Journal of Mathematical Extension Vol. 16, No. 6, (2022) (4)1-16 URL: https://doi.org/10.30495/JME.2022.1716 ISSN: 1735-8299 Original Research Paper

Strong Synchronized System

M. Shahamat

Dezful Branch, Islamic Azad University

Abstract. In this paper introduced the notion of a strong synchronized system; that is a synchronized system whose there is unique finite path in Fischer cover labeled synchronizing block. We aim to introduce a class of synchronized systems containing sofics. Every irreducible sofic shift is an strong synchronized.

AMS Subject Classification: 53C25; 83C05; 57N16 **Keywords and Phrases:** Strong synchronizing, strong synchronized derived, minimal generator.

1 Introduction

One of the most studied dynamical systems is a subshift of finite type (SFT). An SFT is a system whose set of forbidden blocks is finite ([6]). Equivalently, an SFT X is a subshift whose any block of length greater than a certain number M is synchronizing; that is, if m is any block with $|m| \ge M$ and if v_1m and mv_2 are both blocks of X, then v_1mv_2 is a block of X. If an irreducible system has at least one synchronizing block, then it is called a synchronized system and examples are sofics: factors of SFT's.

For a synchronized system, Fiebig in ([2]) prove that there is some finite path e in Fischer cover labeled m terminating in α such that

Received: June 2020; Accepted: July 2021

 $m \in F_{-}(\alpha)$. In the other hand, cardinal $\{e \in \mathcal{E}_{X_{0}^{+}} : t(e) = \alpha\} \geq 1$. In this note we consider shift space that cardinal $\{e \in \mathcal{E}_{X_{0}^{+}} : t(e) = \alpha\} = 1$.

2 Background and Definitions

This section is devoted to the very basic definitions in symbolic dynamics. The notations have been taken from ([6]) and the proof of the relevant claims in this section can be found there. Let \mathcal{A} be an alphabet, that is a non-empty finite set. The full shift \mathcal{A} -shift denoted by $\mathcal{A}^{\mathbb{Z}}$, is the collection of all bi-infinite sequences of symbols in \mathcal{A} . A block over \mathcal{A} is a finite sequences of symbols from \mathcal{A} . It is convenient to include the sequence of no symbols, called the *empty block* and denoted by ε . If x is a point in $\mathcal{A}^{\mathbb{Z}}$ and $i \leq j$, then we will denote a block of length j - iby $x_{[i,j]} = x_i x f_{i+1} \dots x_j$. If $n \geq 1$, then u^n denotes the concatenation of n copies of u, and put $u^0 = \varepsilon$. Let \mathcal{F} be the collection of all forbidden blocks over \mathcal{A} . The complement of \mathcal{F} is the set of admissible blocks or just blocks in X. For any such $\mathcal{A}^{\mathbb{Z}}$, define $X_{\mathcal{F}}$ to be the subset of sequences in $\mathcal{A}^{\mathbb{Z}}$ not containing any block in \mathcal{F} . A shift space is a closed subset X of a full shift $\mathcal{A}^{\mathbb{Z}}$ such that $X = X_{\mathcal{F}}$. For some collection \mathcal{F} of forbidden blocks over \mathcal{A} .

Let $W_n(X)$ denote the set of all admissible n blocks. The language of X is the collection $W(X) = \bigcup_n W_n(X)$. A shift space X is *irreducible* if for every ordered pair of blocks $u, v \in W(X)$ there is a block $w \in W(X)$ so that $uwv \in W(X)$. It is *mixing* if for every ordered pair $u, v \in W(X)$, there is an N such that for each $n \ge N$ there is a block $w \in W_n(X)$ such that $uwv \in W(X)$. A shift space X is called a *shift of finite type* SFT if there is a finite set \mathcal{F} of forbidden blocks such that $X = X_{\mathcal{F}}$. An *edge shift* denoted by X(G), is a shift space that consist of all bi-infinite walks in a directed graph G. Each edge e initiates at a vertex denoted by i(e) and terminates at a vertex t(e).

A labeled graph \mathcal{G} is a pair (G, \mathcal{L}) where G is a graph with edge set \mathcal{E} , and the labeling $\mathcal{L} : \mathcal{E} \to \mathcal{A}$. A sofic shift $X_{\mathcal{G}}$ is the set of sequences obtained by reading the label of walks on G.

$$X_{\mathcal{G}} = \{\mathcal{L}_{\infty}(\varepsilon) : \varepsilon \in X_G\} = \mathcal{L}_{\infty}(X_G).$$

We say \mathcal{G} is a presentation of $X_{\mathcal{G}}$. The follower set of a vertex m of G

is $F_{-}(m) = \{\mathcal{L} - label \text{ of all finite paths terminating at } m\}$. Every SFT is *sofic* ([6, Theorem 3.1.5]), but the converse is not true. A labeled graph $\mathcal{G} = (G, \mathcal{L})$ is *right-resolving* if for each vertex I of G the edges starting at I carry different labels.

Let X be a shift space and $w \in W(X)$. The follower set $F_+(w)$ of w is defined by $F_+(w) = \{v \in W(X) : wv \in W(X)\}$ (resp. $F_-(w)$). Let $x \in W(X)$. Then, $x_+ = (x_i)_{i \in Z^+}$ (resp. $x_- = (x_i)_{i < 0}$) is called right (resp. left) infinite X-ray. For a left infinite X-ray, say x_- its follower set is $w_+(x_-) = \{x^+ \in X^+ : x_-x_+ \in X\}$. Consider the collection of all follower sets $w_+(x_-)$ as the set of vertices of a graph X^+ . There is an edge from I_1 to I_2 labeled a if and only if there is an X-ray x_- such that x_-a is an X-ray and $I_1 = w_+(x_-), I_2 = w_+(x_-a)$. This labeled graph is called the Krieger graph for X. A block $m \in W(X)$ is synchronizing if whenever um and mv are in W(X), we have $umv \in W(X)$. An irreducible shift space X is a synchronized system if it has synchronizing block. A block $m \in W(X)$ is half synchronizing if there is a left transitive point $x \in X$ such that $x_{[-|m|+1],0]} = m$ and $w_+(x_{(-\infty,0]}) = w_+(m)$, That we denote by

$$(x, m). \tag{1}$$

If X is a half synchronized system with half synchronizing m, the irreducible component of the Krieger graph containing the vertex $w_+(m)$ is denoted by X_0^+ and is called the *right Ficher cover* of X.

Let X be a shift space. The *entropy* of X is defined by

$$h(X) = \lim_{n \to \infty} \frac{1}{n} \log |W_n(X)|.$$

For any synchronized system X, we define the synchronized entropy h_{syn} to be

$$h_{\rm syn}(X) = \limsup_{n} \frac{1}{n} \log(\operatorname{cardinal}\{a \in W_n(Y) : mam \in W(X)\}),$$

where m is an arbitrary synchronizing block in W(X). A shift space X is almost sofic if there are sofic shifts $X_n \subseteq X$ such that $\lim_{n\to\infty} h(X_n) = h(X)$.

3 Strong Synchronized Systems

We aim to introduce a class of synchronized systems containing sofics. Let X be a shift space and $R(X) = \overline{\operatorname{Per} X}$ and set S(X) to denote the set of synchronizing blocks for R(X). For $s, t \in S(X)$ we write $s \sim t$ whenever there are blocks $u, v \in W(R(X))$ such that $sut, tvs \in$ W(R(X)). Then, \sim is an equivalence relation in S(X). Note that $s \sim t$ if only if there is an $x \in R(X) = \overline{\operatorname{Per} X}$ such that $s, t \subseteq x$. Let $x \in R(X)$ and for integers p and s with $p \leq s$, set

$$gap(x_{[p,q]}, x_{[s,t]}) = \begin{cases} 0 & s \le q \\ s-q & \text{otherwise} \end{cases}$$

and call it the gap between two blocks $x_{[p,q]}$ and $x_{[s,t]}$. Pick $\alpha \in S(X)/\sim, p < s$, $q \leq t$ and $\{u = x_{[p,q]}, v = x_{[s,t]}\} \subseteq \alpha$. If the only minimal synchronizing blocks in $x_{[p,t]}$ are u and v, then call u and v the consecutive minimal pairs of α in $x_{[p,t]} \subset x$. In ([2]) $X_{(\alpha,0)}$ was defined to be the set of elements of $x \in R(X)$ satisfying the following.

- i. If $i \in \mathbb{Z}$, then there are $m, m' \in \alpha$ such that $m \subseteq x_{(-\infty,i]}, m' \subseteq x_{[i,+\infty)}$.
- ii. $|\{u \in \alpha : u \subseteq x\}| < \infty.$
- iii. There is M > 0 such that if u and v are the consecutive minimal pairs of α in x, then $gap(u, v) \leq M$.

Example 3.1. Let G be the graph in Figure 1 and X = X(G). Then, $X_{(\alpha,0)} = \{0, 1\}^{\mathbb{Z}}$.

We associate to $X_{(\alpha,0)}$ an irreducible graph Γ_{α} . To do so for each $m \in \alpha$, let $F(m) = \{u \in W(X_{(\alpha,0)}) : mu \in W(X_{(\alpha,0)})\}$ and let the vertices of Γ_{α} to be $\{F(m) : m \in \alpha\}$. Assign an edge labeled *a* from F(m) to F(m') when $a \in F(m)$ and F(ma) = F(m'). Then, Γ_{α} is a minimal right resolving cover and is called *Fischer cover* of $\overline{X_{(\alpha,0)}}$.

Definition 3.2. A block $m \in W(X)$ is called strong synchronizing if there is an element $\alpha \in S(X)/\sim$ such that whenever there are two finite paths e, e' in Γ_{α} labeled m, then e = e'.

Figure 1: The graph G.

Call an irreducible shift space X strong synchronized if it has a strong synchronizing block. In the sequel, we will show that

sofics \subsetneq strong synchronized systems \subsetneq synchronized systems. (2)

Clearly, any strong synchronizing block is a synchronizing block. The next example shows that the second inclusion in (2) is not equality.

Example 3.3. Let X be the Dyke system. Add a new symbol * (which will be a synchronizing block) to the set of four brackets and let S be the subshift which consists of all bi-infinite sequences of these five symbols such that any finite subblock which does not contain a * obeys the standard brackets rules ([2]). We claim that S is not strong synchronized system.

Let u be a strong synchronizing block of S. So that is a synchronizing block and $* \subseteq u$. We can write u = a * b where $a, b \in W(S)$. Since * is a synchronizing block, there is a unique vertex β of Fischer cover S_0^+ with this properties $* \in F_-(\beta)$ and $w_+(\beta) = w_+(*)$ ([2, Page 146]). Since $*b \in W(S)$, so there is a cycle C containing b and passing through $w_+(*)$ and $w_+(u)$. See Figure 2.

Pick $a' \in W(S)$ such that $[a', (a' \in W(S) \text{ and for each } x_- \in S^-, x_-a'a \in S^-$. Set $x_- := \cdots]][a', y_- := \cdots]]](a')$. Since $w_+(x_-) \neq w_+(y_-)$ and

$$w_+(x_-a_*) = w_+(y_-a_*), w_+(*[a') = w_+(x_-), w_+(*(a') = w_+(y_-)),$$

so there are finite pathes e, e' labeled a * b = u and terminating at $w_+(u)$. This show that synchronized system S is not strong synchronized.

Figure 2: A subgraph of Fischer cover S.

If m is a synchronizing block of X, then there is a unique vertex I of Γ_{α} with the property $m \in F_{-}(I)$ as in $w_{+}(u)$ in Figure 2. But m is an strong synchronizing block if and only if there are two unique vertexes I and J of Γ_{α} such that $m \in F_{-}(I)$ and $m \in F_{+}(J)$. Note that if X is a synchronized system, then $\{\alpha\} = S(X)/\sim$ and $\Gamma_{\alpha} = X_{0}^{+}$.

Proposition 3.4. Every irreducible sofic shift is an strong synchronized.

Proof. Let *m* be a synchronizing block of *X*. There is a finite path π in Fischer cover X_0^+ labeled *m*. Set $i(\pi) := I$ and $t(\pi) := J$. Since labeling of finite graph X_0^+ is right resolving, so the labeling of X_0^+ is left closing ([2, Theorem 3.2]) and so *m* is a strong synchronizing block of *X*. \Box The next example shows that the converse of the above proposition is not necessarily true and so (2) is sort out compeletly.

Example 3.5. Set $1_{\beta} := 21010^2 10^3 1 \dots$ Since 1_{β} is not eventually periodic so by ([3, Theorem 2.4.2]) β -shift is not sofic. Since 2 is a strong synchronizing block for β -shift, so it is a strong synchronized.

Set $S_t(X)$ to denote the set of strong synchronizing blocks for X. If $m \in S_t(X)$ and $\alpha = [m]$, then for each $a \in W(X_{(\alpha,0)})$, let C'_a be a cycle in Γ_α containing a and passing through $w_+(m)$. Let $u, v \in W(X_{(\alpha,0)})$. Set the *distance* between two blocks u and v, to be 0 when u = v and

$$\min\{\frac{1}{2}(|u'mu''|+|v'mv''|): \mathcal{L}(C'_{uu'mu''}) = uu'mu'', \mathcal{L}(C'_{vv'mv''}) = vv'mv''\}$$

Figure 3: The distance of u and v.

otherwise. Denote this distance by $d_m(u, v)$ see Figure 3. It is not hard to see that $(W(X_{(\alpha,0)}), d_m)$ is a metric space. Note that the definition of d_m is dependent on the particular choice of m. Let $m_1, m_2 \in \alpha \cap$ $S_t(X)$. Then, for each $u \in W(X_{(\alpha,0)}) \ d_{m_1}(m_2, u) = d_{m_1}(m_1, u) + d_{m_2}(m_1, m_2) + |m'_1| + |m_2| - |m'_2|.$

Lemma 3.6. If $uv \in W(X_{(\alpha, 0)})$ and $m \in S_t(X)$, then

- *i.* $d(v, m) \le \frac{1}{2}|u| + d(uv, m).$
- ii. $d(u, m) \leq \frac{1}{2}|v| + d(uv, m)$.

Proof. Let $d(v, m) = \frac{1}{2}(|v'| + |v''| + 2|m| + 2|m'|)$ and

$$d(uv, m) = \frac{1}{2}(|a| + |b| + 2|m| + 2|m'|)$$
(3)

for some $v', v'', a, b \in W(X_{([m], 0)})$. By definition, $|a| + |m| + |b| + |u| \ge |v'| + |m| + |v''|$ So $d(v, m) \le \frac{1}{2}(|a| + |b| + |u| + 2|m| + 2|m'|)$ and by (3), $d(v, m) \le \frac{1}{2}|u| + d(uv, m)$. Similar reasoning works for (ii). \Box

Lemma 3.7. labelaub

i. Let $m \in S_t(X)$ and $d(u, m) = \frac{1}{2}(|u'| + |u''| + 2|m| + 2|m'|)$. (a) If u' = a'a'', u'' = b'b'', then,

$$d(b''ua', m) = \frac{1}{2}(|b'| + |a''| + 2|m| + 2|m'|) \le d(u, m).$$

Figure 4: Distance of u and m when $um \in W(X_{(\alpha,0)})$.

(b) If $u' = \varepsilon$ and $u'' \neq \varepsilon$, then

$$d(u''umm', m) = |m| + |m'| = d(u, m) - \frac{1}{2}|u''|.$$

(c) If $u' \neq \varepsilon$ and $u'' = \varepsilon$, then

$$d(m'muu', m) = |m| + |m'| = d(u, m) - \frac{1}{2}|u'|.$$

(d) If
$$u' = u'' = \varepsilon$$
, then $d(m'mumm') = d(u, m) = |m| + |m'|$

ii. There are nonempty blocks a and b such that $d(aub, m) \leq d(u, m)$.

Proof. (a) Let C be a cycle containing b''ua' and m. It suffice to show that

$$|C| \ge |b''| + |u| + |a'| + |a''| + |m| + |b'|.$$

Let $\mathcal{L}(C) = b'' u a' w' m w''$. Then, by definition,

 $|a'| + |w'| + |m| + |w''| + |b''| \ge |u'| + |m| + |u''| = |a'| + |a''| + |m| + |b'| + |b''|$

and we are done.

(b) Let π_a be a path in Γ_α and labeled *a*. There is a finite path $\pi_{u''umm'}$ terminating at $i(\pi_m)$ and starting at $t(\pi_m)$, so (b) is trivial. See Figure 4.

Similar reasoning works for (c) and (d). The part of (ii) follows from (i). \Box

Proposition 3.8. Let $m \in S_t(X)$ and r > 0. Then,

$$N_{m,r} := N_r(m) \cup \{ u \subseteq v : v \in N_r(m) \}$$

is a languages of a shift space.

Proof. We prove the proposition by showing that if $u \in N_{m,r}$, then

i. every subblock of u belongs to $N_{m,r}$.

ii. there are nonempty blocks a and b in $N_{m,r}$ so that $aub \in N_{m,r}$.

Definition of $N_{m,r}$ implies that (i) is trivial. To prove (ii), let $u \in N_r(m)$. By Lemma ??, there are nonempty blocks a, b such that $d(aub, m) \leq d(u, m)$. So $aub \in N_r(m)$ and we are done. \Box Let $X_{(m,r)}$ be a shift space such that $N_{m,r}$ is its language. We can associate to $X_{(m,r)}$ an irreducible graph Γ_m . If $u \in N_r(m)$, then $d(u, m) = \frac{1}{2}(|u'| + |u''| + 2|m| + 2|m'|)$ for some $u', u'' \in W(X_{(\alpha,0)})$.

Let C_u be the cycle in Γ_α labeled uu'mu'' and passing through $w_+(m)$. Then, Γ_m consist of all C_u when d(u, m) < r. It is easy to see that $W(X_{(m,r)}) \subseteq W(\mathcal{L}(\Gamma_m))$. Now suppose π_u be a finite path in Γ_m labeled u. So there is a cycle C_v in Γ_m labeled vv'mv'' such that $u \subseteq vv'mv''$. Since $d(v''vv', m) = |m| + |m'| \leq d(v, m) < r$, thus $v''vv' \in N_r(m)$ and so $u \in N_{m,r}$ or $W(\mathcal{L}(\Gamma_m)) \subseteq W(X_{(m,r)})$. Thus $X_{(m,r)} = \mathcal{L}(\Gamma_m)$. Also by definition of Γ_m , it is a right resolving graph and follower separated. Which set over claim by ([9, page 3563]) and so Γ_m is Fischer cover of $X_{(m,r)}$.

Proposition 3.9. Let X be a shift space and $m \in S_t(X)$. Then, $X_{(m,r)}$ is a sofic.

Proof. Set $\alpha := [m]$ and $Z := X_{(\alpha, 0)}$. Let

$$\{(i, j) \in \mathbb{Z}^2 : i, j \ge 0 \text{ and } i+j < r-2|m|+2|m'|\} = \{(i_1, j_1), \dots, (i_k, j_k)\}$$

and for each $1 \leq l \leq k$ let $|\{u' \in W(Z) : u'm \in W(Z) \text{ and } |u'| = i_l\}| = n'_l$, $|\{u'' \in W(Z) : mu'' \in W(Z) \text{ and } |u'| = j_l\}| = n''_l$. Then, by the fact that if $u \in N_r(m)$ then |u'| + |u''| < r - 2|m| - 2|m'| for some $u', u'' \in W(X_{(\alpha,0)})$, so

$$|\{C_u: u \in N_r(m)\}| \le n'_1 n''_1 + \dots + n'_k n''_k.$$

Thus Γ_m is a finite graph or $X_{(m,r)}$ is a sofic. \Box

Remark 3.10. Note that as in half synchronized case in ([2]), we can define $X_{(m,r)}$. For this let X be a shift space. For $m, m' \in S_t(X)$ we write $m \sim' m'$ when there are $u \in W(R(X))$ such that $m, m' \subseteq \mathcal{L}(C_u)$. Then, \sim' is an equivalence relation in $S_t(X)$.

Corollary 3.11. *i. Every sofic shift is a bounded metric space.*

ii. Let X be an irreducible bounded metric space and $m \in S_t(X)$. Then, there is r > 0 such that $X = X_{(\alpha,0)} = X_{(m,r)}$.

Proof. (i) Let X be a sofic and $m \in S_t(X)$. There is a cycle C in X_0^+ such that for any $I \in \mathcal{V}_{X_0^+}$, C passing through I. Let length of C be M and $u \in W(X) = W(X_{(\alpha,0)})$ where $\alpha = [m]$. Then, $|u'|, |u''|, |m'| \leq M$. So d(u, m) < 4|M| + |m| or $u \in N_r(m)$ where r := 4|M| + |m|. So $X \subseteq N_r(m)$.

(ii) There is r > 0 such that $X \subseteq N_r(m)$. Thus $W(X) \subseteq W(X_{(m,r)}) \subseteq W(X_{(\alpha,0)})$ and since $W(X_{(\alpha,0)}) \subseteq W(X)$, so $X = X_{(\alpha,0)} = X_{(m,r)}$. Note that $X_{(\alpha,0)}$ is clearly a subshift of R(X), but generally not closed. see Example 3.3.

Corollary 3.12. Let $m \in S_t(X)$ and every cycle in Γ_m containing m. Then, X is a sofic if and only if X is an SFT.

Proof. Let X be a sofic system. So there is r > 0 such that $X = X_{(m,r)}$. Similar to Proposition 3.9, there is $k \in \mathbb{N}$ such that

$$\{C_u: u \in W(X_{(m,r)})\} := \{C_{u_1}, C_{u_2}, \dots, C_{u_k}\}.$$

Set $M := \max\{|C_{u_1}|, |C_{u_2}|, \ldots, |C_{u_k}|\}$ and let $u \in W(X_{(m,r)})$ where $|u| \geq 2M$. By definition of Γ_m , there must be at least one $m \subseteq u$ and such u is essentially synchronizing. As a result, any block of length 2M in $W(X_{(m,r)})$ is a synchronizing block and so $X = X_{(m,r)}$ is an SFT ([6, Theorem 2.1.8]). \Box The conclusion of Corollary 3.12 is not true when there is a cycle in Γ_m labeled m.

Thomsen in ([9]) considers a synchronized component X of a general subshift and proves that

 $\sup\{h(A): A \subseteq X \text{ is an irreducible SFT}\} = h(X_0^+) = h_{syn}(X).$ (4)

This was extended to half synchronized component in ([6]) by showing that

 $\sup\{h(A): A \subseteq X \text{ is an irreducible sofic}\} = h(X_0^+) = h_{hsyn}(X).$

Now we will introduce this notion to strong synchronized.

Recall that if $m \in S_t(X)$, $\alpha := [m]$ and $u \in W(X)$, then C_u is a cycle in Γ_{α} labeled uu'mu'' and passing through $w_+(m)$.

Figure 5: The subgraph of Γ_m .

Proposition 3.13. Let $m \in S_t(X)$. Set $\alpha := [m], Z := X_{(\alpha, 0)}$. Set

$$\{C_u : u \in W(Z)\} := \{C_{u_1}, C_{u_2}, \cdots\}$$

and

$$A_{(m,1)} := X(C_{u_1}), A_{(m,2)} := X(C_{u_1} \cup C_{u_2}), \dots$$

- Then, $\overline{X_{(\alpha,0)}} = \overline{\bigcup_{n \in \mathbb{N}} A_{(m,n)}}$ and
 - i. Every $A_{(m,n)}$ is a sofic.
 - *ii.* $\lim_{n\to\infty} h(A_{(m,n)}) = h(\Gamma_{\alpha}).$

Proof. By the fact that for each $n \in \mathbb{N}$, $C_{u_1} \cup \ldots \cup C_{u_n}$ is a finite graph, (i) is trivial.

For (*ii*), let $\epsilon > 0$. So there is $n \ge 1$ such that

$$h(\Gamma_{\alpha}) - \epsilon < \frac{1}{n} \log |\{C : C \text{ is a cycle in } \Gamma_{\alpha} \text{ passing through } t(\pi_m), |C| = n\}|.$$

Let $\{C : C \text{ is a cycle in } \Gamma_{\alpha} \text{ passing through } t(\pi_m), |C| = n\} = \{C_1, \ldots, C_N\}.$ For each $1 \leq i \leq N$, set $v_i := \mathcal{L}(C_i)m'$ Figure 6. So there is a cycle C'_i in Γ_{α} labeled $\mathcal{L}(C_i)m'm$ and so $C'_i = C_{u_{j_i}}$ for some $j_i \in \mathbb{N}$. Thus $C_1 \cup C_2 \cup \cdots \cup C_N \subseteq \Gamma_{(m,t)}$ where $t := \max\{j_1, j_2, \ldots, j_N\}$. Thus

 $N \leq |\{C : C \text{ is a cycle in } \Gamma_{(m,t)} \text{ passing through } t(\pi_m), |C| = n\}|$

and so $h(\Gamma_{\alpha}) - \epsilon < h(A_{(m,t)})$. Hence $h(\Gamma_{\alpha}) < \lim h(A_{(m,n)})$ and we are done. \Box Let G be generating graph for a subshift $X \subseteq \mathcal{A}^{\mathbb{Z}}$. Fix $\{a_1, a_2 \ldots, a_r\} \subseteq \mathcal{A}$ and $\{u_1, u_2, \ldots, u_r\} \subseteq W(X)$. We construct a new graph from G denoted by $G_{u_i \hookrightarrow a_i}$ by replacing u_i for a_i whenever there is a path in G labeled a_i for all $1 \leq i \leq r$.

Figure 6: The graph G.

Proposition 3.14. Let $\mathcal{A} = \{a_1, a_2, \ldots, a_r\}$ and X_0^+ be the Fischer cover of $\mathcal{A}^{\mathbb{Z}}$ at the base point I_0 . Pick $\{u_1, u_2, \ldots, u_r\} \subseteq W(X)$ such that for each $1 \leq i \leq r$,

 $u_i \notin \{u : u \text{ is a finite concatenation of } \{u_j : 1 \leq j \leq r \text{ and } j \neq i\}\}.$

For each $N \in \mathbb{N}$, set

$$\mathcal{N} := \{ (n_1, n_2, \dots, n_r) \in (\mathbb{N} \cup \{0\})^r : k_1 n_1 + k_2 n_2 + \dots + k_r n_r = N \}$$

where $k_i := |u_i|$. Then,

$$h((X_0^+)_{u_i \hookrightarrow a_i}) = \lim_{N \to \infty} \frac{1}{N} \log \Sigma_{(n_1, n_2, \dots, n_r) \in \mathcal{N}} \binom{n}{n_1} \binom{n-n_1}{n_2} \cdots \binom{n-n_1-\dots-n_{r-1}}{n_r}$$

where $n = n_1 + n_2 + \dots + n_r$.

Proof. For each $1 \leq i \leq r$, there is exactly one cycle labeled u_i . So

$$\Sigma_{(n_1, n_2, \dots, n_r) \in \mathcal{N}} \binom{n}{n_1} \binom{n - n_1}{n_2} \cdots \binom{n - n_1 - \dots - n_{r-1}}{n_r}$$

is the number of cycles of length N based at I_0 and we are done. \Box

Corollary 3.15. Let $m \in S_t(X)$. For each $u \in W(X_{(\alpha,0)})$, set $k_i := |u_i u'_i m u''_i|$. If all $A_{(m,n)}$ is an SFT, then

$$h(\Gamma_{\alpha}) = \lim_{N \to \infty} \frac{1}{N} \log \Sigma_{(n_1, n_2, \dots, n_r) \in \mathcal{N}} \binom{n}{n_1} \binom{n-n_1}{n_2} \cdots \binom{n-n_1-\dots-n_{r-1}}{n_r}.$$

For instance let X be the golden mean shift that formed of $\{0, 1\}^{\mathbb{Z}}$ by replacing 00 instead 0. Then, $h(X) = \lim_{N \to \infty} \frac{1}{N} \log \sum_{n+2m=N} {n+m \choose n}$.

4 Strong Synchronized Derived

Suppose $\alpha \in S(X) / \sim$. Let $X_{(\alpha_s, 0)}$ denote the set of elements $x \in X_{(\alpha, 0)}$ satisfying the following.

- i. If $i \in \mathbb{Z}$, then there are $m, m' \in \alpha \cap S_t(X)$ such that $m \subseteq x_{(-\infty,i]}, m' \subseteq x_{[i,+\infty)}$.
- ii. There is M > 0 such that if u and v are the consecutive minimal pairs of $\alpha \cap S_t(X)$ in x, then $gap(u, v) \leq M$.

 $\frac{X_{(\alpha_s,0)}}{X_{(\alpha_s,0)}} = \overline{X_{(\alpha,0)}}$ and $X_{(\alpha,0)}$, but generally not closed. Clearly

$$X_{(\alpha_s,0)} \subseteq X_{(\alpha,0)}.\tag{5}$$

The next example shows that the inclusion in (5) is not equality.

Example 4.1. In the golden mean shift X, $X = X_{(\alpha,0)}$ and $X_{(\alpha,0)} - X_{(\alpha_s,0)} = \{0^{\infty}\}$.

If X is a synchronized (resp. strong synchronized) system, then there is exactly one $\alpha \in S(X)/\sim$ such that $\overline{X_{(\alpha,0)}} = X$ (resp. $\overline{X_{(\alpha_s,0)}} = X$) ([9, Lemma 3.5]) and call it the top component (resp. top strong component).

Let X be a shift space and $\alpha \in S(X)/\sim$. Suppose $(\overline{X_{(\alpha,0)}})_c$ be the top component of the synchronized system $\overline{X_{(\alpha,0)}}$. Thomsen in ([9]) prove that

$$X_{(\alpha,0)} \subseteq (\overline{X_{(\alpha,0)}})_c. \tag{6}$$

The next Proposition shows that for strong synchronized systems the inclusion in (6) is equality.

Proposition 4.2. Let X be a shift space and $\alpha \in S(X)/\sim$. Suppose $(\overline{X_{(\alpha_s,0)}})_c$ be the strong top component of the strong synchronized system $\overline{X_{(\alpha_s,0)}}$. Then, $X_{(\alpha_s,0)} = (\overline{X_{(\alpha_s,0)}})_c$.

Proof. By definition 3.2, $S_t(\overline{X_{(\alpha,0)}}) \subseteq S_t(X)$ and so $X_{(\alpha_s,0)} = (\overline{X_{(\alpha_s,0)}})_c$. \Box

Let X be an strong synchronized system. We set

$$\partial_{\mathbf{s}} X = \{ x \in X \mid u \subseteq x \Rightarrow u \notin S_t(X) \}.$$

and call it the strong derived shift space of X. Since $\partial_s X$ is a shift space we can continue, and consider $\partial_s(\partial_s X) = \partial_s^2 X$, $\partial_s(\partial_s^2 X) = \partial_s^3 X$, etc. Of course, it can happen that these constructions give nothing interesting; it can be that there are no synchronizing blocks for X, in which case $\partial_s X = X$. For convenience we set $\partial_s^0 X = X$. We define the strong depth of X to be

$$Depth_s(X) = \sup\{n \in \mathbb{N} : \partial_s^n X \neq \emptyset\}.$$

Thus a minimal shift space with infinitely many points as well as an SFT have depth 0, but for different reasons.

Example 4.3. i. In example 3.3, $\partial_s S = S$ and $\partial S = X$.

- ii. Let Y be a sofic. Then, by 3.4 $\partial_s Y = \partial Y$ and so by ([9, Theorem 6.6]), $\partial_s Y$ is sofic.
- iii. Suppose Z be synchronized system. Then, by ([8, Theorem 6.16]), $h(Z) = \max\{h(X_0^+), h(\partial_s Z)\}.$

Proposition 4.4. If $m \in S(X)$ and $m \notin S_t(X)$, then m is a synchronizing block of $\partial_s X$.

Proof. Let $am, mb \in W(\partial_s X)$. So there are $x, y \in \partial_s X$ such that $am = x_{[i,0]}$ and $mb = y_{(0,j]}$ for some $i, j \in \mathbb{Z}$. Since $m \in S(X)$, so $x_{(-\infty,i)}amby_{(j,+\infty)} \in X$. It suffice to show that

$$S_t(X) \cap \{x_{[i_0, j_0]}: i_0 \le 0, j_0 > 0\} = \emptyset.$$

Pick $i_0 \leq 0$ and $j_0 > 0$. There is unique vertex I of Fischer cover $\Gamma_{[m]}$ with this properties $m \in F_{-}(I)$ and $w_{+}(I) = w_{+}(m)$. Since $x_{[i_0,0]} \notin S_t(X)$, so there are two finite paths in $\Gamma_{[m]}$ labeled $x_{[i_0,0]}$ and terminating at I and so $x_{[i_0,j_0]} \notin S_t(X)$. \Box The next example shows that there are systems X such that $m \in S(X) - S_t(X)$ which may not be a synchronized.

Example 4.5. Let G be the graph in Figure 7 and X = X(G). Then, $\partial_s X = \{0^{\infty}, 1^{\infty}\}.$

Figure 7: The graph G.

References

- F. Blanchard and G. Hansel, Systèmes codès, Comp. Sci. 44 (1986), 17-49.
- [2] D. Fiebig and U. Fiebig, Covers for coded systems, Contemporary Mathematics 135 (1992), 139-179.
- [3] K. Johnson, Beta-Shift Dynamical Systems and Their Associated Languages, PhD Thesis, The University of North Carolina at Chapel Hill, 1999.
- [4] U. Jung, On the existence of open and bi-continuous codes, Trans. Amer. Math. Soc. 363 (2011), 1399-1417.
- [5] A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Cambridge Univ. Press, Cambridge, 1995.
- [6] D. Lind and B. Marcus, An Introduction to Symbolic Dynamics and Coding, Cambridge Univ. Press. 1995.
- [7] T. Meyerovitvh, Tail Invariant Measures of the Dyck-Shift and Non-Sofic Systems, MSc Thesis, Tel-Aviv University, 2004.
- [8] K. Thomsen, On the ergodic theory of synchronized systems, Ergod. Th. Dynam. Sys. 356 (2006), 1235-1256.
- [9] K. Thomsen, On the structure of a sofic shift space, American Mathematical society **356**(9), 3557-3619.

Manouchehr Shahamat

Assistant Professor of Mathematics Department of Mathematics, Dezful Branch, Islamic Azad University, Dezful, Iran. Dezful, Iran. E-mail: m.shahamat@iaud.ac.ir