ON Class of Subalgebras of Bounded BCK-Algebras

H. HARIZAVI
Shahid Chamran University of Ahvaz

Abstract

In this paper, for any two elements y, u of a BCK-algebra X, we assign a subset of X, denoted by $S_{y}(u)$, and investigate some related properties. We show that $S_{y}(u)$ is a subalgebra of X for all $y, u \in X$. Using these subalgebras, we characterize the involutive BCK-algebras, and give a necessary and sufficient condition for a bounded BCK-algebra to be a commutative BCK-chain. Finally, we show that the set of all subalgebras $S_{y}(u)$ forms a bounded distributive lattice.

AMS Subject Classification: 03G10; 03G25
Keywords and Phrases: BCK-algebra, commutative BCK-chain, implicative BCK-algebra. bounded distributive lattice

1 Introduction

The notion of I-algebras was introduced as a generalization of set-theoretic difference and propositional calculi in [1]. In the same year, the BCK-algebras as a generalization of I-algebras; and the BCI-algebras as a generalization of BCK-algebras were introduced in [2]. These algebras are two important classes of logical algebras. Commutative BCKalgebras are an important class of BCK-algebras, which forms a class of the lower semilattice [8, 9]. Other important types of BCK-algebras

[^0]are implicative and positive implicative which introduced by K. Iseki (1975). It is proved that a BCK-algebra is implicative and if and only if it is commutative and positive implicative. The concept of an ideal in a BCK-algebra was introduced in [5, 4]. One important type of ideals is commutative, which has a close relationship with commutative BCKalgebras, in the sense that a BCK-algebra X is commutative if and only if every ideal of X is commutative [6].

It is well known that every initial set of a BCK-algebra is a subalgebra. But a subalgebra is not necessarily an initial set. In this paper, we introduce and study a new kind of subalgebras different from the initial sets. For this purpose, we assign a subset of X, denoted by $S_{y}(u)$, for any two elements y, u of a BCK-algebra X and investigate some related properties. We show that $S_{y}(u)$ is a subalgebra of X for all $y, u \in X$. Also, in a commutative BCK-algebra, we give a necessary and sufficient condition for $S_{y}(u)$ to be an ideal. Moreover, we prove that a bounded BCK-algebra X is a commutative BCK-chain if and only if every $S_{y}(u)$ is an initial set of X. We show that the set of all such subsets forms a bounded distributive lattice. Finally, assuming $L(y, X)$ denote the set of all $S_{y}(u)$ where $u \in X$, we prove that $S_{y}(u)$ is the least element of $\mathrm{L}(\mathrm{y}, \mathrm{X})$ with property $A(u) \subseteq S_{y}(u)$.

2 Preliminaries

In this section, we review some definitions and known results, which will be used in this paper. The reader is referred to [10, 7] for more details.

Definition 2.1. By a BCK-algebra we mean an algebra $(X ; *, 0)$ of type $(2,0)$ satisfying the following axioms: for all $x, y, z \in X$,
BCK-1: $\quad((x * y) *(x * z)) *(z * y)=0$,
BCK-2 : $\quad(x *(x * y)) * y=0$,
BCK-3: $\quad x * x=0$,
BCK-4 : $\quad x * y=0$ and $y * x=0$ imply $x=y$,
BCK-5: $0 * x=0$.
For brevity, we often write X instead of $(X ; *, 0)$ for a BCK-algebra. In any BCK-algebra X , one can define a partial order \leq by putting $x \leq y$ if and only if $x * y=0$.

In any BCK-algebra X, the followings hold:
(a) $x * 0=x$,
(a) $\quad x * y \leq x$,
(a $\left.a_{3}\right)(x * y) * z=(x * z) * y$,
$\left(a_{4}\right) \quad x \leq y$ implies $x * z \leq y * z$ and $z * y \leq z * x$,
(a $\left.a_{5}\right)(x * z) *(y * z) \leq x * y$,
$\left(a_{6}\right) \quad x *(x *(x * y))=x * y$,
($\left.a_{7}\right) \quad x *(x * y) \leq y$,
(a8) $\quad x * y \leq z \Leftrightarrow x * z \leq y$,
for any $x, y, z \in X$.
A subset A of a BCK-algebra X is called:
(i) subalgebra of X if it is closed under $*$, multiplication of X, i.e., $x * y \in A$ for all $x, y \in A$;
(ii) ideal of X if it satisfies (i) $0 \in A$ and (ii) $x, y * x \in A$ imply $y \in A$ for all $x, y \in X$.

A BCK-algebra X is called:
(i) chain if $x \leq y$ or $y \leq x$ for all $x, y \in X$;
(ii) bounded if it has the greatest element (denoted by 1). For any $x \in X$, we denote $1 * x$ by $N x$;
(iii) commutative if it satisfies the condition: $x *(x * y)=y *(y * x)$ for all $x \in X$. In this case, $x *(x * y)$ (and $y *(y * x)$) is the greatest lower bound of x and y with respect to BCK-order \leq, and we denote it by $x \wedge y$;
(iv) positive implicative if it satisfies the condition: $(x * y) * z=(x * z) *$ $(y * z)$;
(v) implicative if it satisfies the condition: $x *(y * x)=x$ for all $x, y \in X$.

Let X be a commutative BCK-algebra and $A \subseteq X$. Then the set

$$
\operatorname{Ann}(A):=\{x \in X \mid x \wedge a=0 \text { for all } \mathrm{a} \in A\}
$$

is called the annihilator of A.
Note that in a bounded BCK-algebra the property $\mathrm{NNx}=\mathrm{x}$ is not true in general. An element $x \in X$ is called involution if it satisfies $\mathrm{NNx}=\mathrm{x}$, and a bounded BCK-algebra X is called involutive if every element $x \in X$ is involutive.

Theorem 2.2. [10] Let X be a BCK-algebra. Then
(i) X is commutative if and only if $x *(x * y) \leq y *(y * x)$ for all $x, y \in X$;
(ii) X is positive implicative if and only if $(x * y) * y=x * y$ for any $x, y \in X$;
(iii) X is implicative if and only if it is commutative and positive implicative.

A partial ordered set P is said to be lattice if for any two elements $x, y \in P$ there exist the greatest lower bound of x, y (denoted by $x \wedge y$) and the least upper bound of x, y (denoted by $x \vee y$).

A $B C K$-algebra X is called a $B C K$-lattice if it with respect to its $B C K$-ordering forms a lattice.

Theorem 2.3. [7] In any bounded commutative BCK-algebra X, the followings hold: for all $x, y \in X$,
$\left(b_{1}\right) N N x=x$,
(b2) $N x * N y=y * x$,
(b_{3}) $N x \vee N y=N(x \wedge y)$ and $N x \wedge N y=N(x \vee y)$.
Theorem 2.4. [7] Every bounded commutative BCK-algebra is a commutative BCK-lattice with $x \wedge y=y *(y * x)$ and $x \vee y=N(N x \wedge N y)$.

Theorem 2.5. [10] Let X be a commutative BCK-lattice. Then the following identities hold: for any $x, y, z \in X$,
$\left(c_{1}\right) x *(y \vee z)=(x * y) \wedge(x * z)$,
$\left(c_{2}\right) x *(y \wedge z)=(x * y) \vee(x * z)$,
(c3) $(x \vee y) * z=(x * z) \vee(y * z)$.

3 On Class of Subalgebras of $B C K$-algebras

In this section, we introduce the special subsets of bounded BCK-algebras and investigate some related properties.

Definition 3.1. For any two elements y, u of a bounded BCK-algebra X, we denote

$$
S_{y}(u):=\{x \in X \mid(N N y) * u \leq y * x\} .
$$

By $\left(a_{7}\right), 0 \in S_{y}(u)$ for any $y, u \in X$.
The following proposition shows that $S_{y}(u)$ is a generalization of the annihilator.

Proposition 3.2. If X is a bounded commutative BCK-algebra, then for all $y \in X, S_{y}(0)=\operatorname{Ann}(y)$.

Proof. Observe that: $x \in S_{y}(0) \Leftrightarrow N N y \leq y * x \Leftrightarrow y \leq y * x \Leftrightarrow y * x=$ $y \Leftrightarrow y *(y * x)=0 \Leftrightarrow x \wedge y=0 \Leftrightarrow x \in \operatorname{Ann}(y)$.

Proposition 3.3. Let X be a bounded BCK-algebra. Then the followings hold, for any $y, u \in X$
(i) $0 \in S_{y}(u)$.
(ii) If $y \leq u$, then $S_{y}(u)=X$.
(iii) If in addition X is involutive, then $S_{y}(u)=X$ implies $y \leq u$.

Proof.(i) Let $y, u \in X$. Then, using (a2) and (a_{7}), we get $N N y * u \leq$ $N N y \leq y=y * 0$. This implies $0 \in S_{y}(u)$.
(ii) Let $y \leq u$. Then, by $\left(a_{4}\right), N N y \leq N N u$. But $N N u \leq u$. Hence $N N y \leq u$ and so $(N N y) * u=0 \leq y * x$ for any $x \in X$. This implies $X \subseteq S_{y}(u)$ and so $S_{y}(u)=X$.
(iii) Let $S_{y}(u)=X$. Then $1 \in S_{y}(u)$ and so $(N N y) * u \leq y * 1=0$. Thus $(N N y) * u=0$ and so, since X is involutive, $y * u=0$, that is, $y \leq u$.

The following example shows that the involutive condition in Proposition 3.3 (iii) is necessary.

Example 3.4. Let $X=\{0, a, b, 1\}$. Define the operation $*$ on X by the following table:

$*$	0	a	b	1
0	0	0	0	0
a	a	0	0	0
b	b	a	0	0
1	1	a	a	0

Then X is a $B C K$-algebra, but it is not involutive because $N N b=$ $1 *(1 * b)=a$. Since $N N b * a=0$, it follows that $S_{b}(a)=X$, but $b \not \leq a$.

Proposition 3.5. Let X be a bounded BCK-algebra. Then the followings hold, for any $y, u, v \in X$
(i) if $u \leq v$, then $S_{y}(u) \subseteq S_{y}(v)$.
(ii) if in addition X is commutative and $u, v \leq y$, then $S_{y}(u) \subseteq S_{y}(v)$ implies $u \leq v$.

Proof. (i) Let $u \leq v$. Then $(N N y) * v \leq(N N y) * u$. Now, assume that $x \in S_{y}(u)$. Then $(N N y) * u \leq y * x$ and so $(N N y) * v \leq y * x$. Hence $x \in S_{y}(v)$.
(ii) Let $S_{y}(u) \subseteq S_{y}(v)$. Then it follows from $u \in S_{y}(u)$ that $u \in S_{y}(v)$ and so $N N y * v \leq y * u$. But, since X is commutative, we have $N N y=y$. Thus $y * v \leq y * u$ and so by $\left(a_{4}\right)$, we get $y *(y * u) \leq y *(y * v)$. Thus, using the commutatively of X, we obtain $y \wedge u \leq y \wedge v$ and so from $u, v \leq y$, we conclude $u \leq v$.

The commutative property in Proposition 3.5 is necessary as shown in the following example.

Example 3.6. Let $X=\{0, a, b, c, 1\}$. Define the operation $*$ on X by the following table:

$*$	0	a	b	c	1
0	0	0	0	0	0
a	a	0	a	0	0
b	b	b	0	0	0
c	c	c	c	0	0
1	1	1	1	1	0

Then $(X ; *, 0)$ is a B CK-algebra, but it is not commutative because $1 *(1 * a)=0 \neq a=a *(a * 1)$. By simple calculation, we have $S_{c}(b)=\{0, a, b\} \subseteq X=S_{c}(a)$ but $b \not \leq a$.

The relationship between $S_{y}(u)$ and the initial set $A(u)$ is introduced in the following.

Proposition 3.7. Let X be a bounded BCK-algebra and $y, u \in X$. Then the followings hold:
(i) $A(u) \subseteq S_{y}(u)$, in which $A(u)=\{x \in X \mid x \leq u\}$.
(ii) $S_{y}(u)=A(z)$ if and only if z is the maximum of $S_{y}(u)$.

Proof. (i) Let $x \in A(u)$. Then $x \leq u$ and so $(N N y) * u \leq(N N y) * x \leq$ $y * x$. Therefore $x \in S_{y}(u)$.
(ii) If $S_{y}(u)=A(z)$, then clearly the result holds.

Conversely, assume that $z \in S_{y}(u)$ is the maximum of $S_{y}(u)$. Then for all $x \in S_{y}(u), x \leq z$. From this follows that $S_{y}(u) \subseteq A(z)$. Now, let $x \in A(z)$. Then $x \leq z$ and so $y * z \leq y * x$. On the other hand, from $z \in S_{y}(u)$, we have $(N N y) * u \leq y * z$. Thus $(N N y) * u \leq y * x$ which yields $x \in S_{y}(u)$. Therefore $A(z) \subseteq S_{y}(u)$ and so $S_{y}(u)=A(z)$.

Note that $S_{y}(u)$ is not necessary to be contained in $A(u)$. Consider Example 3.6, routine calculations show that $S_{c}(a)=X \nsubseteq\{0, a\}=A(a)$.

Theorem 3.8. Let X be a bounded BCK-algebra. Then $S_{y}(u)$ is a subalgebra of X for any $y, u \in X$.

Proof. Obviously, $0 \in S_{y}(u)$. Let $x, z \in S_{y}(u)$. Then by (a_{4}), it follows from $x * z \leq x$ that

$$
(N N y) * u \leq(N N y) * x \leq(N N y) *(x * z) \leq y *(x * z) .
$$

This implies that $x * z \in S_{y}(u)$. Therefore $S_{y}(u)$ is a subalgebra of X.

Proposition 3.9. Let X be a bounded BCK-algebra. Then the followings hold: for all $y, u, v \in X$,
(i) $S_{y}(u *(u * v)) \subseteq S_{y}(u) \cap S_{y}(v)$.
(ii) If in addition X is commutative, then $S_{y}(u \wedge v)=S_{y}(u) \cap S_{y}(v)$.

Proof. (i) The proof is straightforward by using (a_{7}) and Proposition 3.5(i).
(ii) Since X is commutative, $u \wedge v=u *(u * v)$. Then by (i), we only need to prove that $S_{y}(u) \cap S_{y}(v) \subseteq S_{y}(u \wedge v)$. Let $x \in S_{y}(u) \cap S_{y}(v)$. From $x \in S_{y}(u)$, we get $(N N y) * u \leq y * x$. We note that, since X is commutative, we have $N N y=y$. Thus $y * u \leq y * x$ and so $y *(y * x) \leq$ $y *(y * u)$, that is, $x \wedge y \leq u \wedge y$. Similarly, from $x \in S_{y}(v)$, we have $x \wedge y \leq v \wedge y$. Therefore $x \wedge y \leq(u \wedge y) \wedge(v \wedge y)=y \wedge(u \wedge v)$, that is, $y *(y * x) \leq y *(y *(u \wedge v))$. Thus, using (a_{4}), we conclude $y *(y *(y *(u \wedge v))) \leq y *(y *(y * x))$ and so, by $\left(a_{6}\right)$, we get $y *(u \wedge v) \leq y * x$. From this follows that $N N y *(u \wedge v) \leq y * x$ and so $x \in S_{y}(u \wedge v)$. Hence $S_{y}(u) \cap S_{y}(v) \subseteq S_{y}(u \wedge v)$ and so the proof is completed.

Proposition 3.10. Let X be a bounded commutative BCK-algebra and $u, v \in X$. Then the following hold:
(i) $S_{y}(u)=S_{y}(v)$ if and only if $y * u=y * v$.
(ii) If $u, v \leq y$, then $S_{y}(u)=S_{y}(v) \Leftrightarrow u=v$.

Proof. (i) Let $S_{y}(u)=S_{y}(v)$. Since $u \in S_{y}(u)$, we get $u \in S_{y}(v)$ and so $(N N y) * v \leq y * u$. Thus by the commutatively of X, we get $y * v \leq y * u$. Similarly, from $v \in S_{y}(v)$ we obtain $y * u \leq y * v$, therefore $y * u=y * v$.

Conversely, assume that $y * u=y * v$. Then by the commutatively of $X, x \in S_{y}(u)$ if and only if $y * u \leq y * x$ if and only if $y * v \leq y * x$ if and only if $x \in S_{y}(v)$. Therefore $S_{y}(u)=S_{y}(v)$.
(ii) Let $S_{y}(u)=S_{y}(v)$. From (i), we have $y * u=y * v$ and so $y *(y * u)=y *(y * v)$. Hence by the commutatively of $X, u \wedge y=v \wedge y$, and so from $u, v \leq y$, we conclude $u=v$.

Conversely, it is obvious.
Using Propositions 3.5 and 3.10(ii), we have the following result:
Corollary 3.11. Let X be a bounded commutative BCK-algebra and $y \in X$. Then for any $u, v \in A(y)$,

$$
S_{y}(u)=S_{y}(v) \Leftrightarrow u=v
$$

The following example shows that the commutative property of X in Corollary 3.11 is necessary.

Example 3.12. Let $X=\{0, a, b, c\}$. Define the operation $*$ on X by the following table:

$*$	0	a	b	c
0	0	0	0	0
a	a	0	a	0
b	b	b	0	0
c	c	c	c	0

Then $(X ; *, 0)$ is a $B C K$-algebra, but it is not commutative because $c *(c * a)=0 \neq a=a *(a * c)$. Routine calculations show that $S_{c}(a)=$ $S_{c}(b)=\{0, a, b\}$, which does not imply $a=b$.

Next, we characterize the involutive $B C K$-algebras.

Proposition 3.13. Let X be a bounded BCK-algebra. Then the following are equivalent:
(i) X is involutive.
(ii) $(\forall u, v \in X) S_{1}(u)=S_{1}(v)$ implies $u=v$.

Proof. (i) \Rightarrow (ii) Let $u, v \in X$ be such that $S_{1}(u)=S_{1}(v)$. From $u \in S_{1}(u)$, we get $u \in S_{1}(v)$ and so $N N 1 * v \leq N u$, that is, $N v \leq N u$. Thus using (a_{4}), we have $N N u \leq N N v$ and so by (i), we conclude $u \leq v$. Similarly, we can show that $v \leq u$. Therefore $u=v$.
(ii) Let u be an arbitrary element of X and assume that $x \in S_{1}(u)$. Then $N N 1 * u \leq N x$, and so, since $N N 1=1$, we get $N u \leq N x$. Hence by $\left(a_{6}\right), N(N N u) \leq N x$, that is $x \in S_{1}(N N u)$, hence $S_{1}(u) \subseteq$ $S_{1}(N N u)$. The reverse inclusion follows from $N N u \leq u$ and Proposition 3.5(i). Thus $S_{1}(u)=S_{1}(N N u)$ and so by (ii), $N N u=u$. Therefore X is involutive.

The following theorem provides a property for a bounded $B C K$ algebra to be a commutative chain.

Theorem 3.14. Let X be a bounded BCK-algebra. Then the following are equivalent:
(i) X is a commutative BCK-chain.
(ii) $S_{y}(u)=A(u)$ for any $y, u \in X$ with $y \not \leq u$.

Proof. (i) \Rightarrow (ii)) Let $y, u \in X$ be such that $y \not \leq u$ and let $z \in S_{y}(u)$. Since X is a $B C K$-chain, $y \leq z$ or $z<y$. If $y \leq z$, then from $z \in S_{y}(u)$ we get $(N N y) * u \leq y * z=0$ and so, by the commutatively of X, we obtain $y * u=0$, that is, $y \leq u$, which is a contradiction with assumption $y \not \leq u$. Thus $z<y$. We assert that $z \leq u$. If not, then $u<z$. Thus by $\left(a_{4}\right)$, we obtain $(N N y) * z \leq(N N y) * u$ and so by the commutatively of X, we have

$$
\begin{equation*}
y * z \leq y * u \tag{1}
\end{equation*}
$$

On the other hand, by the commutatively of X, from $z \in S_{y}(u)$, we get

$$
\begin{equation*}
y * u \leq y * z . \tag{2}
\end{equation*}
$$

From (1) and (2), we get $y * z=y * u$. Thus $y *(y * z)=y *(y * u)$ and so, we conclude

$$
\begin{equation*}
y \wedge z=y \wedge u \tag{3}
\end{equation*}
$$

Now, from $y \not \leq u$, we get $u<y$, which implies $y \wedge u=u$. Also, from $z \leq y$, we have $y \wedge z=z$. Thus, by (3), we get $z=u$, which is a contradiction with assumption $u<z$. Hence $z \leq u$ and so $z \in A(u)$. We have shown that $S_{y}(u) \subseteq A(u)$. But by Proposition $3.7(\mathrm{i}), A(u) \subseteq S_{y}(u)$. Therefore $S_{y}(u)=A(u)$.
(ii) \Rightarrow (i) Assume that $x, y \in X$. Obviously, $y \leq y *(y * x)$ or $y \not \leq$ $y *(y * x)$. If $y \leq y *(y * x)$, then by $\left(a_{2}\right)$, we get $y *(y * x)=y$ and so $y *(y *(y * x))=y * y=0$. But, by $\left(a_{6}\right), y *(y *(y * x))=y * x$. Hence $y * x=0$, that is, $y \leq x$. If $y \not \leq y *(y * x)$, then by (ii), $S_{y}(y *(y * x))=A(y *(y * x))$. Using $\left(a_{3}\right),\left(a_{6}\right)$ and axiom (BCK-1), we get

$$
\begin{equation*}
(N N y) *(y *(y * x))=N(y *(y * x)) * N y \leq y *(y *(y * x))=y * x . \tag{4}
\end{equation*}
$$

This implies that $x \in S_{y}(y *(y * x))$ and so by (ii), $x \in A(y *(y * x))$, that is, $x \leq y *(y * x)$. On the other hand, $y *(y * x) \leq y$. Thus $x \leq y$. Up to now, we have shown that X is a $B C K$-chain. To prove the commutatively of X, assume that $x, y \in X$. Since X is a $B C K$-chain, without loss the generality, we may assume that $x *(x * y) \leq y *(y * x)$. We assert that $y *(y * x) \leq x *(x * y)$. If not, then

$$
\begin{equation*}
y *(y * x) \not \leq x *(x * y) . \tag{5}
\end{equation*}
$$

Since $y *(y * x) \leq x$, it follows from (5) that $x \not \leq x *(x * y)$. Hence by (ii), we have $S_{x}(x *(x * y))=A(x *(x * y))$. Similar to the argument of (4), we have $y \in S_{x}(x *(x * y))$. Thus $y \in A(x *(x * y))$ and so $y \leq x *(x * y)$. On the other hand, $y *(y * x) \leq y$. Hence $y *(y * x) \leq x *(x * y)$, which is a contradiction with (5). Thus $y *(y * x) \leq x *(x * y)$ and so $y *(y * x)=x *(x * y)$. Therefore X is commutative and the proof is completed.

Let X be a commutative BCK-lattice. For any element $y \in X$, we denote $L(y, X):=\left\{S_{y}(u) \mid u \in X\right\}$ and define operations ∇ and \triangle on $L(y, X)$ as follows: for any $u, v \in X$,

$$
\begin{equation*}
S_{y}(u) \nabla S_{y}(v):=S_{y}(u \wedge v) \quad ; \quad S_{y}(u) \triangle S_{y}(v):=S_{y}(u \vee v) \tag{6}
\end{equation*}
$$

Theorem 3.15. Let X be a commutative BCK-lattice and let operations ∇ and \triangle are defined as (6). Then $(L(y, X) ; \nabla, \triangle)$ is a bounded distributive lattice.

Proof. Let $S_{y}(u), S_{y}(v) \in L(y, X)$. Obviously, by Proposition 3.9(ii), $S_{y}(u \wedge s)$ is the infimum of $S_{y}(u)$ and $S_{y}(v)$. Since $u, v \leq u \vee v$, from Proposition 3.5(i), we get $S_{y}(u), S_{y}(v) \subseteq S_{y}(u \vee v)$. Now let $S_{y}(z) \in$ $L(y, X)$ be such that $S_{y}(u), S_{y}(v) \subseteq S_{y}(z)$. Then from $u \in S_{y}(u)$, we have $u \in S_{y}(z)$ and so $(N N y) * z \leq y * u$. Similarly, $(N N y) * z \leq y * v$. Hence $(N N y) * z \leq(y * u) \wedge(y * v)$, and so, using Theorem $2.5\left(c_{1}\right)$, we get $(N N y) * z \leq y *(u \vee v)$. This implies $u \vee v \in S_{y}(z)$. Then by Proposition 3.7(i), $S_{y}(u \vee s) \subseteq S_{y}(z)$. Hence $S_{y}(u \vee v)$ is the supremum of $S_{y}(u)$ and $S_{y}(v)$. Therefore $(L(y, X) ; \nabla, \triangle)$ is a lattice. By Proposition 3.5, $S_{y}(0)$ and $S_{y}(1)=X$ are the least element and greatest upper of $L(y, X)$ respectively, and consequently X is bounded. It remains to prove that $L(y, X)$ is distributive. For this, by (6) and the distributivity of X, it is easily seen that

$$
\begin{aligned}
S_{y}(z) \nabla\left(\left(S_{y}(u) \triangle S_{y}(v)\right)\right. & =S_{y}(z \wedge(u \vee v)) \\
& =S_{y}((z \wedge u) \vee(z \wedge v)) \\
& =S_{y}(z \wedge u) \triangle S_{y}(z \wedge v) \\
& =\left(S_{y}(z) \nabla S_{y}(u)\right) \triangle\left(S_{y}(z) \nabla S_{y}(v)\right),
\end{aligned}
$$

for any $y, z, u, v \in X$. Therefore $(L(y, X) ; \nabla, \triangle)$ is a bounded distributive lattice.

The subset $S_{y}(u)$ is not necessary to be an ideal even if X be a commutative BCK-chain as shown in the following example.

Example 3.16. Let $X=\{0, a, 1\}$. Define the operation $*$ on X by the following table:

$*$	0	a	1
0	0	0	0
a	a	0	0
1	1	a	0

Then $(X ; *, 0)$ is a commutative $B C K$-chain. Routine calculations show that $S_{1}(a)=\{0, a\}$ which is not an ideal of X because $1 * a=a \in S_{1}(a)$ but $1 \notin S_{1}(a)$.

Next, we give a property for $S_{y}(u)$ to be an ideal.

Proposition 3.17. Let X be a commutative BCK-chain. Then the following are equivalent:
(i) X is implicative.
(ii) For any $y, u \in X, S_{y}(u)$ is an ideal of X.

Proof. (i) \Rightarrow (ii) Let $y, u \in X$. If $y \leq u$, then by Proposition 3.3(ii), $S_{y}(u)=X$ and so clearly $S_{y}(u)$ is an ideal of X. Now, assume that $y \not \leq u$. Then by Theorem 3.14, $S_{y}(u)=A(u)$. Hence it suffices to show that $A(u)$ is an ideal of X. Assume that $x, y * x \in A(u)$. Then $x \leq u$ and $y * x \leq u$ and so $x * u=0$ and $(y * x) * u=0$. By Theorem $2.2(i i i)$, X is a positive implicative and so, we get $(y * u) * u=y * u$. Using $\left(a_{5}\right)$ and $\left(a_{3}\right)$, we have

$$
\begin{aligned}
y * u=(y * u) * 0=(y * u) *(x * u) & =((y * u) * u) *(x * u) \\
& \leq(y * u) * x=(y * x) * u=0 .
\end{aligned}
$$

Thus $y * u=0$, that is, $y \in A(u)$. Therefore $A(u)$ is an ideal of X.
(ii) \Rightarrow (i) By Theorem 2.2(iii), it suffices to show that X is a positive implicative $B C K$-algebra. Let $x, y \in X$. Then by (ii), $A(x)$ is an ideal of X. Taking, $z:=y *(y * x) \leq x$ and $w:=y *((y * x) * x)$, it follows from $y *(y * x) \leq x$ that $z \in A(x)$. Also, we have

$$
\begin{array}{rlr}
w * z & =(y *((y * x) * x)) *(y *(y * x)) & \\
& \leq(y * x) *((y * x) * x) & \text { by axiom (BCK-1) } \\
& \leq y *(y * x) & \text { by }\left(a_{5}\right) \\
& \leq x \in A(x) . & \text { by }\left(a_{7}\right)
\end{array}
$$

Hence $w * z \in A(x)$ and so from $z \in A(x)$ and the fact that $A(x)$ is an ideal of X, we conclude $w \in A(x)$, that is, $y *((y * x) * x) \in A(x)$. Thus $y *((y * x) * x) \leq x$ and so by $\left(a_{8}\right), y * x \leq(y * x) * x$. On the other hand, $(y * x) * x \leq y * x$. Therefore $(y * x) * x=y * x$, and so by Theorem $2.2(i i), X$ is a positive implicative $B C K$-algebra.
Proposition 3.18. Let X be an involutive $B C K$-algebra. Then, $S_{y}(u)$ is the least element of $L(y, X)$ with property $A(u) \subseteq S_{y}(u)$ for any $y, u \in$ X.

Proof. By Proposition 3.7(i), the property $A(u) \subseteq S_{y}(u)$ holds. Now, assume that $A(u) \subseteq S_{y}(v)$ for some $v \in X$. If $x \in S_{y}(u)$, then $(N N y) *$
$u \leq y * x$ and so by the involutivity of $X, y * u \leq y * x$. Thus, using (a_{8}), we get $y *(y * x) \leq u$, that is, $y *(y * x) \in A(u)$. Hence $y *(y * x) \in S_{y}(v)$ which yields $y * v \leq y *(y *(y * x))$. Then by $\left(a_{6}\right)$, we get $y * v \leq y * x$ and consequently, $x \in S_{y}(v)$. Therefore $S_{y}(u) \subseteq S_{y}(v)$ and so the proof is completed.

The converse of Proposition 3.18 is false as shown in the following example.

Example 3.19. Let $X=\{0, a, 1\}$. Define the operation $*$ on X by the following table:

$$
\begin{array}{c|ccc}
* & 0 & a & 1 \\
\hline 0 & 0 & 0 & 0 \\
a & a & 0 & 0 \\
1 & 1 & 1 & 0
\end{array}
$$

Then $(X ; *, 0)$ is a $B C K$-chain. Routine calculations show that

$$
\begin{gathered}
S_{y}(u)=X \text { for all } u \in X \text { and } y=0, a ; \\
A(1)=S_{1}(1)=X \nsubseteq\{0, a\}=S_{1}(0)=S_{1}(a)
\end{gathered}
$$

Therefore X satisfies Proposition 3.18 but it is not involutive because $0=N N a \neq a$.

In the following, we show that $S_{y}(u)$ inherits all properties of a commutative BCK-lattice.

Proposition 3.20. If X is a commutative BCK-lattice, then so is $S_{y}(u)$ for all $y, u \in X$.

Proof. By Theorem 3.8, $S_{y}(u)$ is a subalgebra and so it is a commutative $B C K$-algebra. Let $x, z \in S_{y}(u)$. Then $(N N y) * u \leq y * x$. On the other hand, it follows from $x \wedge z \leq x$ that $y * x \leq y *(x \wedge z)$. Therefore $(N N y) * u \leq y *(x \wedge z)$, which yields $x \wedge z \in S_{y}(u)$. Hence $S_{y}(u)$ is closed under \wedge. Also, using $\left(a_{8}\right)$, since $y * u \leq y * x$, we get $y *(y * x) \leq u$ and so $x \wedge y \leq u$. Similarly, from $y * u \leq y * z$, we conclude $z \wedge y \leq u$. Thus $(x \wedge y) \vee(z \wedge y) \leq u$ and so by the distributivity of X, we obtain $(x \vee z) \wedge y \leq u$, that is, $y *(y *(x \vee z)) \leq u$. Hence, using $\left(a_{8}\right)$, we get $y * u \leq y *(x \vee z)$ and so by $N N y \leq y$, we get $(N N y) * u \leq y *(x \vee z)$ which
yields $x \vee z \in S_{y}(u)$. Therefore $S_{y}(u)$ is closed under \vee. Summarizing the previous results, we conclude that $S_{y}(u)$ is a commutative $B C K$-lattice.

Conclusion and future work

It is well known that every initial set of a BCK-algebra is a subalgebra. But a subalgebra is not necessarily an initial set. In this paper, we have introduced and studied a new kind of subalgebras different from the initial sets. For this purpose, we have assigned a subset of X , denoted by $S_{y}(u)$, for any two elements y, u of a BCK-algebra X and have investigated some related properties. We have shown that $S_{y}(u)$ is a subalgebra of X for all $y, u \in X$. Moreover, we have proved that a bounded BCKalgebra X is a commutative BCK-chain if and only if every $S_{y}(u)$ is an initial set of X. Finally, assuming $\mathrm{L}(\mathrm{y}, \mathrm{X})$ denote the set of all $S_{y}(u)$ where $u \in X$, we have proved that $S_{y}(u)$ is the least element of $\mathrm{L}(\mathrm{y}, \mathrm{X})$ with property $A(u) \subseteq S_{y}(u)$.

Our future work is to introduce and study this kind of subalgebras in logical algebraic structures such as (pseudo)BCH-algebras, (pseudo)BEalgebras, (pseudo)CI-algebras and etc.

Acknowledgements

The author would like to thank the referees for the careful reading and valuable comments which helped to improve the manuscript.

References

[1] Y. Imai and K. Iséki, On axiom systems of propositional calculi, XIV. Proc. Japan Academy, 42 (1966), 19-22.
[2] K. Iséki, An algebra related with a propositional calculus, Proc. Japan Academy, 42 (1966), 26-29.
[3] K. Iséki, On bounded BCK-algebras, Math. Sem. Notes, 3 (1975), 23-33.
[4] K. Iséki, On BCI-algebras, Math. Sem. Notes, 8 (1980), 125-130.
[5] K. Iséki and S. Tanaka, Ideal theory of BCK-algebras, Math. Japonica, 21 (1976), 351-366.
[6] J. Meng, Commutative ideals in BCK-algebras, Pure Appl. Math. (in P.R. China), 9 (1991), 49-53.
[7] J. Meng and Y.B. Jun, BCK-Algebras, 294. Kyung Moon Sa, Korea, 1994.
[8] S. Tanaca, A new class of algebras, Math. Sem. Notes, 5 (1975), 37-43.
[9] S. Tanaca, Examples of BCK-algebras, Math. Sem. Notes, 3 (1975), 75-82.
[10] H. Yisheng, BCI-Algebra, Science Press, China, 2006.

Habib Harizavi

Associate Professor of Mathematics
Department of Mathematics
Shahid Chamran University of Ahvaz
Ahvaz, Iran
E-mail: harizavi@scu.ac.ir

[^0]: Received: April 2020; Accepted: March 2021

