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Abstract. We introduced the notions of locally quasiconvex spaces
and quasi-seminorms, and investigate the natural relationships between
these two notions. As applications, we obtain generalizations of some
well known fixed point theorems and fixed set theorems that require
neither metrizability, nor compactness nor the standard notion of con-
vexity.
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1 Introduction

It is widely acknowledged that locally convex spaces (especially Banach
spaces) provide the most natural and functional instance in which is
done the major part of functional analysis. For thorough and up-to-date
treatments of topological vector spaces, we refer the reader to [12]. Nev-
ertheless, there are important examples of vector spaces whose topologies
are not determined by norms. The best known examples of non-locally
convex spaces are the spaces `p and Lp[0, 1],when 0 < p < 1. The ab-
sence of genuine convexity may appear to be a stumbling block that can
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make simple-looking problems difficult. However, there are very sound
reasons, as we shall see in the present note, to want to develop under-
standing of topological vector spaces beyond the scope of convexity (see
for example [9]).

The study of fixed point theory has evolved rapidly over the past
fifty years. Systematic studies have been done especially in trying to
generalize and strengthen the fundamental ideas of Fixed Point The-
orems and several interesting results have been obtained. Researchers
have brought their efforts in various separate directions (see for exam-
ple [1, 2, 3, 4, 6, 10, 11, 13]) but in general, it seems that central keys
and unavoidable notions to most of the results in extension of the fixed
point theorems are three properties, as a whole or separately: convexity,
compactness and at least some form of metrizability.

The central goal of this short note is to obtain useful extensions of
some of the classical Fixed Point Theorems to the more general setting
of locally quasiconvex topological spaces. Our results not only forgo
metrizability, but also weaken the convexity condition and more impor-
tantly at the same time relax the compactness requirement. What we
want is a treatment of the subject which is not only unified, but also
elegant and easily understood. To do so, we begin by giving a glimpse
of the theory of quasi-seminormed spaces and then discuss its natural
interconnection with the notion of local quasiconvex topological space.
Most of the results obtained in this note pertaining to fixed point theo-
rems parallel those results already obtained under different settings by
the author in [13], and some parts of the proofs are taken over with
trivial notational changes. The major feature of these new results are
the fact that compactness is no longer a requirement in most of their
statements.

For most of the results obtained in this note, it does not matter
whether the field of scalars is real or complex. Therefore, we shall simply
use the symbol F for either of both fields. We have made every effort
to use only standard notations throughout the text. New notation are
defined as they are introduced in the text.
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2 Quasi-seminorm and Local Quasiconvexity

The notions we introduce in this section are certainly of interest of their
own.

Definition 2.1. A quasi-seminorm on a vector space X is a functional
p : X → [0,∞] with the properties:

� there exists κ > 0 such that p(x+y) ≤κ [p(x) + p(y)] for x, y ∈ X;

� p(αx) = |α| p(x) for x ∈ X and α ∈ F.

κ is known as the modulus of concavity of the quasi-seminorm.

Quasi-seminorms arise naturally in many ways in analysis. Clearly,
seminorm and quasinorm are quasi-seminorms. If a1, . . . , an are non-
negative scalars and p1, . . . , pn are quasi-seminorms then

∑n
i=1 aipi and

max {a1p1, . . . , anpn} are quasi-seminorms.

It follows from the above definition that a quasi-seminorm p is sym-
metric, that is, p(x) = p(−x) for x ∈ X; p(0) = 0. The set ker p :=
{x ∈ X : p(x) = 0} is a linear subspace of X: indeed if x, y ∈ ker p, then

p(αx+ βy) ≤ κ [p(αx) + p(βy)] = κ [|α| p(x) + |β| p(y)] = 0.

From p(x) ≤ κ
[
p( yκ) + p(x− y

κ

]
and p(y) ≤ κ

[
p(xκ) + p(y − x

κ

]
, it fol-

lows that

|p(x)− p(y)| ≤ max {p(κx− y), p(κy − x)} . (1)

If p is a quasi-seminorm on a vector space X, then the set Vp =
{x ∈ X : p(x) < 1} is absorbing and balanced and is called the open unit
ball determined by p. The closed unit ball is V p = {x ∈ X : p(x) ≤ 1}.
The following properties only require routine verifications:

� If q is a quasi-seminorm on X then p ≤ q if and onlyn if Vq ⊂ Vp;

� For any α > 0, αVp = {x ∈ X : p(x) < α} = V 1
α
p;

� For any x ∈ X, x+ Vp = {x ∈ X : p(x− y) < 1}.
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We denote by
_
A the convex hull of a given subset A of a vector space,

i.e. the set of all convex combinations of elements of A. It is easy to see
that if the set A is balanced and absorbing then so is its convex hull.

Definition 2.2. We say that a subset A of a topological vector space

is κ-convex if A ⊂
_
A ⊂ κA for some κ ≥ 1.

Plainly, a subset A of X is 1-convex if and only if it is convex. If A
is κ0-convex then it is κ-convex for all κ ≥ κ0. If p is a quasi-seminorm,
and if p(x), p(y) < 1, then for all t ∈ [0, 1],

p (tx+ (1− t)y) ≤ κ [tp(x) + (1− t)p(y)] < κ.

That is, the ball Vp is κ-convex. On the other hand, since the ball Vp is

balanced and absorbing, it is quickly seen that so is
_
Vp.

The converse is the object of the following important proposition.
First, we define the gauge (Minkowski functional) of an absorbing and
balanced (not necessarily convex) subset K of a vector space X as

pK(x) = inf {t > 0 : x/t ∈ K} .

Proposition 2.3. Let K be a κ-convex balanced absorbing set in a vector
space X. Then the functional x 7→ pK(x) defines a quasi-seminorm on
X with modulus of concavity κ.

Proof. Since K is aborbing, the set {t > 0 : x/t ∈ K} is nonempty. For
z ∈ aK + bK, then z = ax+ by for some x, y ∈ K. Since K is κ-convex,

z

s+ t
=

s

s+ t
x+

t

s+ t
y ∈ κK

and thus z ∈ (a+ b)κK. Hence, aK + bK ⊂ (a+ b)κK. Thus if x ∈ aK
and y ∈ bK then x+ y ∈ (a+ b)κK. Thus pK(x+ y) ≤ κ(a+ b). Since
a and b are arbitrary, it follows that pK(x+ y) ≤ κ(pk(x) + pK(y)).

Let a ∈ F \ {0}. For t > 0, ax ∈ tK if and only if x ∈ t
aK =

∣∣ t
a

∣∣K =
t
|a|K. Thus

pK (ax) = |a| inf

{
t

|a|
> 0 : x ∈ t

|a|
K

}
= |a| pK(x).
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The proof is complete. �
Up to now we were in the realm of vector space with no topology.

We now introduce the following definitions:

Definition 2.4. A topological vector space X is said to be locally qua-
siconvex if X has a neighborhood base of 0 consisting of κ-convex sets
for some κ ≥ 1. The smallest such κ is called the index of quasiconvexity
of X.

For example, for X = R2 endowed with the quasinorm p((x, y)) =(√
|x|+

√
|y|
)2

, the topological space
(
R2, p

)
is locally quasiconvex

with index of quasiconvexity equal to 2.
Let P be a family of quasi-seminorms on a vector space X all with

modulus of concavity κ. Since S = {Vp : p ∈ P} consists of balanced
absorbing κ-convex sets, the collection of positive multiples of finite
intersections of sets from S is a base at 0 for a locally quasiconvex
topology TP for X with quasiconvexity index κ. It is called the topology
determined by P. The topology TP is Hausdorff if and only if P separates
points in X, that is, if and only if for each nonzero x ∈ X, there is a
p ∈ P such that p(x) 6= 0. Thus we have:

Proposition 2.5. Every family of quasi-seminorms on a vector space
generates a locally quasiconvex vector topology.

Our next result shows that this is the only way, that is, any locally
quasiconvex topological vector space is determined by a family of quasi-
seminorms.

Proposition 2.6. Let X be a locally quasiconvex topological vector space
with quasiconvexity index κ > 0. Let N be a local base of neighborhood
consisting of κ-convex sets. Then we have:

1. V ⊂ {x ∈ X : pV (x) < 1} ⊂ κV for every V ∈ N .

2. {pV : V ∈ N} is a separating family of continuous quasi-seminorms.

Proof. Let x ∈ V . Since V is open, there exists t > 1 such that x/t ∈ V ,
i.e. pV (x) < 1. If pV (x) < 1, then there exists α > 1 such that αx ∈ V .
Since V is κ-convex, x ∈ κV . Hence, V ⊂ {x ∈ X : pV (x) < 1} ⊂ κV .
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It is a consequence of the continuity at 0 of the application α 7→ αx
that pV takes values in [0,∞]. Clearly, pV (αx) = |α| pV (x) for x ∈ X
and α ∈ F. Since K is a neighborhood of 0 it is absorbing. It follows
from the κ-convexity of V and the relation

x+ y

s+ t
=

s

s+ t

x

s
+

t

s+ t

y

t
,

that if x
s ,

y
t ∈ V , then x+y

s+t ∈ κV . Thus pV (x + y) ≤κ [pV (x) + pV (y)]
for x, y ∈ X. That is, pV is a quasi-seminorm on X.

Let x 6= 0. There exists V ∈ N such that x /∈ V. Then pV (x) ≥ 1 > 0.
Thus {pV : V ∈ N} is separating.

The continuity of the pV ’s follows from the inequality

|pV (x)− pV (0)| ≤ max {pV (κx− 0), pV (k0− x)} = κpV (x).

Since
{

1
nV : n ∈ N

}
is a local base, if x ∈ 1

nV then

|pV (x)− pV (0)| ≤ κpV (x) =
κ

n
pV (nx) <

κ

n
.

Thus for every ε > 0, there exists U ∈ N0 such that pV (U) ⊂ [0, κε).
�

We shall next see that it is quite easy and natural to give gener-
alizations of the all important notions of continuity, Cauchy-ness, and
boundedness relative to the seminorm settings to the more general case
of quasi-seminormed spaces.

Let P be a base of continuous quasi-seminorms for a locally quasi-
convex topological vector space X with quasiconvexity index κ > 0.

� A subset A of X is said to converge to x0 ∈ X if for every ε > 0,
there exists N ∈ 2|A| such that supp∈P p(x − x0) < ε for every
x ∈ A \N .

� A subset A of X is said to be Cauchy if for every ε > 0, there
exists N ∈ 2|A| such that supp∈P p (x− y) < ε for x, y ∈ A \N .

� A subset A of X is said to be bounded if there exists M > 0 such
that supp∈P p(x) < M for all x ∈ A.
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We shall also use the following definition (see page 172 of [12]) to
help us weaken the compactness requirement in fixed point results.

Definition 2.7. A topological vector spaceX is said to be quasicomplete
if each closed bounded subset of X is complete.

Theorem 2.8. Let p be a quasi-seminorm on a topological vector space
X and N0 local base of neighborhoods of 0. Then the following are
equivalent:

1. p is continuous at 0.

2. p is uniformly continuous.

3. Vp is open.

Proof. The chain of implications 2 ⇒ 3 ⇒ 1 is clear. To see 1 ⇒ 2,
we note that continuity at 0 means that for every ε > 0, there exists a
balanced V ∈ N0 such that p(V ) ⊂ [0, ε). Take a neighborhood U ∈ N0

such that κU − U ⊂ V. For x, y ∈ U , κx− y, κy − x ∈ κU − U ⊂ V , so
max {p(κx− y), p(κy − x)} < ε. The inequality (1) yields the uniform
continuity. �

Recall that a nest is a set of subsets that is linearly ordered by inclu-
sion. The Cantor Intersection Principle states that a nest of nonempty
compact subsets of a topological space has nonempty intersection. The
following extension of such a result to the setting of locally quasiconvex
topological vector space X will be useful later.

Theorem 2.9. Let P be a base of continuous quasi-seminorms for a
locally quasiconvex topological vector space X. Assume that X is qua-
sicomplete. Let A = {Aα : α ∈ Ω} be a nested net of nonempty closed
bounded subsets of X. If limA supp∈P supx,y∈Aα p(x−y) = 0, then

⋂
αAα

contains exactly one point.

The limit in the statement limA supp∈P supx,y∈Aα p(x− y) = 0 is to
be understood in the sens that for every ε > 0, there exists Aαε ∈ A such
that for every Aβ ∈ A, Aβ ⊂ Aαε implies supp∈P supx,y∈Aβ p(x− y) < ε.
Proof. Let β such that Aβ ⊂ Aα. Fix Aα ∈ A. For each Aβ ⊂ Aα
pick xβ ∈ Aβ. Let Eα be the collection of such xβ. The condition
limA supp∈P supx,y∈Aα p(x − y) = 0 implies that the set Eα is Cauchy.
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Since Aα is closed and bounded and X is quasicomplete, Eα converges
to some point x ∈ Aα. This holds for all α ∈ Ω, thus x ∈

⋂
αAα. Now

suppose to the contrary that the intersection
⋂
αAα contains another

point y 6= x. Then there exists ε > 0 and p ∈ P such that p(y − x) > 0.
This contradicts the fact that limA supp∈P supx,y∈Aα p(x− y) = 0. The
proof is complete. �

3 Fixed Point Theorems in Locally Quasicon-
vex Spaces

Let X be a topological vector space. Let T : X → X be a mapping
and A a nonempty subset of X satisfying T (A) ⊂ A. A point x∗ ∈ A is
said to be a fixed point of T if T (x∗) = x∗. We shall use the common
standard notation for the n-th iteration of a mapping f : E → E as
follows

fn(x) = f (f (· · · (f(x)))) .

Let us agree to say that a function ϕ : [0,∞) → [0,∞) is contractant
if it is increasing and limn→∞ ϕ

n(t) = 0 for all t > 0. An example
of contractant function is t 7→ qt where q ∈ (0, 1). Note that every
contractant function ϕ : [0,∞)→ [0,∞) has the property that ϕ(0) = 0
and ϕ(t) < t for all t > 0.

Let X be a locally quasiconvex topological vector space with quasi-
convexity index κ > 0. Let P be a base of continuous quasi-seminorms
for the topology of X. We denote by δ the set function δ : 2X → [0,∞]
defined by

δ(E) = sup
p∈P

sup
x,y∈E

p(x− y).

We say that a mapping T : X → X is a quasicontraction on a nonempty
subset A of X if T (A) ⊂ A and if there exists a contractant function
ϕ : [0,∞)→ [0,∞) such that for every E ⊂ A such that TE ⊂ E

δ (TE) < ϕ (κδ (E)) . (2)

We note that if X is a locally quasiconvex topological vector space,
a mapping T : X → X is continous at a point a ∈ X if for every
ε > 0, there exists r > 0 such that supp∈P p (Tx− Ta) ≤ ε whenever



LOCALLY QUASICONVEX SPACES AND FIXED POINT ... 9

supp∈P p(x − a) < r. It is then clear that if T : X → X is a quasicon-
traction mapping then it is necessary continuous.

We are now ready to state and prove a quasi-seminormed version of
the Matkowski’s Fixed Point Theorem.

Theorem 3.1. Let X be a quasicomplete locally quasiconvex topological
vector space with quasiconvexity index κ > 0. Let T : X → X be a
quasicontraction mapping on a closed bounded subset A of X. Then T
admits a unique fixed point a ∈ A. Furthermore, if x0 ∈ A, the sequence
xn = T (xn−1), n = 1, 2, . . . of elements of A converges to a.

Proof. Let ϕ : [0,∞)→ [0,∞) be a contractant mapping for T and let
ψ : [0,∞) → [0,∞) be defined by ψ(t) = ϕ(κt). Choose an arbitrary
x ∈ A and consider the set C = {Tnx : n ∈ N} . Then clearly, C ⊂ A.
Thus δ(TC) < ϕ (κδ(C)) = ψ (δ (C)). Iteratively, δ(TnC) < ψn (δ(C)).
Since limn→∞ ψ

n (δ(A)) = 0, given ε > 0, we can choose N large enough
so that for n > N, we have δ (TnC) < ε. Since for every k, n ∈ N, Tnx
and Tn+kx are both in TnC, it follows that for every k ∈ N and n > N

sup
p∈P

p
(
Tnx− Tn+kx

)
≤ δ (TnC) < ε.

This shows that the set C is Cauchy. Since X is quasicomplete, C ⊂ A,
A is closed and bounded, C converges to some a = limn→∞C ∈ A. The
continuity of T implies that a = Ta.

For the uniqueness, assume that b ∈ A such that b = Tb and b 6= a.
Then there exists p ∈ P such that p(b− a) > 0. It follows that

p (b− a) = p(Tb− Ta) = · · · = p (Tnb− Tna) ≤ δ (TnA)

for all n ∈ N. Since δ (TnA)→ 0 as n→ 0, it follows that p(b− a) = 0.
Contradiction! The proof is complete. �

Remark 3.2. It is worth noticing that the strength of the result of
Theorem 3.1 lies on the facts that its statement weakens the convexity
requirement and at the same time relaxes the compactness condition.

We say that a mapping T : X → X is quasi-Lipschitz on a subset
A of X such that TA ⊂ A, if there exists a constant q ∈ (0, κ−1) such
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that for every E ⊂ A such that TE ⊂ E, δ(TE) < qκδ(E). As an
immediate corollary of the above extension of the Matkowski’s Fixed
Point Theorem, we have the following extension of the Banach Fixed
Point Theorem.

Theorem 3.3. Let X be a quasicomplete locally quasiconvex topological
vector space with quasiconvexity index κ > 0. Assume that T : X → X
is quasi-Lipschitz with constant q ∈ (0, κ−1) on a closed bounded subset
A of X. Then T admits a unique fixed point a ∈ A. Furthermore,
if x0 ∈ A, the sequence xn = T (xn−1), n = 1, 2, . . . of elements of A
converges to a.

Proof. It suffices to notice that for q ∈ (0, κ−1) the mapping ϕ :
[0,∞)→ [0,∞) given by t 7→ qt is contractant, and the quasi-Lipschitz
proposition of T implies that T is a quasicontraction. It suffices then to
apply Theorem 3.1. �

An immediate corollary is as follows:

Theorem 3.4. Let X be a quasicomplete locally quasiconvex topological
vector space with quasiconvexity index κ > 0. Assume that T : X → X is
a mapping such that for some natural number m, Tm is quasi-Lipschitz
on a closed bounded subset A of X. Then T admits a unique fixed point.

Proof. The case m = 1 is exactly that of Theorem 3.3. Assume that
m > 1. The mapping S = Tm satisfies the hypotheses of Theorem 3.3,
hence it admits a unique fixed point, say a in A. Then

STa = Tm+1a = TSa = Ta.

In other words, Ta is also a fixed point of S. By uniqueness of fixed
point, T (a) = a. That is, a is a fixed point for T . To see that a is
unique, assume that b = Tb. Then Sb = Tmb = b. That is, b is a fixed
point for S and hence b = a. The proof is complete. �

Our next result is a consequence of our version of the Cantor In-
tersection Principle in Theorem 2.9. Let X be a quasicomplete locally
quasiconvex topological vector space with quasiconvexity index κ > 0.
Fix a sequence {an} of positive numbers converging to 0. Given a sub-
set A of X, let us agree to say that a mapping T : X → X is nearly
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quasi-Lipschitz with respect to {an} on A if for each n ∈ N there ex-
ists qn ≥ 0 such that for every E ⊂ A such that TE ⊂ E, we have
δ(TnE) < qn (κδ(E) + an) . The smallest such constant qn will be de-
noted by q(Tn).

Theorem 3.5. Let X be a quasicomplete locally quasiconvex topological
vector space with quasiconvexity index κ > 0. Assume that T : X → X is
nearly quasi-Lipschitz with respect to {an} on a closed bounded A ⊂ X.
Suppose that lim supn→∞[q(Tn)]1/n < 1. Then T admits a unique fixed
point a ∈ A. Furthermore, if x0 ∈ A, the sequence xn = T (xn−1),
n = 1, 2, . . . of elements of A converges to a.

Proof. Let M = sup {an : n ∈ N}. Let x0 ∈ X and consider the se-
quence defined by xn = Tnx0. Fix an open and bounded set U contain-
ing both x and Tx0. Then for each n ∈ N, both Tnx0 and Tn+1x0 are
in TnU , and we observe that

δ (TnU) < qn (κδ(U) + an) ≤ qn (κδ(U) +M) .

It follows that supp∈P p
(
Tnx0 − Tn+1x0

)
< qn (κδ(U) +M) . Iteratively,

for eack k ∈ Nwe have

sup
p∈P

p
(
Tnx0 − Tn+kx0

)
<

k∑
i=1

qn+i (κδ(U) +M) .

Now lim supn→∞[q(Tn)]1/n < 1 implies that the series
∑
qn+i (κδ(U) +M)

converges and thus the sequence εn,k =
∑k

i=1 qn+i (κδ(U) +M) → 0 as
n→∞.

Now let N × N be dierected as follows: (n, k) � (n′, k′) if n > n′ or
n = n′ and k > k′. Consider

Cn,k =

{
x ∈ A : sup

p∈P
p (Tnx− x) ≤

k∑
i=1

qn+i (κδ(U) +M)

}
.

We observe that {Cn,k : (n, k) ∈ N× N} is nested net of subsets of X
such that

lim
(n,k)

sup
p∈P

sup
x,y∈Cn,k

p(x− y) = 0.

The extension Theorem 2.9 now finishes the proof. �
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4 Fix Set Theorems in Quasiconvex Spaces

We denote by K(X) the space of non-empty compact subsets of a given
metric space X. It is a well-known fact that K(X) is a complete metric
space when endowed with the Hausdorff metric. The Hutchinson’s The-
orem (see for example [5, 7]) states that if {K1, ...,Kn} is a family of
contractions on X with respective Lipschitz constants {k1, ..., kn}, then
the operator K defined on K(X) by K(A) =

⋃n
i=1K(Ai) is a contraction

with Lipschitz constant equal to k = max {k1, ..., kn}. The Banach Con-
traction Principle then implies the existence of a compact set E such
that K(E) = E.

In this section, we seek for a version of such a result in the setting of
locally quasiconvex vector spaces. First, we notice that if X is a vector
space, then the set 2̊X of all nonempty subsets of X has a structure of
a vector space with the operations:

1. A+B = {a+ b : a ∈ A, b ∈ B} for A,B ∈ 2̊X .

2. λA = {λa : a ∈ A} for A ∈ 2̊X and for λ ∈ F.

Assume that X has a topology that makes it a vector space, and let
B be a local base for the such a topology. Then the space 2̊X can
naturally be topologized by defining a neighborhood of A ∈ 2̊X , a set of
the form A+V where V ∈ B. If X is quasicomplete locally quasiconvex
topological vector space with quasiconvexity index κ > 0 then so is 2̊X .
If P is a base of continuous quasi-seminorms for a locally quasiconvex
topological vector space X with quasiconvexity index κ > 0, then for
every p ∈ P, the functionals defined by A 7→ p(A) = supx∈A p(x) is a
base of continuous quasi-seminorms for 2̊X .

Our next result is an extension of the Hutchinson’s Fixed Point The-
orem.

Theorem 4.1. Let X be a quasicomplete locally quasiconvex topological
vector space with quasiconvexity index κ > 0. Let B(X) be the space of
nonempty closed and bounded subsets of X. Let T : B(X) → B(X) be
a monotone mapping, that is, TA ⊂ TA′ whenever A ⊂ A′. If there
exists A ∈ B(X) such that TA ⊂ A, then there exists B ⊂ A such that
TB = B.
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Proof. The quasicompletenss quickly implies that B(X) is a subspace
of 2̊X . Let H(X) be the subsets of B(X) consisting of sets A satisfying
TB ⊂ B. By hypothesis, H(X) is not empty. We order H(X) by
inclusion. The Hausdorff Maximality Principle implies the existence of
maximal nest Γ = {Ai : i ∈ I} of H(X). Let B =

⋂
i∈I Ai = limΓAi.

Clearly,

lim
Γ

sup
p∈P

p(Ai −B) = lim
Γ

sup
p∈P

sup
Aj ,Ak∈Γ

p(Aj −Ak) = 0.

By the Cantor Intersection Theorem 2.9, B is nonempty closed and
bounded of X. On the other hand, since TAi ⊂ Ai for all i ∈ I, we also
have TB ⊂ B and hence by monotonicity T 2B ⊂ TB. By maximality
of Γ, we have TB = B. �

We note that no continuity properties is required in the above The-
orem 2.9. A special case is as follows:

Theorem 4.2. Let X be a quasicomplete locally quasiconvex topological
vector space with quasiconvexity index κ > 0. Let Ti : X → X, i =
1, . . . , n be a finite collection of continuous mappings. If there exists a
closed bounded subset A of X such that TiA ⊂ A for i = 1, . . . , n, then
there exists a closed bounded subset B of A such that TB = B.

Proof. It suffice to notice that the mapping T : B(X)→ B(X) defined
by TA =

⋃n
i=1 TiA satisfies the hypothesis of Theorem 4.1. �

We note that compactness was not required for the result of Theorem
4.1. We finish this note with another variant of the above Theorem 4.2:

Theorem 4.3. Let X be a locally quasiconvex topological vector space
with quasiconvexity index κ > 0. Let C(X) be the space of nonempty
complete subsets of X. Let T : C(X) → C(X) be a monotone mapping,
that is, TA ⊂ TA′ whenever A ⊂ A′. If there exists A ∈ C(X), A
bounded such that TA ⊂ A then there exists B ⊂ A such that TB = B.

Proof. It suffices to notice that the space B(X) of nonempty closed and
bounded subsets of X is a subspace of the complete locally quasiconvex
topological vector space C(X) and that if A is bounded then A ∈ K(X).
Theorem 4.1 then applies and finishes the proof. �
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