number of itera-
tions are done. In the tabu search algorithm, a non-tabu move is chosen
based on the improvement amount of an evaluation function, which is
usually the objective function of an optimization problem. The tabu
search algorithm by Uno and Katagiri is constructed based on two types
of steps: protecting facilities increment and decrement [28]. We propose
a new evaluation function in case of facilities decrement in the Uno’s
tabu search algorithm. If q is feasible, when the number of located pro-
tecting facilities is decreased, then evaluation function (EF) is defined
as:

EF = max
j
{eAj | qj = 1, − tj /∈ T, j = 1, .., e− 1, e+ 1, ..., n− 1}

where dimensional of vector e is 1×m, and all of its components are 1.
If j < e, the vector Aj is the jth column of matrix A, and if j > e, the

A BI-LEVEL PROGRAMMING MODEL FOR PROTECTING ... 25

vector Aj is the (j − 1)th column of matrix A.
Otherwise, the evaluation function (EF) is defined as:

EF = max
j
{
∑
i∈I

aij | qj = 1, − tj /∈ T, j = 1, .., e− 1, e+ 1, ..., n− 1}

where the set I is defined as follows:

I = {i|
n−1∑

j=1,j 6=e
aijqj > bi, i = 1, ...,m}

In this paper, Uno’s tabu search algorithm is considered with a new
evaluation function which is used in steps of facilities decrement.

4 Taguchi method

Values (levels) of parameters affect the quality of the solutions and the
run time of metaheuristic algorithms. Thus appropriate levels should be
determined for these parameters by using parameter tuning methods.
Assume that a metaheuristic algorithm has n controllable parameters,
and each parameter has k levels. A full factorial design needs nk ex-
periments. When all experiments have been conducted, the “best” level
can be determined for each parameter. Hence, this approach has a high
computational cost. One of the most popular methods for parameter
tuning is the Taguchi method. The Taguchi method is introduced by
Taguchi [25]. In the Taguchi method, parameters are divided into two
categories: controllable and uncontrollable parameters. The value of
controllable parameters can be specified and controlled easily, whereas
uncontrollable parameters are difficult to control in normal situations. In
the Taguchi method, the number of experiments is decreased by using
orthogonal arrays. The freedom degree of each parameter in a meta-
heuristic algorithm is considered as the number of levels minus one. In
the Taguchi method, the sum of the freedom degrees of parameters of
an algorithm plus one is the minimum number of required rows in an
appropriate orthogonal array. When the experiments have been per-
formed, the Taguchi method uses a statistical measure to evaluate the
performance of algorithms that is called signal-to-noise (S/N) ratio. The

26 H. R. MALEKI, Z. MALEKI AND R. AKBARI

terms “signal” and “noise” indicate the desirable (mean response vari-
able) and undesirable values (standard deviation), respectively. For a
minimization problem, the S/N ratio is calculated as follows:

S

N
= −10 logy

2

10

where y is the objective function value. The process of parameter tuning
with the highest S/N ratio yields better results because it guarantees
optimum quality with minimum variance [1]. Thus, the best level for
each parameter in a metaheuristic algorithm corresponds to the level
that has the highest value of the S/N ratio.

It is better to unscale values of the objective function in each level
of the suggested experiments by the Taguchi method. The objective
function values can be unscaled by using the related percentage deviation
(RPD) formula. The values of RPD is obtained as follows:

RPD =
|Current Solution− Best Solution|

Best Solution
× 100

where ” Best Solution” is the best value of the objective function in all
experiments for a metaheuristic algorithm. Then, the marginal mean of
S/N ratio values for each level of the parameters are computed, and the
best level for each parameter is specified by using obtained mean values.

5 Computational experiments

The purpose of a computational experiment is for the validation of the
model. Thus a numerical example was generated to illustrate the NMPN
randomly. This example is solved by five metaheuristic algorithms which
are the genetic, ACO, ABC, BABC-DE, and MTS algorithms. The
proposed algorithms are coded in MATLAB and run on a machine with
an Intel Core i7 , 3.60 GHz CPU, and 32 GB RAM.

Random generation of a numerical example

Consider a network with n=200 nodes and 985 edges. The weights of
edges in this network are selected from set {1, ..., 30}, randomly. The

A BI-LEVEL PROGRAMMING MODEL FOR PROTECTING ... 27

t-agent’s initial power amount is equal to ᾱ = 200. Moreover, it is
assumed that α” = ᾱ. The capacity of each protecting facility is equal
to 50. In this example, node ve is the 94th node of the network which
was selected randomly. Assume that the maximum amount of power
that a t-agent can obtain at this node is equal to 70 units. For all
i = 1, ...,m and j = 1, ..., n−1, j 6= e, the entry aij of coefficients matrix
Am×n−2 is a randomly selected scalar in set {1, .., 30}. The elements of
the right-hand side vector b are determined as follows:

bi = θi

n−1∑
j=1, j 6=e

aij , i = 1, ...,m,

where θi is a random value in interval [0.1, 0.2].

parameter tuning

The parameter tuning and assigning an appropriate level for each of the
parameters influence the solution quality and run time of metaheuristic
algorithms. In this paper, parameter values are determined by using
the Taguchi method for each algorithm. Five levels are considered for
each of the parameters in each algorithm. Taguchi method suggests 25
(L25) orthogonal arrays for each algorithm. Also, for each algorithm,
each level of suggested experiments are performed three times in order
to obtain more reliable information.

Controllable parameters in GA are: probability for the crossover
(pc), probability for the mutation (pm), population size (Npop), and
number of iterations (IT). The mean of S/N ratios plot for each level of
parameters of GA is shown in Fig 3. Also, tested values and suggested
value for each parameter of the GA are presented in Table (2).

Parameters of ACO algorithm for solving the NMPN are: coeffi-
cient related to the initial value of pheromone on the edges of routing
graph(γ), relative importance (weight) of heuristic information (α), rel-
ative importance (weight) of pheromone information (β), number of ants
in each iteration of algorithm (Nant), number of iterations (IT). There
are considered five levels for each of these parameters. The best level
of each parameter in the ACO algorithm is determined by the mean of

28 H. R. MALEKI, Z. MALEKI AND R. AKBARI

Figure 3: GA

Table 2: Parameter tuning results of GA for the numerical example

Parameter Tested values Suggested value

pc 0.65,0.7,0.75,0.8,0.85 0 .8
pm 0.15,0.2,0.25,0.3,0.35 0.35
Npop 30,50,70,100,130 130
IT 100,140,180,220,260 260

S/N ratios. The mean of S/N ratios plot for each level of parameters in
the ACO algorithm is shown in Fig 4. Also, tested values and suggested
value for each parameter of the ACO algorithm is presented in Table
(3).

In the ABC algorithm, controllable parameters are: number of iter-
ations (IT), population size of solutions (SN), and abandonment limit
(AL). To solve the numerical example of the NMPN by ABC, the aban-
donment limit is considered as follows:

AL = round(C × SN × (n− 2)) (16)

where C is the constant value within [0,∞). So, according to the defini-
tion of AL, C and SN parameters must be tuned instead of parameter
AL. The mean of S/N ratios plot for each level of the parameters in the
ABC algorithm is shown in Fig 5. Also, the tested values and suggested

A BI-LEVEL PROGRAMMING MODEL FOR PROTECTING ... 29

Figure 4: ACO algorithm

Table 3: Parameter tuning results of the ACO algorithm for solving
the numerical example

Parameter Tested values Suggested value
ρ 0.01,0.0575,0.105,0.1525,0.2 0 .105
α 0 .5,1,1.5,2,2.5 1
β 0.5,1,1.5,2,2.5 1.5

Nant 10,15,20,25,30 30
IT 100,140,180,220,260 260
γ 0.1,0.3,0.5,0.7,0.9 0.3

value of each parameter are presented in Table 4.

In the BABC-DE algorithm, adjustable parameters are: wstart, wend,
crossover rate (CR), number of iterations (IT), population size of solu-
tions (SN), and abandonment limit (AL). In this study, the abandon-
ment limit in the BABC-DE algorithm is calculated by (16). So, similar
to the ABC algorithm, the parameter C and parameter SN must be
tuned instead of the parameter AL. The mean of S/N ratios plot for
each level of the parameters in the BABC-DE algorithm is shown in Fig
6. Tested values and suggested value of each parameter are presented in
Table (5).

In the proposed MTS algorithm, controllable parameters are: tabu
list length(TL), number of terminal delete moves (NTD), number of

30 H. R. MALEKI, Z. MALEKI AND R. AKBARI

Figure 5: ABC algorithm

Figure 6: BABC-DE algorithm

A BI-LEVEL PROGRAMMING MODEL FOR PROTECTING ... 31

Table 4: Parameter tuning results of the ABC algorithm for solving
the numerical example

Parameter Tested values Suggested value
IT 100,140,180,220,260 260
SN 10,15,20,20,30 30
C 0.01,0.0575,0.0105,0.1525,0.2 0.0575

Table 5: Parameter tuning results of the BABC-DE algorithm for solv-
ing the numerical example

Parameter Tested values Suggested value
IT 100,140,180,220,260 260
CR 0.6,0.7,0.8,0.9,1 0.8
SN 10,15,20,25,30 15
wstart 0.2,0.3,0.4,0.5,0.6 0.6
wend 0.6, 0.7,0.8,0.9,1 0.7

C 0.01,0.0575,0.105,0.1525,0.2 0.1525

iterations(IT). The mean of S/N ratios plot for each level of the pa-
rameters of the MTS algorithm is shown in Fig 7. Also, tested values
and suggested value of each parameter are presented in Table (6).

Table 6: Parameter tuning results of the MTS algorithm for solving
the numerical example

Parameter Tested values Suggested value
TL 20,30,40,50,60 50
NTD 5,6,7,8,9 8
IT 100,140,180,220,260 140

Statistical analysis

Statistical analysis is a powerful tool to evaluate the performance of
metaheuristic algorithms. A common statistical analysis is the analysis
of variance (ANOVA) test. In this paper, the ANOVA test is performed
to investigate whether the difference between means of metaheuristic

32 H. R. MALEKI, Z. MALEKI AND R. AKBARI

Figure 7: MTS algorithm

algorithms is statistically significant or not. If a difference exists some-
where between algorithms, the p-value associated with the ANOVA test
indicates it. For small values of the p-value (< 0.05), the ANOVA test
confirms that there is a statistically significant difference between the
mean values of algorithms. In this case, the ANOVA test is followed
by post hoc tests in order to investigate more accurately. One of the
common Post hoc tests is Tukey’s test.

ANOVA test

The numerical example of NMPN was solved 30 times by using the ge-
netic, ACO, ABC, BABC-DE, and MTS algorithms in order to compare
the robustness and efficiency of each algorithm. The goal of this experi-
ment is to investigate the performance of the algorithms on this class of
problems.
The best value, mean value, worst value, mean CPU time, the stan-
dard deviation (SD), and the number times of power reinforcement of
t-agent’s on node ve (NRE) in 30 implementations of each algorithm are
presented in Table (7).

In order to perform statistical analysis, the ANOVA test was used
to evaluate the performance of algorithms. The ANOVA test with the

A BI-LEVEL PROGRAMMING MODEL FOR PROTECTING ... 33

Table 7: Obtained results for solving the numerical example in 30 im-
plementations by the genetic, ABC, ACO, BABC-DE, MTS algorithms

Algorithm Best value Mean value Worst value Mean CPU time SD NRE
(seconds)

GA 212 145.93 104 200.6907 27.5 25
ACO algorithm 116 107.5 107.900 226.4946 2.746 30
ABC algorithm 108 94.87 81 427.2302 8.10 30

BABC-DE algorithm 233 156.43 104 150.500824 41.85 20
MTS algorithm 236 216.80 108 894.927324 29.62 2

Figure 8: Grouping Information Using the Tukey Method

Tukey post hoc test was performed by software Minitab 18 to the si-
multaneous comparison of the algorithms, and their results are shown
in Fig 8. The obtained results of the ANOVA test and Tukey’s test are
as follows:
The only algorithm in group A is the MTS algorithm and has the high-
est mean value in 30 iterations of algorithms. The MTS algorithm is
significantly better than other algorithms. The GA and the BABC-DE
algorithm have not a significant difference from each other. The BABC-
DE and genetic algorithms are significantly better than the ACO and
ABC algorithms. The ABC algorithm has not a significant difference
from the ACO algorithm.

The obtained results from solving the numerical example show that
the MTS has better performance than the other algorithms. Here, some
of the positive features of the MTS algorithm that may increase the ef-
ficiency of the algorithm are pointed out. The MTS algorithm is a local

34 H. R. MALEKI, Z. MALEKI AND R. AKBARI

guided search where the chosen moves in recent iterations are rejected
in order to avoid trapping in local optimal. This algorithm is designed
based on characteristics of NMPN that can find a good approximation
of the optimal solution by searching boundaries of FD, since the opti-
mal solution of NMPN exists nearby boundary of FD. In this paper,
a proper evaluation function is introduced to evaluate moves that de-
crease facilities. Improvement degree of the objective function is used
to evaluate moves that increase protecting facilities.

6 Conclusion

In this paper, the NMPN was presented with respect to the possibility
of the t-agent’s power reinforcement during his onrush (progressing) to-
wards the core. The NMPN is the NP-hard. Thus, the metaheuristic
algorithms are a suitable option to solve these problems. In this paper,
the genetic, MTS, BABC-DE, ACO, and ABC algorithms were exam-
ined in order to find an appropriate algorithm to solve this class of prob-
lems. Also, a new method was proposed to obtain heuristic information
in the ACO algorithm for solving the NMPN. In the step of decreas-
ing of protecting facilities, a new evaluation function was proposed for
Uno’s tabu search algorithm. In order to evaluate the performance of
the proposed meta-heuristic algorithms, a test problem was randomly
generated. The Taguchi method was used for parameters tuning of the
mentioned metaheuristic algorithms for solving the test problem. The
ANOVA test and Tukey’s test were used to compare the mean of ob-
tained solutions of these algorithms in 30 iterations. The ANOVA test
rejects the equality assumption of means. Tukey’s test shows that the
MTS algorithm is significantly better than other algorithms, whereas
the ACO and ABC algorithms are significantly worse than other algo-
rithms. The genetic and BABC-DE algorithms are better than the ACO
and ABC algorithms but are worse than the MTS algorithm.

References

[1] J. Antony and M. Kaye, Experimental Quality: A Strategic Approach
to Achieve and Improve Quality, Kluwer Academic, Norwell (1999).

A BI-LEVEL PROGRAMMING MODEL FOR PROTECTING ... 35

[2] C. O. Astorquiza, I. Contreras and G. Laporte, Multi-level facility
location problem, European Journal of Operational Research, 267
(2018), 791-805.

[3] O. Berman, T. Drezner, Z. Drezner and G. O. Wesolowsky, A pro-
tecting maximal covering problem on a network, International Trans-
actions in Operational Research, 16 (2009), 69-86.

[4] J. Cao, B. Yin, Y. Lu, X. Kang and A. Chen, Modified artificial bee
colony approach for the 0-1 knapsack problem, Applied Intelligence,
48 (2017), 1582-1595.

[5] T. H. Cormen, C. E. Leiserson and R. L. Rivest, Introduction to
Algorithms, MIT Press, Cambridge, Massachusetts (1990).

[6] S. Dempe, Foundations of Bilevel Programming, Kluwer Academic,
Dordrecht (2002).

[7] M. Dorigo, Optimization, Learning and Natural Algorithms, Ph.D.
thesis, Politecnico di Milano, Italy (1992).

[8] Z. Drezner, Competitive location strategies for two facilities, Re-
gional Science and Urban Economics, 12 (1982), 485-493.

[9] B. C. Eaton and R. G. Lipsey, The principle of minimum differenti-
ation reconsidered: Some new developments in the theory of spatial
competition, The Review of Economic Studies, 42 (1975), 27-49.

[10] F. Ferdowsi, H. R. Maleki and S. Rivaz, Air refueling tanker alloca-
tion based on a multi-objective zero-one integer programming model,
Operational Research, 20 (2018), 1913-1938.

[11] F. Ferdowsi , H. R. Maleki and S. Rivaz, A bi-objective formulation
for refueling stations selection problem, Journal of Mathematical Ex-
tension, 13 (2019), 71-85.

[12] S. L. Hakimi, On locating new facilities in a competitive environ-
ment, European Journal of Operational Research, 12 (1983), 29-35.

36 H. R. MALEKI, Z. MALEKI AND R. AKBARI

[13] M. A. HashemiNezhad and M. Abbasi, Stochastic capacitated p-
median problem with normal distribution, Journal of Mathematical
Extension, 13 (2019), 1-21.

[14] J. Holland, Adaptation in Natural and Artificial System, MIT Press,
Cambridge (1992).

[15] H. Hotelling, Stability in competition, The Economic Journal, 30
(1929), 41-57.

[16] C. Hu, X. Liu and j. Lu, A bi-objective two-stage robust location
model for waste-to-energy facilities under uncertainty, Decision Sup-
port Systems, 99 (2017), 37-50.

[17] D. Karaboga, An Idea Based on Honey Bee Swarm for Numerical
Optimization, Technical Report-TR06, Erciyes University, Kayseri
(2005).

[18] K. Karkazis, Facilities location in a competitive environment, Eu-
ropean Journal of Operational Research, 42 (1989), 294-304.

[19] R. Khandouzi, M. R. Peyghami and H. R. Maleki, Solving con-
tinuous single-objective defensive location problem based on hybrid
directed tabu search algorithm, International Journal of Advanced
Manufacturing Technology, 76 (2015), 295-310.

[20] D. Kress and E. Pesch, Sequential competitive location on networks,
European Journal of Operational Research, 217 (2012), 483-499.

[21] H. R. Maleki , R. khanduzi and R. Akbari, A novel hybrid algorithm
for solving continuous single objective protecting location problem,
Neural Computing and Applications, 28 (2016), 3323-3340.

[22] C. S. ReVelle and H. A. Eiselt, Location analysis: A synthesis and
survey, European Journal of Operational Research, 165 (2005), 1-19.

[23] M. Sakawa, K. Kato and T. Shibano, An interactive Fuzzy satisfic-
ing method for multiobjective multidimensional 0-1 knapsack prob-
lems through genetic algorithms, Proceedings of IEEE International
Conference on Evolutionary Computation, (1996), 243-246.

A BI-LEVEL PROGRAMMING MODEL FOR PROTECTING ... 37

[24] R. Storn and K . Price, Differential evolution- a simple and efficient
heuristic for global optimization over continuous spaces, Journal of
Global Optimization, 11(1997), 341-359.

[25] G. Taguchi, Introduction to Quality Engineering, Asian Productiv-
ity Organization/UNIPUB, White Plains, (1986).

[26] E. G. Talbi, Metaheuristics: From Design to Implementation, John
Wiley and Sons, Hoboken, (2009).

[27] C. Teye , G. H. Bell and C. J. Bliemer, Entropy maximizing facility
location model for port city intermodal terminals, Transportation
Research Part E: Logistics and Transportation Review, 100 (2017),
1-16.

[28] T. Uno and H. Katagiri, Single and multi-objective protecting lo-
cation problems on a network, European Journal of Operational Re-
search, 188 (2008), 76-84.

[29] T. Uno and K. Kato, An interactive fuzzy satisficing method for
multiobjective stochastic protecting location problems, IEEE Inter-
national Conference on Fuzzy Systems, (2011), 879-883.

[30] A. Weber, Reine Theory des Standorts, Verlag des Mohr, Tubingen,
(1909).

[31] R. Zanjirani and M. Hekmatfar, Facility Location: Concepts,
Models, Algorithms and Case Studies, Physica-Verlag, Heidelberg,
(2009).

[32] R. Zanjirani, S. Fallah, R. Ruise, S. Hosseini and N. Asgari, OR
models in urban service facility location: A critical review of appli-
cations and future developments, European Journal of Operational
Research, 726 (2018), 1-27.

Hamid Reza Maleki
Professor of Mathematics
Department of Mathematics
Faculty of Basic Science
Shiraz University of Technology

38 H. R. MALEKI, Z. MALEKI AND R. AKBARI

Shiraz, Iran

E-mail: maleki@sutech.ac.ir

Zahra Maleki
Ph.D. Student of Mathematics
Department of Mathematics
Shiraz University of Technology
Shiraz, Iran

E-mail: z.maleki@sutech.ac.ir

Reza Akbari
Associate Professor of Computer Engineering
Faculty of Computer Engineering and Information Technology
Shiraz University of Technology
Shiraz, Iran

E-mail: akbari@sutech.ac.ir

	1 Introduction
	2 Formulation of NMPN
	3 The methodology of solving the NMPN
	3.1 Genetic algorithm
	3.2 Ant colony optimization algorithm
	3.3 Artificial bee colony algorithm
	3.4 Binary artificial bee colony with differential evolution algorithm
	3.5 Modified tabu search algorithm

	4 Taguchi method
	5 Computational experiments
	6 Conclusion
	References

