Journal of Mathematical Extension Vol. 15, No. 4, (2021) (17)1-15 URL: https://doi.org/10.30495/JME.2021.1660 ISSN: 1735-8299 Original Research Paper

ON Class of Subalgebras of Bounded BCK-Algebras

H. HARIZAVI

Shahid Chamran University of Ahvaz

Abstract. In this paper, for any two elements y, u of a BCK-algebra X, we assign a subset of X, denoted by $S_y(u)$, and investigate some related properties. We show that $S_y(u)$ is a subalgebra of X for all $y, u \in X$. Using these subalgebras, we characterize the involutive BCK-algebras, and give a necessary and sufficient condition for a bounded BCK-algebra to be a commutative BCK-chain. Finally, we show that the set of all subalgebras $S_y(u)$ forms a bounded distributive lattice.

AMS Subject Classification: 03G10; 03G25 **Keywords and Phrases:** BCK-algebra, commutative BCK-chain, implicative BCK-algebra. bounded distributive lattice

1 Introduction

The notion of I-algebras was introduced as a generalization of set-theoretic difference and propositional calculi in [1]. In the same year, the BCK-algebras as a generalization of I-algebras; and the BCI-algebras as a generalization of BCK-algebras were introduced in [2]. These algebras are two important classes of logical algebras. Commutative BCKalgebras are an important class of BCK-algebras, which forms a class of the lower semilattice [8, 9]. Other important types of BCK-algebras

Received: April 2020; Accepted: March 2021

are implicative and positive implicative which introduced by K. Iseki (1975). It is proved that a BCK-algebra is implicative and if and only if it is commutative and positive implicative. The concept of an ideal in a BCK-algebra was introduced in [5, 4]. One important type of ideals is commutative, which has a close relationship with commutative BCK-algebras, in the sense that a BCK-algebra X is commutative if and only if every ideal of X is commutative [6].

It is well known that every initial set of a BCK-algebra is a subalgebra. But a subalgebra is not necessarily an initial set. In this paper, we introduce and study a new kind of subalgebras different from the initial sets. For this purpose, we assign a subset of X, denoted by $S_y(u)$, for any two elements y, u of a BCK-algebra X and investigate some related properties. We show that $S_y(u)$ is a subalgebra of X for all $y, u \in X$. Also, in a commutative BCK-algebra, we give a necessary and sufficient condition for $S_y(u)$ to be an ideal. Moreover, we prove that a bounded BCK-algebra X is a commutative BCK-chain if and only if every $S_y(u)$ is an initial set of X. We show that the set of all such subsets forms a bounded distributive lattice. Finally, assuming L(y,X) denote the set of all $S_y(u)$ where $u \in X$, we prove that $S_y(u)$ is the least element of L(y,X) with property $A(u) \subseteq S_y(u)$.

2 Preliminaries

In this section, we review some definitions and known results, which will be used in this paper. The reader is referred to [10, 7] for more details.

Definition 2.1. By a BCK-algebra we mean an algebra (X; *, 0) of type (2,0) satisfying the following axioms: for all $x, y, z \in X$, BCK-1: ((x * y) * (x * z)) * (z * y) = 0, BCK-2: (x * (x * y)) * y = 0, BCK-3: x * x = 0, BCK-4: x * y = 0 and y * x = 0 imply x = y, BCK-5: 0 * x = 0.

For brevity, we often write X instead of (X; *, 0) for a BCK-algebra. In any BCK-algebra X, one can define a partial order \leq by putting $x \leq y$ if and only if x * y = 0. In any BCK-algebra X, the followings hold:

- $(a_1) \quad x * 0 = x,$
- $(a_2) \quad x * y \le x,$
- $(a_3) \quad (x*y)*z = (x*z)*y,$
- (a₄) $x \leq y$ implies $x * z \leq y * z$ and $z * y \leq z * x$,
- $(a_5) \quad (x*z)*(y*z) \le x*y,$
- $(a_6) \quad x * (x * (x * y)) = x * y,$
- $(a_7) \quad x * (x * y) \le y,$
- $(a_8) \quad x * y \le z \Leftrightarrow x * z \le y,$
- for any $x, y, z \in X$.

A subset A of a BCK-algebra X is called:

(i) subalgebra of X if it is closed under *, multiplication of X, i.e., $x * y \in A$ for all $x, y \in A$;

(ii) *ideal* of X if it satisfies (i) $0 \in A$ and (ii) $x, y * x \in A$ imply $y \in A$ for all $x, y \in X$.

A BCK-algebra X is called:

(i) chain if $x \leq y$ or $y \leq x$ for all $x, y \in X$;

(ii) bounded if it has the greatest element (denoted by 1). For any $x \in X$, we denote 1 * x by Nx;

(iii) commutative if it satisfies the condition: x * (x * y) = y * (y * x) for all $x \in X$. In this case, x * (x * y) (and y * (y * x)) is the greatest lower bound of x and y with respect to BCK-order \leq , and we denote it by $x \wedge y$;

(iv) positive implicative if it satisfies the condition: (x * y) * z = (x * z) * (y * z);

(v) *implicative* if it satisfies the condition: x * (y * x) = x for all $x, y \in X$.

Let X be a commutative BCK-algebra and $A \subseteq X$. Then the set

$$Ann(A) := \{ x \in X | x \land a = 0 \text{ for all } a \in A \}$$

is called the *annihilator* of A.

Note that in a bounded BCK-algebra the property NNx=x is not true in general. An element $x \in X$ is called involution if it satisfies NNx=x, and a bounded BCK-algebra X is called involutive if every element $x \in X$ is involutive.

Theorem 2.2. [10] Let X be a BCK-algebra. Then

(i) X is commutative if and only if $x * (x * y) \le y * (y * x)$ for all $x, y \in X$;

(ii) X is positive implicative if and only if (x * y) * y = x * y for any $x, y \in X$;

(*iii*) X is implicative if and only if it is commutative and positive implicative.

A partial ordered set P is said to be *lattice* if for any two elements $x, y \in P$ there exist the greatest lower bound of x, y (denoted by $x \wedge y$) and the least upper bound of x, y (denoted by $x \vee y$).

A BCK-algebra X is called a BCK-lattice if it with respect to its BCK-ordering forms a lattice.

Theorem 2.3. [7] In any bounded commutative BCK-algebra X, the followings hold: for all $x, y \in X$,

(b₁) NNx = x, (b₂) Nx * Ny = y * x, (b₃) $Nx \lor Ny = N(x \land y)$ and $Nx \land Ny = N(x \lor y)$.

Theorem 2.4. [7] Every bounded commutative BCK-algebra is a commutative BCK-lattice with $x \wedge y = y * (y * x)$ and $x \vee y = N(Nx \wedge Ny)$.

Theorem 2.5. [10] Let X be a commutative BCK-lattice. Then the following identities hold: for any $x, y, z \in X$,

 $\begin{array}{l} (c_1) \ x * (y \lor z) = (x * y) \land (x * z), \\ (c_2) \ x * (y \land z) = (x * y) \lor (x * z), \\ (c_3) \ (x \lor y) * z = (x * z) \lor (y * z). \end{array}$

3 On Class of Subalgebras of *BCK*-algebras

In this section, we introduce the special subsets of bounded BCK-algebras and investigate some related properties.

Definition 3.1. For any two elements y, u of a bounded BCK-algebra X, we denote

$$S_y(u) := \{ x \in X \mid (NNy) * u \le y * x \}.$$

4

By $(a_7), 0 \in S_y(u)$ for any $y, u \in X$.

The following proposition shows that $S_y(u)$ is a generalization of the annihilator.

Proposition 3.2. If X is a bounded commutative BCK-algebra, then for all $y \in X$, $S_y(0) = Ann(y)$.

Proof. Observe that: $x \in S_y(0) \Leftrightarrow NNy \leq y * x \Leftrightarrow y \leq y * x \Leftrightarrow y * x = y \Leftrightarrow y * (y * x) = 0 \Leftrightarrow x \land y = 0 \Leftrightarrow x \in Ann(y).$

Proposition 3.3. Let X be a bounded BCK-algebra. Then the followings hold, for any $y, u \in X$

(i) $0 \in S_y(u)$.

(ii) If $y \leq u$, then $S_y(u) = X$.

(iii) If in addition X is involutive, then $S_y(u) = X$ implies $y \leq u$.

Proof.(i) Let $y, u \in X$. Then, using (a2) and (a₇), we get $NNy * u \le NNy \le y = y * 0$. This implies $0 \in S_u(u)$.

(ii) Let $y \leq u$. Then, by (a_4) , $NNy \leq NNu$. But $NNu \leq u$. Hence $NNy \leq u$ and so $(NNy) * u = 0 \leq y * x$ for any $x \in X$. This implies $X \subseteq S_y(u)$ and so $S_y(u) = X$.

(iii) Let $S_y(u) = X$. Then $1 \in S_y(u)$ and so $(NNy) * u \le y * 1 = 0$. Thus (NNy) * u = 0 and so, since X is involutive, y * u = 0, that is, $y \le u$. \Box

The following example shows that the involutive condition in Proposition 3.3(iii) is necessary.

Example 3.4. Let $X = \{0, a, b, 1\}$. Define the operation * on X by the following table:

Then X is a *BCK*-algebra, but it is not involutive because NNb = 1 * (1 * b) = a. Since NNb * a = 0, it follows that $S_b(a) = X$, but $b \not\leq a$.

Proposition 3.5. Let X be a bounded BCK-algebra. Then the followings hold, for any $y, u, v \in X$

(i) if $u \leq v$, then $S_y(u) \subseteq S_y(v)$.

(ii) if in addition X is commutative and $u, v \leq y$, then $S_y(u) \subseteq S_y(v)$ implies $u \leq v$.

Proof. (i) Let $u \leq v$. Then $(NNy) * v \leq (NNy) * u$. Now, assume that $x \in S_y(u)$. Then $(NNy) * u \leq y * x$ and so $(NNy) * v \leq y * x$. Hence $x \in S_y(v)$.

(ii) Let $S_y(u) \subseteq S_y(v)$. Then it follows from $u \in S_y(u)$ that $u \in S_y(v)$ and so $NNy*v \leq y*u$. But, since X is commutative, we have NNy = y. Thus $y*v \leq y*u$ and so by (a_4) , we get $y*(y*u) \leq y*(y*v)$. Thus, using the commutatively of X, we obtain $y \wedge u \leq y \wedge v$ and so from $u, v \leq y$, we conclude $u \leq v$. \Box

The commutative property in Proposition 3.5 is necessary as shown in the following example.

Example 3.6. Let $X = \{0, a, b, c, 1\}$. Define the operation * on X by the following table:

Then (X; *, 0) is a *B*CK-algebra, but it is not commutative because $1 * (1 * a) = 0 \neq a = a * (a * 1)$. By simple calculation, we have $S_c(b) = \{0, a, b\} \subseteq X = S_c(a)$ but $b \not\leq a$.

The relationship between $S_y(u)$ and the initial set A(u) is introduced in the following.

Proposition 3.7. Let X be a bounded BCK-algebra and $y, u \in X$. Then the followings hold:

(i) $A(u) \subseteq S_y(u)$, in which $A(u) = \{x \in X \mid x \le u\}$.

(ii) $S_y(u) = A(z)$ if and only if z is the maximum of $S_y(u)$.

Proof. (i) Let $x \in A(u)$. Then $x \leq u$ and so $(NNy) * u \leq (NNy) * x \leq y * x$. Therefore $x \in S_y(u)$.

(ii) If $S_y(u) = A(z)$, then clearly the result holds.

Conversely, assume that $z \in S_y(u)$ is the maximum of $S_y(u)$. Then for all $x \in S_y(u)$, $x \leq z$. From this follows that $S_y(u) \subseteq A(z)$. Now, let $x \in A(z)$. Then $x \leq z$ and so $y * z \leq y * x$. On the other hand, from $z \in S_y(u)$, we have $(NNy) * u \leq y * z$. Thus $(NNy) * u \leq y * x$ which yields $x \in S_y(u)$. Therefore $A(z) \subseteq S_y(u)$ and so $S_y(u) = A(z)$. \Box

Note that $S_y(u)$ is not necessary to be contained in A(u). Consider Example 3.6, routine calculations show that $S_c(a) = X \not\subseteq \{0, a\} = A(a)$.

Theorem 3.8. Let X be a bounded BCK-algebra. Then $S_y(u)$ is a subalgebra of X for any $y, u \in X$.

Proof. Obviously, $0 \in S_y(u)$. Let $x, z \in S_y(u)$. Then by (a_4) , it follows from $x * z \le x$ that

 $(NNy) * u \le (NNy) * x \le (NNy) * (x * z) \le y * (x * z).$

This implies that $x * z \in S_y(u)$. Therefore $S_y(u)$ is a subalgebra of X. \Box

Proposition 3.9. Let X be a bounded BCK-algebra. Then the followings hold: for all $y, u, v \in X$,

(i) $S_y(u * (u * v)) \subseteq S_y(u) \cap S_y(v)$.

(ii) If in addition X is commutative, then $S_y(u \wedge v) = S_y(u) \cap S_y(v)$.

Proof. (i) The proof is straightforward by using (a_7) and Proposition 3.5(i).

(ii) Since X is commutative, $u \wedge v = u * (u * v)$. Then by (i), we only need to prove that $S_y(u) \cap S_y(v) \subseteq S_y(u \wedge v)$. Let $x \in S_y(u) \cap S_y(v)$. From $x \in S_y(u)$, we get $(NNy) * u \leq y * x$. We note that, since X is commutative, we have NNy = y. Thus $y * u \leq y * x$ and so $y * (y * x) \leq$ y * (y * u), that is, $x \wedge y \leq u \wedge y$. Similarly, from $x \in S_y(v)$, we have $x \wedge y \leq v \wedge y$. Therefore $x \wedge y \leq (u \wedge y) \wedge (v \wedge y) = y \wedge (u \wedge v)$, that is, $y * (y * x) \leq y * (y * (u \wedge v))$. Thus, using (a_4) , we conclude $y*(y*(y*(u \wedge v))) \leq y*(y*(y*x))$ and so, by (a_6) , we get $y*(u \wedge v) \leq y*x$. From this follows that $NNy*(u \wedge v) \leq y*x$ and so $x \in S_y(u \wedge v)$. Hence $S_y(u) \cap S_y(v) \subseteq S_y(u \wedge v)$ and so the proof is completed. \Box

Proposition 3.10. Let X be a bounded commutative BCK-algebra and $u, v \in X$. Then the following hold: (i) $S_u(u) = S_u(v)$ if and only if y * u = y * v.

(ii) If $u, v \leq y$, then $S_y(u) = S_y(v) \Leftrightarrow u = v$.

Proof. (i) Let $S_y(u) = S_y(v)$. Since $u \in S_y(u)$, we get $u \in S_y(v)$ and so $(NNy) * v \le y * u$. Thus by the commutatively of X, we get $y * v \le y * u$. Similarly, from $v \in S_y(v)$ we obtain $y * u \le y * v$, therefore y * u = y * v.

Conversely, assume that y * u = y * v. Then by the commutatively of $X, x \in S_y(u)$ if and only if $y * u \leq y * x$ if and only if $y * v \leq y * x$ if and only if $x \in S_y(v)$. Therefore $S_y(u) = S_y(v)$.

(ii) Let $S_y(u) = S_y(v)$. From (i), we have y * u = y * v and so y * (y * u) = y * (y * v). Hence by the commutatively of $X, u \wedge y = v \wedge y$, and so from $u, v \leq y$, we conclude u = v.

Conversely, it is obvious.

Using Propositions 3.5 and 3.10(ii), we have the following result:

Corollary 3.11. Let X be a bounded commutative BCK-algebra and $y \in X$. Then for any $u, v \in A(y)$,

$$S_y(u) = S_y(v) \Leftrightarrow u = v.$$

The following example shows that the commutative property of X in Corollary 3.11 is necessary.

Example 3.12. Let $X = \{0, a, b, c\}$. Define the operation * on X by the following table:

*	0	a	b	c
0	0	0	0	0
a	a	0	a	0
b	b	b	0	0
c	c	c	c	0

Then (X; *, 0) is a *BCK*-algebra, but it is not commutative because $c * (c * a) = 0 \neq a = a * (a * c)$. Routine calculations show that $S_c(a) = S_c(b) = \{0, a, b\}$, which does not imply a = b.

Next, we characterize the involutive BCK-algebras.

Proposition 3.13. Let X be a bounded BCK-algebra. Then the following are equivalent:

(i) X is involutive.

(ii) $(\forall u, v \in X)$ $S_1(u) = S_1(v)$ implies u = v.

Proof. (i) \Rightarrow (ii) Let $u, v \in X$ be such that $S_1(u) = S_1(v)$. From $u \in S_1(u)$, we get $u \in S_1(v)$ and so $NN1 * v \leq Nu$, that is, $Nv \leq Nu$. Thus using (a_4) , we have $NNu \leq NNv$ and so by (i), we conclude $u \leq v$. Similarly, we can show that $v \leq u$. Therefore u = v.

(ii) Let u be an arbitrary element of X and assume that $x \in S_1(u)$. Then $NN1 * u \leq Nx$, and so, since NN1 = 1, we get $Nu \leq Nx$. Hence by (a_6) , $N(NNu) \leq Nx$, that is $x \in S_1(NNu)$, hence $S_1(u) \subseteq S_1(NNu)$. The reverse inclusion follows from $NNu \leq u$ and Proposition 3.5(i). Thus $S_1(u) = S_1(NNu)$ and so by (ii), NNu = u. Therefore X is involutive. \Box

The following theorem provides a property for a bounded BCK-algebra to be a commutative chain.

Theorem 3.14. Let X be a bounded BCK-algebra. Then the following are equivalent:

(i) X is a commutative BCK-chain.

(ii) $S_y(u) = A(u)$ for any $y, u \in X$ with $y \not\leq u$.

Proof. (i) \Rightarrow (ii)) Let $y, u \in X$ be such that $y \not\leq u$ and let $z \in S_y(u)$. Since X is a *BCK*-chain, $y \leq z$ or z < y. If $y \leq z$, then from $z \in S_y(u)$ we get $(NNy) * u \leq y * z = 0$ and so, by the commutatively of X, we obtain y * u = 0, that is, $y \leq u$, which is a contradiction with assumption $y \not\leq u$. Thus z < y. We assert that $z \leq u$. If not, then u < z. Thus by (a_4) , we obtain $(NNy) * z \leq (NNy) * u$ and so by the commutatively of X, we have

$$y * z \le y * u. \tag{1}$$

On the other hand, by the commutatively of X, from $z \in S_y(u)$, we get

$$y * u \le y * z. \tag{2}$$

From (1) and (2), we get y * z = y * u. Thus y * (y * z) = y * (y * u) and so, we conclude

$$y \wedge z = y \wedge u. \tag{3}$$

Now, from $y \not\leq u$, we get u < y, which implies $y \wedge u = u$. Also, from $z \leq y$, we have $y \wedge z = z$. Thus, by (3), we get z = u, which is a contradiction with assumption u < z. Hence $z \leq u$ and so $z \in A(u)$. We have shown that $S_y(u) \subseteq A(u)$. But by Proposition 3.7(i), $A(u) \subseteq S_y(u)$. Therefore $S_y(u) = A(u)$.

(ii) \Rightarrow (i) Assume that $x, y \in X$. Obviously, $y \leq y * (y * x)$ or $y \not\leq y * (y * x)$. If $y \leq y * (y * x)$, then by (a_2) , we get y * (y * x) = y and so y * (y * (y * x)) = y * y = 0. But, by (a_6) , y * (y * (y * x)) = y * x. Hence y * x = 0, that is, $y \leq x$. If $y \not\leq y * (y * x)$, then by (ii), $S_y(y * (y * x)) = A(y * (y * x))$. Using $(a_3), (a_6)$ and axiom (*BCK*-1), we get

$$(NNy) * (y * (y * x)) = N(y * (y * x)) * Ny \le y * (y * (y * x)) = y * x.$$
(4)

This implies that $x \in S_y(y * (y * x))$ and so by (ii), $x \in A(y * (y * x))$, that is, $x \leq y * (y * x)$. On the other hand, $y * (y * x) \leq y$. Thus $x \leq y$. Up to now, we have shown that X is a *BCK*-chain. To prove the commutatively of X, assume that $x, y \in X$. Since X is a *BCK*-chain, without loss the generality, we may assume that $x * (x * y) \leq y * (y * x)$. We assert that $y * (y * x) \leq x * (x * y)$. If not, then

$$y * (y * x) \leq x * (x * y). \tag{5}$$

Since $y * (y * x) \leq x$, it follows from (5) that $x \not\leq x * (x * y)$. Hence by (ii), we have $S_x(x * (x * y)) = A(x * (x * y))$. Similar to the argument of (4), we have $y \in S_x(x * (x * y))$. Thus $y \in A(x * (x * y))$ and so $y \leq x * (x * y)$. On the other hand, $y * (y * x) \leq y$. Hence $y * (y * x) \leq x * (x * y)$, which is a contradiction with (5). Thus $y * (y * x) \leq x * (x * y)$ and so y * (y * x) = x * (x * y). Therefore X is commutative and the proof is completed. \Box

Let X be a commutative BCK-lattice. For any element $y \in X$, we denote $L(y, X) := \{S_y(u) \mid u \in X\}$ and define operations \bigtriangledown and \bigtriangleup on L(y, X) as follows: for any $u, v \in X$,

$$S_y(u) \bigtriangledown S_y(v) := S_y(u \land v) \quad ; \quad S_y(u) \bigtriangleup S_y(v) := S_y(u \lor v). \tag{6}$$

Theorem 3.15. Let X be a commutative BCK-lattice and let operations \bigtriangledown and \bigtriangleup are defined as (6). Then $(L(y, X); \bigtriangledown, \bigtriangleup)$ is a bounded distributive lattice. **Proof.** Let $S_y(u), S_y(v) \in L(y, X)$. Obviously, by Proposition 3.9(ii), $S_y(u \wedge s)$ is the infimum of $S_y(u)$ and $S_y(v)$. Since $u, v \leq u \vee v$, from Proposition 3.5(i), we get $S_y(u), S_y(v) \subseteq S_y(u \vee v)$. Now let $S_y(z) \in$ L(y, X) be such that $S_y(u), S_y(v) \subseteq S_y(z)$. Then from $u \in S_y(u)$, we have $u \in S_y(z)$ and so $(NNy) * z \leq y * u$. Similarly, $(NNy) * z \leq y * v$. Hence $(NNy)*z \leq (y*u) \wedge (y*v)$, and so, using Theorem 2.5(c_1), we get $(NNy)*z \leq y*(u \vee v)$. This implies $u \vee v \in S_y(z)$. Then by Proposition 3.7(i), $S_y(u \vee s) \subseteq S_y(z)$. Hence $S_y(u \vee v)$ is the supremum of $S_y(u)$ and $S_y(v)$. Therefore $(L(y, X); \nabla, \Delta)$ is a lattice. By Proposition 3.5, $S_y(0)$ and $S_y(1) = X$ are the least element and greatest upper of L(y, X)respectively, and consequently X is bounded. It remains to prove that L(y, X) is distributive. For this, by (6) and the distributivity of X, it is easily seen that

$$S_y(z) \bigtriangledown ((S_y(u) \bigtriangleup S_y(v)) = S_y(z \land (u \lor v))$$

= $S_y((z \land u) \lor (z \land v))$
= $S_y(z \land u) \bigtriangleup S_y(z \land v)$
= $(S_y(z) \bigtriangledown S_y(u)) \bigtriangleup (S_y(z) \bigtriangledown S_y(v)),$

for any $y, z, u, v \in X$. Therefore $(L(y, X); \nabla, \triangle)$ is a bounded distributive lattice. \Box

The subset $S_y(u)$ is not necessary to be an ideal even if X be a commutative BCK-chain as shown in the following example.

Example 3.16. Let $X = \{0, a, 1\}$. Define the operation * on X by the following table:

*	0	a	1
0	0	0	0
a	a	0	0
1	1	a	0

Then (X; *, 0) is a commutative *BCK*-chain. Routine calculations show that $S_1(a) = \{0, a\}$ which is not an ideal of X because $1 * a = a \in S_1(a)$ but $1 \notin S_1(a)$.

Next, we give a property for $S_y(u)$ to be an ideal.

Proposition 3.17. Let X be a commutative BCK-chain. Then the following are equivalent:

(i) X is implicative.

(ii) For any $y, u \in X$, $S_y(u)$ is an ideal of X.

Proof. (i) \Rightarrow (ii) Let $y, u \in X$. If $y \leq u$, then by Proposition 3.3(ii), $S_y(u) = X$ and so clearly $S_y(u)$ is an ideal of X. Now, assume that $y \not\leq u$. Then by Theorem 3.14, $S_y(u) = A(u)$. Hence it suffices to show that A(u) is an ideal of X. Assume that $x, y * x \in A(u)$. Then $x \leq u$ and $y * x \leq u$ and so x * u = 0 and (y * x) * u = 0. By Theorem 2.2(*iii*), X is a positive implicative and so, we get (y * u) * u = y * u. Using (a_5) and (a_3) , we have

$$\begin{split} y * u &= (y * u) * 0 = (y * u) * (x * u) = ((y * u) * u) * (x * u) \\ &\leq (y * u) * x = (y * x) * u = 0. \end{split}$$

Thus y * u = 0, that is, $y \in A(u)$. Therefore A(u) is an ideal of X.

(ii) \Rightarrow (i) By Theorem 2.2(*iii*), it suffices to show that X is a positive implicative *BCK*-algebra. Let $x, y \in X$. Then by (ii), A(x) is an ideal of X. Taking, $z := y * (y * x) \le x$ and w := y * ((y * x) * x), it follows from $y * (y * x) \le x$ that $z \in A(x)$. Also, we have

$$w * z = (y * ((y * x) * x)) * (y * (y * x))$$

$$\leq (y * x) * ((y * x) * x) \qquad \text{by axiom (BCK-1)}$$

$$\leq y * (y * x) \qquad \qquad \text{by } (a_5)$$

$$\leq x \in A(x). \qquad \qquad \text{by } (a_7)$$

Hence $w * z \in A(x)$ and so from $z \in A(x)$ and the fact that A(x) is an ideal of X, we conclude $w \in A(x)$, that is, $y * ((y * x) * x) \in A(x)$. Thus $y * ((y * x) * x) \leq x$ and so by (a_8) , $y * x \leq (y * x) * x$. On the other hand, $(y * x) * x \leq y * x$. Therefore (y * x) * x = y * x, and so by Theorem 2.2(*ii*), X is a positive implicative *BCK*-algebra. \Box

Proposition 3.18. Let X be an involutive BCK-algebra. Then, $S_y(u)$ is the least element of L(y, X) with property $A(u) \subseteq S_y(u)$ for any $y, u \in X$.

Proof. By Proposition 3.7(i), the property $A(u) \subseteq S_y(u)$ holds. Now, assume that $A(u) \subseteq S_y(v)$ for some $v \in X$. If $x \in S_y(u)$, then (NNy) *

 $u \leq y * x$ and so by the involutivity of $X, y * u \leq y * x$. Thus, using (a_8) , we get $y * (y * x) \leq u$, that is, $y * (y * x) \in A(u)$. Hence $y * (y * x) \in S_y(v)$ which yields $y * v \leq y * (y * (y * x))$. Then by (a_6) , we get $y * v \leq y * x$ and consequently, $x \in S_y(v)$. Therefore $S_y(u) \subseteq S_y(v)$ and so the proof is completed. \Box

The converse of Proposition 3.18 is false as shown in the following example.

Example 3.19. Let $X = \{0, a, 1\}$. Define the operation * on X by the following table:

Then (X; *, 0) is a *BCK*-chain. Routine calculations show that

$$S_y(u) = X \text{ for all } u \in X \text{ and } y = 0, a;$$

 $A(1) = S_1(1) = X \nsubseteq \{0, a\} = S_1(0) = S_1(a)$

Therefore X satisfies Proposition 3.18 but it is not involutive because $0 = NNa \neq a$.

In the following, we show that $S_y(u)$ inherits all properties of a commutative BCK-lattice.

Proposition 3.20. If X is a commutative BCK-lattice, then so is $S_y(u)$ for all $y, u \in X$.

Proof. By Theorem 3.8, $S_y(u)$ is a subalgebra and so it is a commutative *BCK*-algebra. Let $x, z \in S_y(u)$. Then $(NNy) * u \leq y * x$. On the other hand, it follows from $x \wedge z \leq x$ that $y * x \leq y * (x \wedge z)$. Therefore $(NNy) * u \leq y * (x \wedge z)$, which yields $x \wedge z \in S_y(u)$. Hence $S_y(u)$ is closed under \wedge . Also, using (a_8) , since $y * u \leq y * x$, we get $y * (y * x) \leq u$ and so $x \wedge y \leq u$. Similarly, from $y * u \leq y * z$, we conclude $z \wedge y \leq u$. Thus $(x \wedge y) \lor (z \wedge y) \leq u$ and so by the distributivity of X, we obtain $(x \lor z) \wedge y \leq u$, that is, $y * (y * (x \lor z)) \leq u$. Hence, using (a_8) , we get $y * u \leq y * (x \lor z)$ which

yields $x \lor z \in S_y(u)$. Therefore $S_y(u)$ is closed under \lor . Summarizing the previous results, we conclude that $S_y(u)$ is a commutative *BCK*-lattice. \Box

Conclusion and future work

It is well known that every initial set of a BCK-algebra is a subalgebra. But a subalgebra is not necessarily an initial set. In this paper, we have introduced and studied a new kind of subalgebras different from the initial sets. For this purpose, we have assigned a subset of X, denoted by $S_y(u)$, for any two elements y, u of a BCK-algebra X and have investigated some related properties. We have shown that $S_y(u)$ is a subalgebra of X for all $y, u \in X$. Moreover, we have proved that a bounded BCKalgebra X is a commutative BCK-chain if and only if every $S_y(u)$ is an initial set of X. Finally, assuming L(y,X) denote the set of all $S_y(u)$ where $u \in X$, we have proved that $S_y(u)$ is the least element of L(y,X)with property $A(u) \subseteq S_y(u)$.

Our future work is to introduce and study this kind of subalgebras in logical algebraic structures such as (pseudo)BCH-algebras, (pseudo)BE-algebras, (pseudo)CI-algebras and etc.

Acknowledgements

The author would like to thank the referees for the careful reading and valuable comments which helped to improve the manuscript.

References

- Y. Imai and K. Iséki, On axiom systems of propositional calculi, XIV. Proc. Japan Academy, 42 (1966), 19-22.
- [2] K. Iséki, An algebra related with a propositional calculus, Proc. Japan Academy, 42 (1966), 26-29.
- [3] K. Iséki, On bounded BCK-algebras, Math. Sem. Notes, 3 (1975), 23-33.
- [4] K. Iséki, On BCI-algebras, Math. Sem. Notes, 8 (1980), 125-130.

- [5] K. Iséki and S. Tanaka, Ideal theory of BCK-algebras, Math. Japonica, 21 (1976), 351-366.
- [6] J. Meng, Commutative ideals in BCK-algebras, Pure Appl. Math. (in P.R. China), 9 (1991), 49-53.
- [7] J. Meng and Y.B. Jun, BCK-Algebras, 294. Kyung Moon Sa, Korea, 1994.
- [8] S. Tanaca, A new class of algebras, Math. Sem. Notes, 5 (1975), 37-43.
- [9] S. Tanaca, Examples of BCK-algebras, Math. Sem. Notes, 3 (1975), 75-82.
- [10] H. Yisheng, BCI-Algebra, Science Press, China, 2006.

Habib Harizavi

Associate Professor of Mathematics Department of Mathematics Shahid Chamran University of Ahvaz Ahvaz, Iran E-mail: harizavi@scu.ac.ir