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Abstract.Consider the triple (M, g, dµ) as a smooth metric measure
space andM is an n-dimensional compact Riemannian manifold without
boundary, also dµ = e−f(x)dV is a weighted measure. We are going to
investigate the evolution problem for the first eigenvalue of the weighted
(p, q)-Laplacian system along the rescaled Yamabe flow and we hope find
some monotonic quantities.
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1 Introduction

Consider (M, g) as a compact n-dimensional manifold without boundary,
the Yamabe problem which was studied first by Yamabe in [18], is to find
a metric g conformal to g0 such that it’s scalar curvature Rg is constant.
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2 S. AZAMI AND M. HABIBI

Generally two metrics g and g0 were called conformal if g = e−2ug0
where u is positive and smooth function in M . In special case if we
write g = u 4

n−2
g0, then the scalar curvature Rg of g can be written as

Rg = u−
n+2
n−2 ∆g0u+Rg0u. (1)

Therefore, the Yamabe problem is to solve (1) such that Rg is constant.
The above equation solved by Trudinger [16], Aubin [2], and Schoen [14].
Yamabe flow was introduced by Hamilton in [6] for the first time. The
Yamabe flow defined as the evolution of the metric g = g(t)

∂

∂t
gij = −Rgij , g(0) = g0 (2)

and normalized Yamabe flow was also defined as well as

∂

∂t
gij = − (R− r) gij , g(0) = g0 (3)

where R is the scalar curvature. Also r =
∫
M RdV∫
M dV

is the average of the

scalar curvature of the Riemannian metric g.
First of all, Schwetlick and Struwe in [15] proved the convergence of the
Yamabe flow for the case when 3 ≤ n ≤ 5 with the assumption that the
initial metric has large energy. Finally Brandle in [4] has shown that the
Yamabe flow convergence to a metric with constant scalar curvature.
In this paper, we are going to try to find some evolution equations
and some monotonic quantities of rescaled Yamabe flow, coupled with
harmonic flow which is defined as{ ∂

∂tgij = − (R− s(t)) gij g|t=t0 = g0,
∂f
∂t = ∆f, f(0, x) = f0(x),

(4)

where s(t) is constant only depended on time variable t, easily we can
see the system (4) in different cases gives us systems (2) or (3).
It has been known before that there is a one-to-one relationship between
Yamabe flow (2), and rescaled Yamabe flow (4), in which if we consider
g(t) as a solution for the flow (2) on [0, T ) such that T is the maximum
value of t where the flow has solution on [0, t), then we can find the
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function ψ(t) as

ψ(t) =

(
1−

∫ t

0
s(ν)dν

)−1
,

and also t̄ =
∫ t
0 ψ(ν)dν. In this case ḡ(t̄) = ψ(t)g(t) will be the solution

for the rescaled Yamabe flow (4).
Let u : M −→ R , u ∈ W 1,p

0 (M) where W 1,p
0 (M) is Sobolev space, for

p ∈ [1,∞) we have seen before the introduction of p-Laplacian of u as
below

∆pu = div(|∇u|p−2∇u) = |∇u|p−2∆u+(p−2)|∇u|p−4(Hess u)(∇u,∇u),

where

(Hess u)(X,Y ) = ∇(∇u)(X,Y ) = X.(Y.u)−(∇XY ).u, X, Y ∈ χ(M).

Also weighted p-Laplacian can be introduced as

∆p,fu = efdiv
(
e−f |∇u|p−2∇u

)
= ∆pu− |∇u|p−2∇f.∇u,

where p ∈ [1,∞) and u is any smooth function on M .
Now consider (Mn, g) as a closed Riemannian manifold we are going to
define weighted (p, q)-Laplacian system as

∆p,fu = −λ|u|α|v|βv in M ,
∆q,fv = −λ|u|α|v|βu in M ,
u = v = 0 on ∂M,

(5)

where p > 1 , q > 1 and α, β are real numbers such that

α > 0, β > 0,
α+ 1

p
+
β + 1

q
= 1.

In this case λ is an eigenvalue of such system. Also the existence and
uniqueness of solution of the system (5) was studied in [19] expansively.
A first positive eigenvalue of a system (5) is defined as

inf{A(u, v) : (u, v) ∈W 1,p
0 (M)×W 1,q

0 (M), B(u, v) = 1},
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where the pair of (u, v) is the eigenfunctions corresponding to eigenvalue
λ and

A(u, v) =
α+ 1

p

∫
M
|∇u|pdµ+

β + 1

q

∫
M
|∇v|qdµ,

B(u, v) =

∫
M
|u|α|v|βuvdµ,

where dµ = e−fdV . The lemma below gives us the continuousness of
A(u, v, t) in C1-topology which has been mentioned before.

Lemma 1.1. If g1 and g2 are two metrics on Riemannian manifold Mn

which satisfy (1 + ε)−1 < g2 < (1 + ε)g1 then for any p ≥ q > 1, we have

λ(g2)− λ(g1) ≤
(

(1 + ε)
p+n
2 − (1 + ε)−

n
2

)
λ(g1),

which means, λ(t) is a continues function respect to t-variable.

Proof. In local coordinate we have dv =
√
detgdx1 ∧ ...∧ dxn, therefore

(1 + ε)−
n
2 dµg1 < dµg2 < (1 + ε)

n
2 dµg1 .

Assume that

G(g, u, v) =
α+ 1

p

∫
M
|∇u|pgdµg +

β + 1

q

∫
M
|∇v|qgdµg,

then it implies∫
M
|u|α|v|βuvdµg1G(g2, u, v)−

∫
M
|u|α|v|βuvdµg2G(g1, u, v)

=
α+ 1

p

∫
M
|u|α|v|βuvdµg1

(∫
M
|∇u|pg2dµg2 −

∫
M
|∇u|pg1dµg1

)
+
α+ 1

p

(∫
M
|u|α|v|βuvdµg1 −

∫
M
|u|α|v|βuvdµg2

)∫
M
|∇u|pg1dµg1

+
β + 1

q

∫
M
|u|α|v|βuvdµg1

(∫
M
|∇v|qg2dµg2 −

∫
M
|∇v|qg1dµg1

)
+
β + 1

q

(∫
M
|u|α|v|βuvdµg1 −

∫
M
|u|α|v|βuvdµg2

)∫
M
|∇v|qg1dµg1 ,
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then by applying the lemma’s assumption we get∫
M
|u|α|v|βuvdµg1G(g2, u, v)−

∫
M
|u|α|v|βuvdµg2G(g1, u, v)

≤ α+ 1

p

(
(1 + ε)

p+n
2 − (1 + ε)−

n
2

)∫
M
|u|α|v|βuvdµg1

∫
M
|∇u|pg1dµg1

+
β + 1

q

(
(1 + ε)

q+n
2 − (1 + ε)−

n
2

)∫
M
|u|α|v|βuvdµg1

∫
M
|∇v|qg1dµg1

≤
(

(1 + ε)
p+n
2 − (1 + ε)−

n
2

)
G(g1, u, v)

∫
M
|u|α|v|βuvdµg1 .

Since the eigenfunctions corresponding to λ(t) are normalized, then we
have

λ(g2)− λ(g1) ≤
(

(1 + ε)
p+n
2 − (1 + ε)−

n
2

)
λ(g1).

�
In case which is not assumed that λ(t) is C1-differentiable under (4) in
the interval [0, T ), the first non-zero eigenvalue of weighted
(p, q)-Laplacian system is not known to be C1-differentiable anymore.
For this problem we are going to apply techniques of Cao [5] and Wu
[17] to study the evolution and monotonicity of λ(t), where u and v are
supposed to be smooth.
Consider (Mn, g(t)) as a solution of the rescaled Yamabe flow on the
smooth manifold (Mn, g0) in the interval [0, T ) then A(u, v) defines the
evolution of an eigenvalue of the system (5), under the variation of g(t)
where for the eigenfunctions associated to λ(t) we have∫

M
|u|α|v|βuvdµ = 1,

∫
M
|u|α|v|βudµ = 0, (6)∫

M
|u|α|v|βvdµ = 0.

First of all, let t0 ∈ [0, T ), (u0, v0) = (u(t0), v(t0)) be the eigenfunctions
for the eigenvalue λ(t0) of weighted (p, q)-Laplacian system (5). We
consider the smooth functions as below

h(t) = u0

[ det[gij(t)]
det[gij(t0)]

] 1
2(α+β+1)

, l(t) = v0

[ det[gij(t)]
det[gij(t0)]

] 1
2(α+β+1)

,
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along the rescaled Yamabe flow. Now let

u(t) =
h(t)(∫

M |h(t)|α|l(t)|βh(t)l(t)dµ
) 1
p

,

and

v(t) =
l(t)(∫

M |h(t)|α|l(t)|βh(t)l(t)dµ
) 1
q

.

Where u(t) and v(t) are smooth functions under the rescaled Yamabe
flow and also satisfy in (6), and at time t0, (u(t0), v(t0)) is the eigenfunc-
tions for λ(t0) of weighted (p, q)-Laplacian system (5),
λ(t0) = A(u(t0), v(t0)) and if (Mn, g(t), f) be a solution of the (4) on
the smooth manifold (Mn, g0, f0) in the interval [0, T ) then we can write
the smooth eigenvalue function λ(u, v, t) along the flow (4) as below

λ(u, v, t) =
α+ 1

p

∫
M
|∇u|pdµ+

β + 1

q

∫
M
|∇v|qdµ, (7)

where

λ(u, v, t)|t=t0 = λ(t0).

In recent years, studying the evolution equations under geometric flows
became a hot topic in understanding the geometry of manifolds. Perel-
man in [11], studying the functional:

F (g(t), f(t)) =

∫
M

(
R+ |∇f |2

)
e−fdV,

and showed that this functional is non-decreasing along the Ricci flow
coupled to a backward heat-type equation. There are some other works
in variational formulas. Second author in [3] has studied the eigenvalues
problem of p-Laplace operator acting on the space of functions under
the Yamabe flow, also P. Ho in [7] studied the first non-zero eigenvalue
of Laplacian of g0 with negative scalar curvature in terms of conformal
Yamabe metrics, also he has worked on some other geometric operators
in case of compact Riemannian manifolds. Some other works have done
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on evolution of eigenvalues of geometric operators along geometric flows
[1, 8, 10].

In this article we investigate the evolution problem for the weighted
(p, q)-Laplacian system under the rescaled Yamabe flow (4) and our main
results will be classify as below

Theorem 1.2. Consider
(
M, g(t), f(t), dµ = e−fdV

)
, t ∈ [0, T ) as a

solution of the flow (4) on the smooth compact Riemannian manifold
(Mn, g0, f0) without boundary, and s(t) > 0 is scalar function and also
∆f − γR ≤ 0, R ≥ 0 in M × [0, T ). Suppose that λ(t) denotes the
evolution the first non-zero eigenvalue of the weighted (p, q)-Laplacian
system then for p ≤ q the quantity

λ(t)

(∫ t

0
−ρ(ν)dν +

1

Rmin(0)

) p−2γ
2

e
q
2

∫ t
0 s(ν)dν ,

is increasing along the flow (4) where ρ(t) = e
∫ t
0 −s(ν)dν , γ < p−2

2 is
constant and also τ is constant which is equal to 1

Rmin(0)
.

Theorem 1.3. Consider (M, g0) as a compact Riemannian manifold
of dimension n ≥ 3 without boundary in a case that max

M
Rg0 < 0, and

gt, t ∈ [0, T ) is a Yamabe metric which has same volume as g0. If
we denote the first eigenvalue of weighted (p, q)-Laplacian system under
the flow (4) with s(t) = r, respect to g0 and gt by λ1(g0) and λ1(gt),
respectively, then we have

e−cλ1(gt) ≥ λ1(g0) ≥ ecλ1(gt),

where

c = (2n+ 2p− 2r)
[
1−

min
M

Rg0

max
M

Rg0

]
− r.

Theorem 1.4. Let
(
M2, g(t), f(t), dµ

)
, t ∈ (0, T ), be a solution of

(4) on the smooth compact surface
(
M2, g0, f0

)
without boundary also

we assume that p ≥ q. If λ(t) denotes the evolution of the first eigenvalue
of the weighted (p, q)-Laplacian system under the flow (4) with s(t) = r,
then
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� If R < 0 and ∆f − γR ≤ 0 where γ < q−n
2 then

ln (λ(t))−
(
p− q

2
− γ
)
rt+

c

r

(p
2
− γ
)
ert,

is inceasing.

� If R < 0 and ∆f − γR ≥ 0 where γ < q−n
2 then

ln (λ(t)) + γrt−
(q

2
− γ
) c
r
ert,

is decreasing.

� If R > 0 and ∆f − γR ≤ 0 where γ < q−n
2 then

ln (λ(t)) +
r

2
pt+

c

r

(q
2
− γ
)
ert,

is increasing.

� If R > 0 and ∆f − γR ≥ 0 where γ < q−n
2 then

ln (λ(t))−
(
p− q

2
− γ
)
rt−

(p
2
− γ
) c
r
ert,

is decreasing,

where c is constant and r =
∫
M RdV∫
M dV

is the average of the scalar curvature.

In other sections we may add some more assumptions for more de-
tails.

2 Variation of λ(t)

In this section we are going to give some useful formulas of variation of
λ(t) along rescaled Yamabe flow. We start with the below proposition.
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Proposition 2.1. Let (Mn, g(t), f(t)) be a solution of the (4) on the
smooth closed manifold (Mn, g0, f0). If λ(t) denotes the evolution of the
first non-zero eigenvalue under the flow (4), then we have

d

dt
λ(u, v, t)|t=t0 =

n

2
λ(t0)

∫
M
R|u|α|v|βuvdµ

+
(α+ 1)

2

∫
M

(R− s(t))|∇u|pdµ

+
(β + 1)

2

∫
M

(R− s(t))|∇v|qdµ

− α+ 1

p

∫
M
|∇u|p

[
∆f +

1

2
nR
]
dµ

− β + 1

q

∫
M
|∇v|q

[
∆f +

1

2
nR
]
dµ.

Proof. From what we explained before, λ(u, v, t) is differentiable along
the flow (4) then by derivation from the formula (7) respect to time
variable t, it satisfies

d

dt
λ(u, v, t)|t=t0 =

α+ 1

2

[ ∫
M

{
− gijgjk ∂

∂t
(glk)∇iu∇ju (8)

+ 2 < ∇ut,∇u >
}
|∇u|p−2dµ

]
+
β + 1

2

[ ∫
M

{
− gijgjk ∂

∂t
(glk)∇iv∇jv

+ 2 < ∇vt,∇v >
}
|∇v|q−2dµ

]
+
α+ 1

p

∫
M
|∇u|p[−ftdµ+

1

2
trg(

∂g

∂t
)dµ]

+
α+ 1

q

∫
M
|∇v|q[−ftdµ+

1

2
trg(

∂g

∂t
)dµ],



10 S. AZAMI AND M. HABIBI

where ut = ∂u
∂t and ft = ∆f . We can also calculate the term∫

M < ∇ut,∇u > |∇u|p−2dµ as below

∫
M
< ∇ut,∇u > |∇u|p−2dµ = −

∫
M
utdiv

(
e−f |∇u|p−2∇u

)
dV,

= −
∫
M
ute

fdiv
(
e−f |∇u|p−2∇u

)
dµ

= −
∫
M
ut∆p,fudµ

= −
∫
M
ut

(
−λ|u|α|v|βvdµ

)
= λ

∫
M
|u|α|v|βutvdµ.

Similarly we can also calculate∫
M
< ∇vt,∇v > |∇v|q−2dµ = λ

∫
M
|u|α|v|βuvtdµ.

It has been known with
∫
M |u|

α|v|βuvdµ = 1, by derivation from both
sides of this equation respect to time variable t, we can see that∫

M
[(α+ 1)|u|α|v|βutv + (β + 1)|u|α|v|βuvt]dµ

+

∫
M
|u|α|v|βuv1

2
trg(−(R− s)gij)dµ = 0,

which finally implies that

(α+ 1)

∫
M
< ∇ut,∇u > |∇u|p−2dµ (9)

+ (β + 1)

∫
M
< ∇vt,∇v > |∇v|q−2dµ

=
n

2
λ

∫
M
|u|α|v|βuv(R− s)dµ.
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Now by plugging the flow (4), into the formula (8), we have

d

dt
λ(u, v, t) = (α+ 1)

∫
M
< ∇ut,∇u > |∇u|p−2dµ

+ (β + 1)

∫
M
< ∇vt,∇v > |∇v|q−2dµ

+
(α+ 1)

2

∫
M

(R− s(t))|∇u|pdµ

+
(β + 1)

2

∫
M

(R− s(t))|∇v|qdµ

+
α+ 1

p

∫
M
|∇u|p

[
−∆f − 1

2
nR
]
dµ

+
β + 1

q

∫
M
|∇v|q

[
−∆f − 1

2
nR
]
dµ+

1

2
ns(t)λ(t).

which by replacing the equality (9), into above equation implies what
we looking for. �

Remark 2.2. In special case if we consider s(t) = r where r =
∫
M RdV∫
M dV

,

it gives us the evolution formula under the normalized Yamabe flow (3),
as below

d

dt
λ(u, v, t)|t=t0 =

n

2
λ(t0)

∫
M
R|u|α|v|βuvdµ

+
(α+ 1)

2

∫
M

(R− r)|∇u|pdµ

+
(β + 1)

2

∫
M

(R− r)|∇v|qdµ

+
α+ 1

p

∫
M
|∇u|p

[
−∆f − 1

2
nR
]
dµ

+
β + 1

q

∫
M
|∇v|q

[
−∆f − 1

2
nR
]
dµ.

Now we are going to give the proof of theorem 1.2 as
Proof.(Theorem 1.2) Under consideration ∆f − γR ≤ 0 where
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γ < p−n
2 , we have

d

dt
λ(u, v, t)|t=t0 ≥

n

2
λ(t0)

∫
M
R|u|α|v|βuvdµ (10)

+
(α+ 1)

p

(p
2
−
(
γ +

n

2

))∫
M
R|∇u|pdµ

+
(β + 1)

q

(q
2
−
(
γ +

n

2

))∫
M
R|∇v|qdµ

− q

2
s(t0)λ(t0).

Also the evolution of R under the flow (4) is written as

∂

∂t
R = (n− 1)∆R+R2 −Rs(t). (11)

Since the solution to the ODE, dy
dt = y2 − s(t)y is

y(t) =
ρ(t)∫ t

0 −ρ(ν)dν + τ
,

where ρ(t) = e
∫ t
0 −s(ν)dν , y(0) = Rmin(0) and τ is a constant equal to

1
Rmin(0)

, then by maximum principle to (11), we get R(x, t) ≥ y(t), then

by (10) and p ≤ q we have

d

dt
λ(u, v, t)|t=t0 ≥ λ(u, v, t0)

(
p− 2γ

2
y(t0)−

qs(t0)

2

)
,

which implies that in any sufficiently small neighborhood of t0 as I, we
get

d

dt
λ(u, v, t) ≥ λ(u, v, t)

(
p− 2γ

2
y(t)− qs(t)

2

)
,

and also we have

λ(u, v, t0) = λ(t0), λ(u, v, t1) ≥ λ(t1). (12)

On the other hand, by integration from both sides on [t1, t0], it can be
easily seen

ln
λ(t0)

λ(t1)
≥ η(t1)

η(t0)
,
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where

η(t) =

(∫ t

0
−ρ(ν)dν +

1

Rmin(0)

) p−2γ
2

e
q
2

∫ t
0 s(ν)dν .

Now since t1 < t0 and t0 is arbitrary thus the quantity

λ(t)

(∫ t

0
−ρ(ν)dν +

1

Rmin(0)

) p−2γ
2

e
q
2

∫ t
0 s(ν)dν ,

is increasing. �
And now, we prove the Theorem 1.3.
Proof.(Theorem 1.3) It was known that if g −→ g∞ as t −→ ∞
under the Yamabe flow (3), in a case that g∞ is conformal to g0 and has
constant negative scalar curvature, then we have

d

dt

(∫
M
dVg

)
=

∫
M

∂

∂t
(dVg) = −n

2

∫
M

(Rg − rg) dVg = 0,

in particular ∫
M
dVg∞ =

∫
M
dVg0 .

On the other hand, Rgt = ζ
4

n−2Rg∞ where we can take ζ to be
(
Rgt
Rg∞

)n−2
4

.

This implies that the metric ζ
4

n−2 gt has scalar curvature being equal to

R
ζ

4
n−2 gt

= ζ−
4

n−2Rgt = Rg∞ .

By what proved in [9], which says that if g1 and g2 are two metrics
conformal to g0 such that Rg1 = Rg2 < 0, then g1 = g2. Therefore by
what mention above we have∫

M
dVg0 =

∫
M
dVg∞ =

∫
M
dV

ζ
2n
n−2 gt

= ζ
2n
n−2

∫
M
dVgt = ζ

2n
n−2

∫
M
dVg0 ,

where by assumption above this implies that ζ = 1 or equivalently
gt = g∞. Note that by [7], we obtain

min
M

Rg0 ≤ rg(t) ≤ max
M

Rg0 t ≥ 0.
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Also by process of the proof of theorem 1.1, in [7], we conclude that(
max
M

Rg0

)∫ s

0

(
max
M

Rg(ν) − rg(s)
)
dν

≥
(
rg(t) − rg0

)
−
(

max
M

Rg0 −min
M

Rg0

)
≥ −2

(
max
M

Rg0 −min
M

Rg0

)
.

As t −→∞, by what we mention above g(t) −→ g∞, we get

−2

1−
min
M

Rg0

max
M

Rg0

 ≥ ∫ ∞
0

(
max
M

Rg(ν) − rg(ν)
)
dν.

Similarly

2

1−
min
M

Rg0

max
M

Rg0

 ≤ ∫ ∞
0

(
min
M

Rg(ν) − rg(ν)
)
dν.

Now by above results and proposition 2.1, we finally obtain

ln
λ1(gt)

λ1(g0)
= ln

λ1(g∞)

λ1(g0)
≥ (2n+ 2p− 2s)

[
1−

min
M

Rg0

max
M

Rg0

]
− s.

The inverse inequality holds in a similar way, so we prove what we were
looking for. �

2.1 Variation of λ(t) under the normalized Yamabe flow
on the surface

In this section we are going to give the proof of Theorem 1.4.
Proof.(Theorem 1.4) We only give a proof for first section of theorem
1.4, the other sections follow similar process. First of all, we have to
mention that if

(
M2, g(t), f(t), dµ

)
denotes the solution of the flow (4)

with s(t) = r, on the smooth Riemannian compact surface, then we can
find some bounds for the scalar curvature tensor R as below
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� r < 0; r − cert ≤ R ≤ r + cert,

� r = 0; − c
1+ct ≤ R ≤ c,

� r > 0; −cert ≤ R ≤ r + cert,

where c is constant and r is as similar as we found in the normalized
Yamabe flow (3).
Now under ∆f ≤ γR, R < 0, and p ≥ q, we have

d

dt
λ(u, v, t)|t=t0 ≥ λ(t0)

(
r

(
p− q

2
− γ
)
− cert0

(p
2
− γ
))

,

which implies that in any sufficient small neighborhood of t0 as I =
[t1, t0] we have

λ(u, v, t0) = λ(t0), λ(u, v, t1) ≥ λ(t1),

where implies that

ln (λ(t0))−
(
p− q

2
− γ
)
rt0 +

c

r

(p
2
− γ
)
ert0

≥ ln (λ(t1))−
(
p− q

2
− γ
)
rt1

+
c

r

(p
2
− γ
)
ert1 ,

which means

ln (λ(t))−
(
p− q

2
− γ
)
rt+

c

r

(p
2
− γ
)
ert,

is increasing. �

3 Homogeneous 3-manifolds

Locally homogeneous 3-manifolds have been contained into 9 classes
which are divided in two groups. The first is contained H(3), H(2)×R1

and SO(3)×R1, and the other includes R3, SU(2), SL(2, R), Heisenberg,
E(1, 1) and E(2), in which the second group are called Bianchi classes.
In this section we are going to give evolution of the first eigenvalue of
the weighted (p, q)-Laplacian system (5), in a case of Bianchi classes.
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Remark 3.1. Consider the evolution formula of λ(t) under the flow (4),
then in homogeneous condition where in this case R is independent from
the volume element, we have

d

dt
λ(u, v, t)|t=t0 =

α+ 1

2
(R− s(t0))

∫
M
|∇u|pdµ

+
β + 1

2
(R− s(t0))

∫
M
|∇v|qdµ

− α+ 1

p

∫
M

∆f |∇u|pdµ

− β + 1

q

∫
M

∆f |∇v|qdµ.

Now under consideration ∆f ≤ R and p ≤ q under the Yamabe flow (2),
where s(t) = 0, we finally get

d

dt
λ(u, v, t)|t=t0 ≥ R

(p
2
− 1
) α+ 1

p

∫
M
|∇u|pdµ (13)

+R
(q

2
− 1
) β + 1

q

∫
M
|∇v|qdµ

≥ R
(p

2
− 1
)
λ (u, v, t) .

First let us consider g0 as a given metric in the Bianchi classes, [12]
has provided before a frame {Xi}3i=1 in which both the Ricci tensors and
metric are diagonalized and this property is preserved by Ricci flow. In
this case, we consider the metric g as

g(t) = A(t) (θ1)
2 +B(t) (θ2)

2 + C(t) (θ3)
2 ,

where {θi}3i=1 is the frame of 1-forms dual to {Xi}3i=1. Now we study
the behavior of the first eigenvalue of weighted (p, q)-Laplacian in each
classes separately.

Case 1: R3

In this case all metrics are flat, so for all t ≥ 0 we have g(t) = g0 where
g0 is constant, therefore λ(t) is constant.
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Case 2: Heisenberg
This class is isomorphic to the set of upper-triangular 3 × 3 matrices
endowed with the usual matrix multiplication. Under the metric g0 we
choose a frame {Xi}3i=1 in which

[X2, X3] = X1, [X3, X1] = 0, [X1, X2] = 0,

also under the normalization A0B0C0 = 1 we have

R = −1

2
A2, R11 =

1

2
A3, R22 = −1

2
A2B, R33 = −1

2
A2C,

||Ric||2 =
3

4
A4,

where under the Yamabe flow (2) we find

∂gij
∂t

=
1

2
A2gij ,

now set g11 (t) = A (t), it concludes that

A′ (t) =
1

2
A3 (t) , A (0) = A0,

this is the equation depended to A and has the solution

A2 (t) =
1

A−20 − t
,

by replacing R into the inequality (13) we get

d
dtλ (u, v, t) |t=t0

λ (u, v, t)
≥
(p

2
− 1
)
R

=
(p

2
− 1
)(
−1

2
A2

)
=

(
p

4
− 1

2

)(
−1

A−20 − t0

)
.

Thus for the sufficient neighborhood of t0 like I we have

d
dtλ (u, v, t)

λ (u, v, t)
≥
(
p

4
− 1

2

)(
−1

A−20 − t0

)
.
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By integrating on [t1, t0] ⊂ I from both sides of above inequality we see

ln
λ (t0)

λ (t1)
≥ ln

(
A−20 − t0
A−20 − t1

)( p4−
1
2)
,

thus

λ (t0)
(
A−20 − t0

)−( p4−
1
2) ≥ λ (t1)

(
A−20 − t1

)−( p4−
1
2)
.

Since t0 is arbitrary, then

λ(t)
(
A−20 − t

)−( p4−
1
2)
,

is increasing.

Case 3: E(2)
Manifold E(2) is the group of isometries of Euclidian plane. In this case
we have an Einstein metric and Ricci flow converges exponentially to
flat metrics. Dependent to the metric g0 we choose the frame {Xi}3i=0

such that

[X2, X3] = X1, [X3, X1] = X2, [X1, X2] = 0,

In this case under the normalization A0B0C0 = 1 we have

R = −1

2

(
1− B0

A0

)2

A2, R11 =
1

2
A
(
A2 −B2

)
,

R22 =
1

2
B
(
B2 −A2

)
, R33 = −1

2
C (A−B)2 ,

||Ric||2 =
1

2

(
A2 −B2

)2
+

1

4
(A−B)4 ,

and also under the Yamabe flow (2), we obtain

∂gij
∂t

=
1

2

(
1− B0

A0

)2

A2gij ,

and similare to the case of Heisenberg by solving the equation

A′ (t) = 1
2

(
1− B0

A0

)2
A3 we find that

A2 =
A2

0

1− (A0 −B0)
2 t
.
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Then by replacing R into the inequality (13) we conclude

λ′ (u, v, t) |t=t0
λ (u, v, t)

≥ −1

2

(
1− B0

A0

)2 (p
2
− 1
)( A2

0

1− (A0 −B0)
2 t0

)
.

Now by replacing A and integrating on [t1, t0] ⊂ I and since t0 is arbi-
trary then the quantity

λ(t)
(

1− (A0 −B0)
2 t
)−( p4−

1
2)
,

is increasing.

Case 4: E(1,1)
Manifold E(1,1) is the group of isometries of the plane with flat Lorentz
metric, there is no Einstein metric here and Ricci flow fails to converge,
they all are asymptotically cigar degeneracies. For a given metric g0
similarly by a frame {Xi}3i=0 we have

[X1, X2] = 0, [X2, X3] = −X1, [X3, X1] = X2.

Also under the normalization A0B0C0 = 1 we conclude

R = −1

2

(
1 +

B0

A0

)2

A2, R11 =
1

2
A
(
A2 −B2

)
,

R22 =
1

2
B
(
B2 −A2

)
, R33 = −1

2
C (A+B)2 ,

||Ric||2 =
3

4
A4,

where under the Yamabe flow (2), we get

A2 =
A2

0

1− (A0 +B0)
2 t
.

Now by replacing R into the inequality (13) and integrating, we conclude
that

λ(t)
(

1− (A0 +B0)
2 t
)−( p4−

1
2)
,
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is increasing.

Case 5: SU(2)
Similarly in this class we have Einstein metrics and Ricci flow converges
exponentially in to these metrics, also by the frame {Xi}3i=0 we have

[X2, X3] = X1, [X3, X1] = X2, [X1, X2] = X3,

In this case under the normalization A0B0C0 = 1, we get

R = ηA2, R11 =
1

2
A[A2 − (B − C)2],

R22 =
1

2
B[B2 − (A− C)2], R33 =

1

2
C[C2 − (A−B)2],

||Ric||2 =
1

4

[ (
A2 − (B − C)2

)2
+
(
B2 − (A− C)2

)2
+
(
C2 − (A−B)2

)2 ]
,

where:

η =
1

2

{
1−

(
B0

A0
− C0

A0

)2

+

(
B0

A0

)2

−
(

1− C0

A0

)2

+

(
C0

A0

)2

−
(

1− B0

A0

)2 }
,

and under the Yamabe flow (2), we have A2 = 1
A−2

0 +ηt
, by replacing R

into the inequality (13) and integrating, we find that if A0 ≥ 4B0 = 4C0

then

λ(t)
(
A−20 + ηt

)−( p2−1) ,

is increasing.

Case 6: SL(2,R)
There is no Einstein metric here and the Ricci flow doesn’t converge and
develops a pancake degeneracy, also by the frame {Xi}3i=0, we get

[X2, X3] = −X1, [X3, X1] = X2, [X1, X2] = X3,
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in this case we also have

R = ηA2, R11 =
1

2
A[A2 − (B − C)2],

R22 =
1

2
B[B2 − (A+ C)2]

R33 =
1

2
C[C2 − (A+B)2],

||Ric||2 =
1

4

{
[A2 − (B − C)2]2 + [B2 − (A+ C)2]2

+[C2 − (A+B)2]2
}
,

in which

η = −1

2

{
1 +

(
B0

A0

)2

+

(
C0

A0

)2

+ 2
B0

A0
+ 2

C0

A0
− 2

B0C0

A0

}
,

and also under the Yamabe flow (2), we find

A2 =
1

A−20 − ηt
.

Now if B0 = C0 then by replacing R into the inequality (13) and inte-
grating, we conclude

λ(t)
(
A−20 − ηt

)( p2−1) ,
is increasing.

References

[1] A. Abolarinwa, Evolution and monotonicity of the first eigenvalue
of p-Laplacian under the Ricci-harmonic map flow, J. Appl. Anal.,
21 (2)(2015), 147-160.

[2] T. Aubin, Equations differentiells non lineaires et probleme de Yam-
abe concernart la courbure scalair, J. Math. Pures Appl., 55(9)
(1976), 269-296.



22 S. AZAMI AND M. HABIBI

[3] S. Azami, Eigenvalues variation of the p-Laplacian under the Yam-
abe flow, Cogent Mathematics (2016), 3:1236566.

[4] S. Brandle, Convergence of the Yamabe flow for arbitrary initial
energy, J. Differential Geom. 69 (2005), 217-278.

[5] X. Cao, Eigenvalues of (−∆ + R
2 ) on manifolds with nonnegative

curvature operator, Math. Ann., 337(2) (2007), 435-442.

[6] R. Hamilton, Three-manifolds with positive Ricci curvature, J. Diff.
Geom. 17 (1982), 255-306.

[7] P. T. Ho, First eigenvalues of geometric operators under the Yam-
abe flow, Annals of global Analysis and Geometry, 54 (2018), 449-
472 .

[8] S. B. Hou, Eigenvalues under the backward Ricci flow on locally
homogeneous closed 3-manifolds, Acta Mathematica Sinica, 34(7)
(2018), 1179-1194.

[9] J. L. Kazdan and F. W. Warner, Scalar curvature and conformation
of Riemannian structure, J. Differential Geometry, 10 (1975), 113-
134.

[10] F. Korouki and A. Razavi, Bounds for the first eigenvalue of
(−∆−R) under the Ricci flow on Bianchi classes, Bull. Braz. Math.
Soc., New Series, 51 (2)(2020), 641-651.

[11] G. Perelman, The entropy formula for the Ricci flow and its geo-
metric application, arXiv:math/0211159v1 (2002).

[12] J. Milnor, Curvatures of left invariant metrics on Lie groups, Adv.
Math. 21(3)(1976), 293-329 .

[13] R. Muller, The Ricci Flow coupled with harmonic map heat flow,
Ann. Sci. Ec. Norm, sup 45 (2012), 101-142.

[14] R. Schoen, Conformal deformation of a Riemannian metric to con-
stant scalar curvature, J. Differential Geom. 20(1984), 479-495.



FIRST EIGENVALUE OF (p, q)-LAPLACIAN AND ... 23

[15] H. Schwetlick and M. Struwe, Convergence of the Yamabe flow for
”large” energies, J. Riene Angew. Math. 562 (2003), 59-100.

[16] N. S. Trudinger, Remarks concerning the conformal deformation of
Riemannian structures on compact manifolds, Ann. Scuola Norm.
Sup. Pisa., 22(3) (1968), 265-274.

[17] Y. Z. Wang, Gradient estimates on the weighted p-Laplace heat
equation, J. Differential equations, 264 (2018), 506-524.

[18] H. Yamabe, On a deformation of Riemannian structures on compact
manifolds, Osaka J. Math., 12 (1960), 21-37.

[19] N. Zographopoulos, On the principal eigenvalue of degenerate quasi-
linear elliptic systems, Math. Nachr. 281, (2008), 1351-1365.

Shahroud Azami
Associate Professor of Mathematics
Department of pure Mathematics, Faculty of Science
Imam Khomeini International University
Qazvin, Iran(Islamic Republic of)

azami@Sci.ikiu.ac.ir

Mohammad Javad Habibi Vosta Kolaei
PhD Student of Mathematics
Department of pure Mathematics, Faculty of Science
Imam Khomeini International University
Qazvin, Iran(Islamic Republic of)

MJ.Habibi@Edu.ikiu.ac.ir


	1 Introduction
	2 Variation of (t)
	2.1 Variation of (t) under the normalized Yamabe flow on the surface

	3  Homogeneous 3-manifolds
	References

