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Abstract. In this paper, for any two elements y, u of a BCK-algebra X,
we assign a subset of X, denoted by Sy(u), and investigate some related
properties. We show that Sy(u) is a subalgebra of X for all y, u ∈ X.
Using these subalgebras, we characterize the involutive BCK-algebras,
and give a necessary and sufficient condition for a bounded BCK-algebra
to be a commutative BCK-chain. Finally, we show that the set of all
subalgebras Sy(u) forms a bounded distributive lattice.
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1 Introduction

The notion of I-algebras was introduced as a generalization of set-the-
oretic difference and propositional calculi in [1]. In the same year, the
BCK-algebras as a generalization of I-algebras; and the BCI-algebras as
a generalization of BCK-algebras were introduced in [2]. These alge-
bras are two important classes of logical algebras. Commutative BCK-
algebras are an important class of BCK-algebras, which forms a class
of the lower semilattice [8, 9]. Other important types of BCK-algebras
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are implicative and positive implicative which introduced by K. Iseki
(1975). It is proved that a BCK-algebra is implicative and if and only
if it is commutative and positive implicative. The concept of an ideal in
a BCK-algebra was introduced in [5, 4]. One important type of ideals
is commutative, which has a close relationship with commutative BCK-
algebras, in the sense that a BCK-algebra X is commutative if and only
if every ideal of X is commutative [6].

It is well known that every initial set of a BCK-algebra is a subalge-
bra. But a subalgebra is not necessarily an initial set. In this paper, we
introduce and study a new kind of subalgebras different from the initial
sets. For this purpose, we assign a subset of X, denoted by Sy(u), for
any two elements y, u of a BCK-algebra X and investigate some related
properties. We show that Sy(u) is a subalgebra of X for all y, u ∈ X.
Also, in a commutative BCK-algebra, we give a necessary and sufficient
condition for Sy(u) to be an ideal. Moreover, we prove that a bounded
BCK-algebra X is a commutative BCK-chain if and only if every Sy(u)
is an initial set of X. We show that the set of all such subsets forms
a bounded distributive lattice. Finally, assuming L(y,X) denote the set
of all Sy(u) where u ∈ X, we prove that Sy(u) is the least element of
L(y,X) with property A(u) ⊆ Sy(u).

2 Preliminaries

In this section, we review some definitions and known results, which will
be used in this paper. The reader is referred to [10, 7] for more details.

Definition 2.1. By a BCK-algebra we mean an algebra (X; ∗, 0) of
type (2, 0) satisfying the following axioms: for all x, y, z ∈ X,
BCK-1: ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0,
BCK-2 : (x ∗ (x ∗ y)) ∗ y = 0,
BCK-3 : x ∗ x = 0,
BCK-4 : x ∗ y = 0 and y ∗ x = 0 imply x = y,
BCK-5 : 0 ∗ x = 0.

For brevity, we often write X instead of (X; ∗, 0) for a BCK-algebra.
In any BCK-algebra X, one can define a partial order ≤ by putting x ≤ y
if and only if x ∗ y = 0.
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In any BCK-algebra X, the followings hold:
(a1) x ∗ 0 = x,
(a2) x ∗ y ≤ x,
(a3) (x ∗ y) ∗ z = (x ∗ z) ∗ y,
(a4) x ≤ y implies x ∗ z ≤ y ∗ z and z ∗ y ≤ z ∗ x,
(a5) (x ∗ z) ∗ (y ∗ z) ≤ x ∗ y,
(a6) x ∗ (x ∗ (x ∗ y)) = x ∗ y,
(a7) x ∗ (x ∗ y) ≤ y,
(a8) x ∗ y ≤ z ⇔ x ∗ z ≤ y,
for any x, y, z ∈ X.

A subset A of a BCK-algebra X is called:
(i) subalgebra of X if it is closed under ∗, multiplication of X, i.e.,
x ∗ y ∈ A for all x, y ∈ A;
(ii) ideal of X if it satisfies (i) 0 ∈ A and (ii) x, y ∗ x ∈ A imply y ∈ A
for all x, y ∈ X.

A BCK-algebra X is called:
(i) chain if x ≤ y or y ≤ x for all x, y ∈ X;
(ii) bounded if it has the greatest element (denoted by 1). For any x ∈ X,
we denote 1 ∗ x by Nx;
(iii) commutative if it satisfies the condition: x ∗ (x ∗ y) = y ∗ (y ∗ x) for
all x ∈ X. In this case, x ∗ (x ∗ y) (and y ∗ (y ∗ x)) is the greatest lower
bound of x and y with respect to BCK-order ≤, and we denote it by
x ∧ y;
(iv) positive implicative if it satisfies the condition: (x ∗ y) ∗ z = (x ∗ z) ∗
(y ∗ z);
(v) implicative if it satisfies the condition: x∗(y∗x) = x for all x, y ∈ X.

Let X be a commutative BCK-algebra and A ⊆ X. Then the set

Ann(A) := {x ∈ X|x ∧ a = 0 for all a ∈ A}

is called the annihilator of A.

Note that in a bounded BCK-algebra the property NNx=x is not
true in general. An element x ∈ X is called involution if it satisfies
NNx=x, and a bounded BCK-algebra X is called involutive if every
element x ∈ X is involutive.
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Theorem 2.2. [10] Let X be a BCK-algebra. Then
(i) X is commutative if and only if x ∗ (x ∗ y) ≤ y ∗ (y ∗ x) for all

x, y ∈ X;
(ii) X is positive implicative if and only if (x ∗ y) ∗ y = x ∗ y for any

x, y ∈ X;
(iii) X is implicative if and only if it is commutative and positive

implicative.

A partial ordered set P is said to be lattice if for any two elements
x, y ∈ P there exist the greatest lower bound of x, y (denoted by x ∧ y)
and the least upper bound of x, y (denoted by x ∨ y).

A BCK-algebra X is called a BCK-lattice if it with respect to its
BCK-ordering forms a lattice.

Theorem 2.3. [7] In any bounded commutative BCK-algebra X, the
followings hold: for all x, y ∈ X,
(b1) NNx = x,
(b2) Nx ∗Ny = y ∗ x,
(b3) Nx ∨Ny = N(x ∧ y) and Nx ∧Ny = N(x ∨ y).

Theorem 2.4. [7] Every bounded commutative BCK-algebra is a com-
mutative BCK-lattice with x∧ y = y ∗ (y ∗x) and x∨ y = N(Nx∧Ny).

Theorem 2.5. [10] Let X be a commutative BCK-lattice. Then the
following identities hold: for any x, y, z ∈ X,
(c1) x ∗ (y ∨ z) = (x ∗ y) ∧ (x ∗ z),
(c2) x ∗ (y ∧ z) = (x ∗ y) ∨ (x ∗ z),
(c3) (x ∨ y) ∗ z = (x ∗ z) ∨ (y ∗ z).

3 On Class of Subalgebras of BCK-algebras

In this section, we introduce the special subsets of bounded BCK-algebras
and investigate some related properties.

Definition 3.1. For any two elements y, u of a bounded BCK-algebra
X, we denote

Sy(u) := {x ∈ X | (NNy) ∗ u ≤ y ∗ x}.
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By (a7), 0 ∈ Sy(u) for any y, u ∈ X.

The following proposition shows that Sy(u) is a generalization of the
annihilator.

Proposition 3.2. If X is a bounded commutative BCK-algebra, then
for all y ∈ X, Sy(0) = Ann(y).

Proof. Observe that: x ∈ Sy(0)⇔ NNy ≤ y ∗ x⇔ y ≤ y ∗ x⇔ y ∗ x =
y ⇔ y ∗ (y ∗ x) = 0⇔ x ∧ y = 0⇔ x ∈ Ann(y). �

Proposition 3.3. Let X be a bounded BCK-algebra. Then the follow-
ings hold, for any y, u ∈ X
(i) 0 ∈ Sy(u).
(ii) If y ≤ u, then Sy(u) = X.
(iii) If in addition X is involutive, then Sy(u) = X implies y ≤ u.

Proof.(i) Let y, u ∈ X. Then, using (a2) and (a7), we get NNy ∗ u ≤
NNy ≤ y = y ∗ 0. This implies 0 ∈ Sy(u).

(ii) Let y ≤ u. Then, by (a4), NNy ≤ NNu. But NNu ≤ u. Hence
NNy ≤ u and so (NNy) ∗ u = 0 ≤ y ∗ x for any x ∈ X. This implies
X ⊆ Sy(u) and so Sy(u) = X.

(iii) Let Sy(u) = X. Then 1 ∈ Sy(u) and so (NNy) ∗ u ≤ y ∗ 1 = 0.
Thus (NNy) ∗ u = 0 and so, since X is involutive, y ∗ u = 0, that is,
y ≤ u. �

The following example shows that the involutive condition in Propo-
sition 3.3(iii) is necessary.

Example 3.4. Let X = {0, a, b, 1}. Define the operation ∗ on X by the
following table:

∗ 0 a b 1

0 0 0 0 0
a a 0 0 0
b b a 0 0
1 1 a a 0

Then X is a BCK-algebra, but it is not involutive because NNb =
1 ∗ (1 ∗ b) = a. Since NNb ∗ a = 0, it follows that Sb(a) = X, but b 6≤ a.
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Proposition 3.5. Let X be a bounded BCK-algebra. Then the follow-
ings hold, for any y, u, v ∈ X
(i) if u ≤ v, then Sy(u) ⊆ Sy(v).
(ii) if in addition X is commutative and u, v ≤ y, then Sy(u) ⊆ Sy(v)
implies u ≤ v.

Proof. (i) Let u ≤ v. Then (NNy) ∗ v ≤ (NNy) ∗u. Now, assume that
x ∈ Sy(u). Then (NNy) ∗ u ≤ y ∗ x and so (NNy) ∗ v ≤ y ∗ x. Hence
x ∈ Sy(v).

(ii) Let Sy(u) ⊆ Sy(v). Then it follows from u ∈ Sy(u) that u ∈ Sy(v)
and so NNy∗v ≤ y∗u. But, since X is commutative, we have NNy = y.
Thus y ∗ v ≤ y ∗ u and so by (a4), we get y ∗ (y ∗ u) ≤ y ∗ (y ∗ v). Thus,
using the commutatively of X, we obtain y ∧ u ≤ y ∧ v and so from
u, v ≤ y, we conclude u ≤ v. �

The commutative property in Proposition 3.5 is necessary as shown
in the following example.

Example 3.6. Let X = {0, a, b, c, 1}. Define the operation ∗ on X by
the following table:

∗ 0 a b c 1

0 0 0 0 0 0
a a 0 a 0 0
b b b 0 0 0
c c c c 0 0
1 1 1 1 1 0

Then (X; ∗, 0) is a BCK-algebra, but it is not commutative because
1 ∗ (1 ∗ a) = 0 6= a = a ∗ (a ∗ 1). By simple calculation, we have
Sc(b) = {0, a, b} ⊆ X = Sc(a) but b 6≤ a.

The relationship between Sy(u) and the initial set A(u) is introduced
in the following.

Proposition 3.7. Let X be a bounded BCK-algebra and y, u ∈ X. Then
the followings hold:

(i) A(u) ⊆ Sy(u), in which A(u) = {x ∈ X | x ≤ u}.
(ii) Sy(u) = A(z) if and only if z is the maximum of Sy(u).
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Proof. (i) Let x ∈ A(u). Then x ≤ u and so (NNy) ∗u ≤ (NNy) ∗x ≤
y ∗ x. Therefore x ∈ Sy(u).

(ii) If Sy(u) = A(z), then clearly the result holds.
Conversely, assume that z ∈ Sy(u) is the maximum of Sy(u). Then

for all x ∈ Sy(u), x ≤ z . From this follows that Sy(u) ⊆ A(z). Now, let
x ∈ A(z). Then x ≤ z and so y ∗ z ≤ y ∗ x. On the other hand, from
z ∈ Sy(u), we have (NNy) ∗ u ≤ y ∗ z. Thus (NNy) ∗ u ≤ y ∗ x which
yields x ∈ Sy(u). Therefore A(z) ⊆ Sy(u) and so Sy(u) = A(z). �

Note that Sy(u) is not necessary to be contained in A(u). Consider
Example 3.6, routine calculations show that Sc(a) = X 6⊆ {0, a} = A(a).

Theorem 3.8. Let X be a bounded BCK-algebra. Then Sy(u) is a
subalgebra of X for any y, u ∈ X.

Proof. Obviously, 0 ∈ Sy(u). Let x, z ∈ Sy(u). Then by (a4), it follows
from x ∗ z ≤ x that

(NNy) ∗ u ≤ (NNy) ∗ x ≤ (NNy) ∗ (x ∗ z) ≤ y ∗ (x ∗ z).

This implies that x ∗ z ∈ Sy(u). Therefore Sy(u) is a subalgebra of X.
�

Proposition 3.9. Let X be a bounded BCK-algebra. Then the follow-
ings hold: for all y, u, v ∈ X,
(i) Sy(u ∗ (u ∗ v)) ⊆ Sy(u) ∩ Sy(v).
(ii) If in addition X is commutative, then Sy(u ∧ v) = Sy(u) ∩ Sy(v).

Proof. (i) The proof is straightforward by using (a7) and Proposition
3.5(i).

(ii) Since X is commutative, u∧ v = u ∗ (u ∗ v). Then by (i), we only
need to prove that Sy(u) ∩ Sy(v) ⊆ Sy(u ∧ v). Let x ∈ Sy(u) ∩ Sy(v).
From x ∈ Sy(u), we get (NNy) ∗ u ≤ y ∗ x. We note that, since X is
commutative, we have NNy = y. Thus y ∗ u ≤ y ∗ x and so y ∗ (y ∗ x) ≤
y ∗ (y ∗ u), that is, x ∧ y ≤ u ∧ y. Similarly, from x ∈ Sy(v), we have
x ∧ y ≤ v ∧ y. Therefore x ∧ y ≤ (u ∧ y) ∧ (v ∧ y) = y ∧ (u ∧ v),
that is, y ∗ (y ∗ x) ≤ y ∗ (y ∗ (u ∧ v)). Thus, using (a4), we conclude
y∗(y∗(y∗(u∧v))) ≤ y∗(y∗(y∗x)) and so, by (a6), we get y∗(u∧v) ≤ y∗x.
From this follows that NNy ∗ (u∧v) ≤ y ∗x and so x ∈ Sy(u∧v). Hence
Sy(u) ∩ Sy(v) ⊆ Sy(u ∧ v) and so the proof is completed. �
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Proposition 3.10. Let X be a bounded commutative BCK-algebra and
u, v ∈ X. Then the following hold:
(i) Sy(u) = Sy(v) if and only if y ∗ u = y ∗ v.
(ii) If u, v ≤ y, then Sy(u) = Sy(v)⇔ u = v.

Proof. (i) Let Sy(u) = Sy(v). Since u ∈ Sy(u), we get u ∈ Sy(v) and so
(NNy)∗v ≤ y∗u. Thus by the commutatively of X, we get y∗v ≤ y∗u.
Similarly, from v ∈ Sy(v) we obtain y ∗ u ≤ y ∗ v, therefore y ∗ u = y ∗ v.

Conversely, assume that y ∗ u = y ∗ v. Then by the commutatively
of X, x ∈ Sy(u) if and only if y ∗ u ≤ y ∗ x if and only if y ∗ v ≤ y ∗ x if
and only if x ∈ Sy(v). Therefore Sy(u) = Sy(v).

(ii) Let Sy(u) = Sy(v). From (i), we have y ∗ u = y ∗ v and so
y ∗ (y ∗u) = y ∗ (y ∗ v). Hence by the commutatively of X, u∧ y = v∧ y,
and so from u, v ≤ y, we conclude u = v.

Conversely, it is obvious. �

Using Propositions 3.5 and 3.10(ii), we have the following result:

Corollary 3.11. Let X be a bounded commutative BCK-algebra and
y ∈ X. Then for any u, v ∈ A(y),

Sy(u) = Sy(v)⇔ u = v.

The following example shows that the commutative property of X
in Corollary 3.11 is necessary.

Example 3.12. Let X = {0, a, b, c}. Define the operation ∗ on X by
the following table:

∗ 0 a b c

0 0 0 0 0
a a 0 a 0
b b b 0 0
c c c c 0

Then (X; ∗, 0) is a BCK-algebra, but it is not commutative because
c ∗ (c ∗ a) = 0 6= a = a ∗ (a ∗ c). Routine calculations show that Sc(a) =
Sc(b) = {0, a, b}, which does not imply a = b.

Next, we characterize the involutive BCK-algebras.
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Proposition 3.13. Let X be a bounded BCK-algebra. Then the follow-
ing are equivalent:
(i) X is involutive.
(ii) (∀u, v ∈ X) S1(u) = S1(v) implies u = v.

Proof. (i)⇒ (ii) Let u, v ∈ X be such that S1(u) = S1(v). From
u ∈ S1(u), we get u ∈ S1(v) and so NN1 ∗ v ≤ Nu, that is, Nv ≤ Nu.
Thus using (a4), we have NNu ≤ NNv and so by (i), we conclude u ≤ v.
Similarly, we can show that v ≤ u. Therefore u = v.

(ii) Let u be an arbitrary element of X and assume that x ∈ S1(u).
Then NN1 ∗ u ≤ Nx, and so, since NN1 = 1, we get Nu ≤ Nx.
Hence by (a6), N(NNu) ≤ Nx, that is x ∈ S1(NNu), hence S1(u) ⊆
S1(NNu). The reverse inclusion follows from NNu ≤ u and Proposition
3.5(i). Thus S1(u) = S1(NNu) and so by (ii), NNu = u. Therefore X
is involutive. �

The following theorem provides a property for a bounded BCK-
algebra to be a commutative chain.

Theorem 3.14. Let X be a bounded BCK-algebra. Then the following
are equivalent:
(i) X is a commutative BCK-chain.
(ii) Sy(u) = A(u) for any y, u ∈ X with y 6≤ u.

Proof. (i)⇒ (ii)) Let y, u ∈ X be such that y 6≤ u and let z ∈ Sy(u).
Since X is a BCK-chain, y ≤ z or z < y. If y ≤ z, then from z ∈ Sy(u)
we get (NNy) ∗ u ≤ y ∗ z = 0 and so, by the commutatively of X, we
obtain y∗u = 0, that is, y ≤ u, which is a contradiction with assumption
y 6≤ u. Thus z < y. We assert that z ≤ u. If not, then u < z. Thus by
(a4), we obtain (NNy) ∗ z ≤ (NNy) ∗u and so by the commutatively of
X, we have

y ∗ z ≤ y ∗ u. (1)

On the other hand, by the commutatively of X, from z ∈ Sy(u), we get

y ∗ u ≤ y ∗ z. (2)

From (1) and (2), we get y ∗ z = y ∗ u. Thus y ∗ (y ∗ z) = y ∗ (y ∗ u) and
so, we conclude

y ∧ z = y ∧ u. (3)
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Now, from y 6≤ u, we get u < y, which implies y∧u = u. Also, from z ≤ y
, we have y∧ z = z. Thus, by (3), we get z = u, which is a contradiction
with assumption u < z. Hence z ≤ u and so z ∈ A(u). We have shown
that Sy(u) ⊆ A(u). But by Proposition 3.7(i), A(u) ⊆ Sy(u). Therefore
Sy(u) = A(u).

(ii)⇒(i) Assume that x, y ∈ X. Obviously, y ≤ y ∗ (y ∗ x) or y 6≤
y ∗ (y ∗ x). If y ≤ y ∗ (y ∗ x), then by (a2), we get y ∗ (y ∗ x) = y and
so y ∗ (y ∗ (y ∗ x)) = y ∗ y = 0. But, by (a6), y ∗ (y ∗ (y ∗ x)) = y ∗ x.
Hence y ∗ x = 0, that is, y ≤ x. If y 6≤ y ∗ (y ∗ x), then by (ii),
Sy(y ∗ (y ∗x)) = A(y ∗ (y ∗x)). Using (a3), (a6) and axiom (BCK-1), we
get

(NNy)∗ (y ∗ (y ∗x)) = N(y ∗ (y ∗x))∗Ny ≤ y ∗ (y ∗ (y ∗x)) = y ∗x. (4)

This implies that x ∈ Sy(y ∗ (y ∗ x)) and so by (ii), x ∈ A(y ∗ (y ∗ x)),
that is, x ≤ y ∗ (y ∗ x). On the other hand, y ∗ (y ∗ x) ≤ y. Thus
x ≤ y. Up to now, we have shown that X is a BCK-chain. To prove the
commutatively of X, assume that x, y ∈ X. Since X is a BCK-chain,
without loss the generality, we may assume that x ∗ (x ∗ y) ≤ y ∗ (y ∗ x).
We assert that y ∗ (y ∗ x) ≤ x ∗ (x ∗ y). If not, then

y ∗ (y ∗ x) 6≤ x ∗ (x ∗ y). (5)

Since y∗(y∗x) ≤ x, it follows from (5) that x 6≤ x∗(x∗y). Hence by (ii),
we have Sx(x ∗ (x ∗ y)) = A(x ∗ (x ∗ y)). Similar to the argument of (4),
we have y ∈ Sx(x∗ (x∗y)). Thus y ∈ A(x∗ (x∗y)) and so y ≤ x∗ (x∗y).
On the other hand, y ∗ (y ∗ x) ≤ y. Hence y ∗ (y ∗ x) ≤ x ∗ (x ∗ y),
which is a contradiction with (5). Thus y ∗ (y ∗ x) ≤ x ∗ (x ∗ y) and so
y ∗ (y ∗ x) = x ∗ (x ∗ y). Therefore X is commutative and the proof is
completed. �

Let X be a commutative BCK-lattice. For any element y ∈ X, we
denote L(y,X) := {Sy(u) | u ∈ X} and define operations 5 and 4 on
L(y,X) as follows: for any u, v ∈ X,

Sy(u)5 Sy(v) := Sy(u ∧ v) ; Sy(u)4 Sy(v) := Sy(u ∨ v). (6)

Theorem 3.15. Let X be a commutative BCK-lattice and let opera-
tions 5 and 4 are defined as (6). Then (L(y,X);5,4) is a bounded
distributive lattice.
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Proof. Let Sy(u), Sy(v) ∈ L(y,X). Obviously, by Proposition 3.9(ii),
Sy(u ∧ s) is the infimum of Sy(u) and Sy(v). Since u, v ≤ u ∨ v, from
Proposition 3.5(i), we get Sy(u), Sy(v) ⊆ Sy(u ∨ v). Now let Sy(z) ∈
L(y,X) be such that Sy(u), Sy(v) ⊆ Sy(z). Then from u ∈ Sy(u), we
have u ∈ Sy(z) and so (NNy) ∗ z ≤ y ∗ u. Similarly, (NNy) ∗ z ≤ y ∗ v.
Hence (NNy)∗z ≤ (y∗u)∧(y∗v), and so, using Theorem 2.5(c1), we get
(NNy)∗z ≤ y∗(u∨v). This implies u∨v ∈ Sy(z). Then by Proposition
3.7(i), Sy(u ∨ s) ⊆ Sy(z). Hence Sy(u ∨ v) is the supremum of Sy(u)
and Sy(v). Therefore (L(y,X);5,4) is a lattice. By Proposition 3.5,
Sy(0) and Sy(1) = X are the least element and greatest upper of L(y,X)
respectively, and consequently X is bounded. It remains to prove that
L(y,X) is distributive. For this, by (6) and the distributivity of X, it is
easily seen that

Sy(z)5 ((Sy(u)4 Sy(v)) = Sy(z ∧ (u ∨ v))

= Sy((z ∧ u) ∨ (z ∧ v))

= Sy(z ∧ u)4 Sy(z ∧ v)

= (Sy(z)5 Sy(u))4 (Sy(z)5 Sy(v)),

for any y, z, u, v ∈ X. Therefore (L(y,X);5,4) is a bounded distribu-
tive lattice. �

The subset Sy(u) is not necessary to be an ideal even if X be a
commutative BCK-chain as shown in the following example.

Example 3.16. Let X = {0, a, 1}. Define the operation ∗ on X by the
following table:

∗ 0 a 1

0 0 0 0
a a 0 0
1 1 a 0

Then (X; ∗, 0) is a commutative BCK-chain. Routine calculations show
that S1(a) = {0, a} which is not an ideal of X because 1 ∗ a = a ∈ S1(a)
but 1 6∈ S1(a).

Next, we give a property for Sy(u) to be an ideal.
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Proposition 3.17. Let X be a commutative BCK-chain. Then the
following are equivalent:
(i) X is implicative.
(ii) For any y, u ∈ X, Sy(u) is an ideal of X.

Proof. (i)⇒(ii) Let y, u ∈ X. If y ≤ u, then by Proposition 3.3(ii),
Sy(u) = X and so clearly Sy(u) is an ideal of X. Now, assume that
y 6≤ u. Then by Theorem 3.14, Sy(u) = A(u). Hence it suffices to show
that A(u) is an ideal of X. Assume that x, y ∗ x ∈ A(u). Then x ≤ u
and y ∗ x ≤ u and so x ∗ u = 0 and (y ∗ x) ∗ u = 0. By Theorem 2.2(iii),
X is a positive implicative and so, we get (y ∗ u) ∗ u = y ∗ u. Using (a5)
and (a3), we have

y ∗ u = (y ∗ u) ∗ 0 = (y ∗ u) ∗ (x ∗ u) = ((y ∗ u) ∗ u) ∗ (x ∗ u)

≤ (y ∗ u) ∗ x = (y ∗ x) ∗ u = 0.

Thus y ∗ u = 0, that is, y ∈ A(u). Therefore A(u) is an ideal of X.
(ii)⇒(i) By Theorem 2.2(iii), it suffices to show that X is a positive

implicative BCK-algebra. Let x, y ∈ X. Then by (ii), A(x) is an ideal
of X. Taking, z := y ∗ (y ∗ x) ≤ x and w := y ∗ ((y ∗ x) ∗ x), it follows
from y ∗ (y ∗ x) ≤ x that z ∈ A(x). Also, we have

w ∗ z = (y ∗ ((y ∗ x) ∗ x)) ∗ (y ∗ (y ∗ x))

≤ (y ∗ x) ∗ ((y ∗ x) ∗ x) by axiom (BCK-1)

≤ y ∗ (y ∗ x) by (a5)

≤ x ∈ A(x). by (a7)

Hence w ∗ z ∈ A(x) and so from z ∈ A(x) and the fact that A(x) is an
ideal of X, we conclude w ∈ A(x), that is, y ∗ ((y ∗ x) ∗ x) ∈ A(x). Thus
y ∗ ((y ∗ x) ∗ x) ≤ x and so by (a8), y ∗ x ≤ (y ∗ x) ∗ x. On the other
hand, (y ∗x)∗x ≤ y ∗x. Therefore (y ∗x)∗x = y ∗x, and so by Theorem
2.2(ii), X is a positive implicative BCK-algebra. �

Proposition 3.18. Let X be an involutive BCK-algebra. Then, Sy(u)
is the least element of L(y,X) with property A(u) ⊆ Sy(u) for any y, u ∈
X.

Proof. By Proposition 3.7(i), the property A(u) ⊆ Sy(u) holds. Now,
assume that A(u) ⊆ Sy(v) for some v ∈ X. If x ∈ Sy(u), then (NNy) ∗
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u ≤ y ∗x and so by the involutivity of X, y ∗u ≤ y ∗x. Thus, using (a8),
we get y ∗ (y ∗x) ≤ u, that is, y ∗ (y ∗x) ∈ A(u). Hence y ∗ (y ∗x) ∈ Sy(v)
which yields y ∗ v ≤ y ∗ (y ∗ (y ∗ x)). Then by (a6), we get y ∗ v ≤ y ∗ x
and consequently, x ∈ Sy(v). Therefore Sy(u) ⊆ Sy(v) and so the proof
is completed. �

The converse of Proposition 3.18 is false as shown in the following
example.

Example 3.19. Let X = {0, a, 1}. Define the operation ∗ on X by the
following table:

∗ 0 a 1

0 0 0 0
a a 0 0
1 1 1 0

Then (X; ∗, 0) is a BCK-chain. Routine calculations show that

Sy(u) = X for all u ∈ X and y = 0, a;

A(1) = S1(1) = X * {0, a} = S1(0) = S1(a)

Therefore X satisfies Proposition 3.18 but it is not involutive because
0 = NNa 6= a.

In the following, we show that Sy(u) inherits all properties of a com-
mutative BCK-lattice.

Proposition 3.20. If X is a commutative BCK-lattice, then so is Sy(u)
for all y, u ∈ X.

Proof. By Theorem 3.8, Sy(u) is a subalgebra and so it is a commutative
BCK-algebra. Let x, z ∈ Sy(u). Then (NNy) ∗ u ≤ y ∗ x. On the other
hand, it follows from x ∧ z ≤ x that y ∗ x ≤ y ∗ (x ∧ z). Therefore
(NNy) ∗ u ≤ y ∗ (x ∧ z), which yields x ∧ z ∈ Sy(u). Hence Sy(u) is
closed under ∧. Also, using (a8), since y ∗u ≤ y ∗x, we get y ∗(y ∗x) ≤ u
and so x ∧ y ≤ u. Similarly, from y ∗ u ≤ y ∗ z, we conclude z ∧ y ≤ u.
Thus (x ∧ y) ∨ (z ∧ y) ≤ u and so by the distributivity of X, we obtain
(x ∨ z) ∧ y ≤ u, that is, y ∗ (y ∗ (x ∨ z)) ≤ u. Hence, using (a8), we get
y∗u ≤ y∗(x∨z) and so by NNy ≤ y, we get (NNy)∗u ≤ y∗(x∨z) which
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yields x∨z ∈ Sy(u). Therefore Sy(u) is closed under ∨. Summarizing the
previous results, we conclude that Sy(u) is a commutative BCK-lattice.
�

Conclusion and future work

It is well known that every initial set of a BCK-algebra is a subalgebra.
But a subalgebra is not necessarily an initial set. In this paper, we have
introduced and studied a new kind of subalgebras different from the ini-
tial sets. For this purpose, we have assigned a subset of X, denoted by
Sy(u), for any two elements y, u of a BCK-algebra X and have investi-
gated some related properties. We have shown that Sy(u) is a subalgebra
of X for all y, u ∈ X. Moreover, we have proved that a bounded BCK-
algebra X is a commutative BCK-chain if and only if every Sy(u) is an
initial set of X. Finally, assuming L(y,X) denote the set of all Sy(u)
where u ∈ X, we have proved that Sy(u) is the least element of L(y,X)
with property A(u) ⊆ Sy(u).

Our future work is to introduce and study this kind of subalgebras in
logical algebraic structures such as (pseudo)BCH-algebras, (pseudo)BE-
algebras, (pseudo)CI-algebras and etc.
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