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Abstract. In this paper we give conditions under which a tuple of
operators satisfying the hypercyclicity, supercyclicity and cyclicity cri-
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1. Introduction

Let T = (T1,T5,...,T),) be an n-tuple of operators acting on an infinite
dimensional Banach space X. We will let

F={T/"Dr T,k ke, i=1,...n}

be the semigroup generated by 7. For x € X, the orbit of z under the
tuple 7 is the set
Orb(T,z) ={Sz:S e F}.

A vector x is called a hypercyclic vector for 7 if Orb(7,z) is dense in
X and in this case the tuple 7 is called hypercyclic. Also, a vector z
is called a supercyclic vector for 7 if COrb(7,x), is dense in X and in
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42 M. J. ATAEI AND B. YOUSEFI

this case the tuple 7 is called supercyclic. By Td(k) we will refer to the
set of all k copies of an element of F| i.e.

T = (810 .. @S : S =..=5,F}.

We say that %(k) is hypercyclic provided there exist x1, ...,z € X such
that
{W(@1®...ox): We %(k)},

is dense in the k copies of X, X ®...4 X, and similarly we say that Td(k)
is
supercyclic provided there exist x1,...,zp € X such that

C{W(l’l D..0xg) W e %(k)},

is dense in the k copies of X. Also, we say that z is a cyclic vector for
7 if the linear span of the orbit Orb(7,x) is dense in X and in this case
the tuple 7 is called cyclic. By a polynomial p we will mean

n mj
_ i1, 42 i
p(21, 22, o0y 2n) = g E Ciy.in 21 250 0 2y
j=11i;=1

Let
P =A{p(Th,Ts,...,T,) : pis a polynomial },

and note that the linear span of the orbit Orb(7,x) is equal to {Sz :
S € P}. Thus the tuple 7 is cyclic if {Sz : S € P} is dense in X. Also,
let

P(T),={S®S:5¢eP}

We say that P(7), is cyclic if there exist 1,22 € X such that
{W(l’l ) 1‘2) W e P(T)d},
is dense in X & X.

In this paper we want to extend some properties of hypercyclicity, su-
percyclicity and cyclicity criterions from a single operator to a tuple of
commuting operators. For some topics we refer to [1-18].
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2. Main Results

In the following we will give all three extensions of Supercyclicity, Cyclic-
ity, and Hypercyclicity Criterions for tuples and then we show that each
of which implies the supercyclicity, cyclicity and hypercyclicity of Td@),
respectively.

Definition 2.1. Let 7 = (T3, Ty, ..., T;,) be an n-tuple of operators acting
on an infinite dimensional Banach space X. We say that T satisfies the
Supercyclicity Criterion if there exist two dense subsets Y and Z in X,
and strictly increasing sequences {my;,}; fori=1,...,n, and a sequence
of mappings S; : Z — X such that:

1) TflleQWjQ...Ténj"sz — z for every z € Z,

2) |17 Ty 72T y| | ||S2]] — O for everyy € Y and every z € Z.

51

Theorem 2.2. Let X be a separable infinite dimensional Banach space
and T = (Th,Ts, ..., T)) be a tuple of operators Ty, Ts, ..., T,,. Then the
followings are equivalent:

i) T satisfies the Supercyclicity Criterion.

i) %(2) is supercyclic on X @& X.

Proof. (i) — (ii): Suppose that 7 satisfies the Supercyclicity Criterion.
Thus there exist two dense subsets Y and Z in H, sequences of positive
integers {my, }; for i = 1,...,n, and a sequence of mappings S : Z — X

such that:
1) T\ 1,2 T 82 — = for every z € Z,
N T Ty 2 T y|| ||Skz|| — 0 for every y € Y and every z € Z.

Now let ) be the set of all sequences (yn)n € ®2,Y such that y, = 0 for
all but finitely many n € N. Similarly let Z be the set of all sequences
(2n)n € ®2,Z such that z, = 0 for all but finitely many n € N. Put

Sl/c = @?ilsk’

and consider it acting on Z. Then both Y and Z are dense in ©5°,; X
and clearly the hypotheses of the Supercyclicity Criterion are satisfied.
Thus ’Z;l(oo) is supercyclic on ©;2; X from which we can conclude that

clearly Td@) is supercyclic on X & X.
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(7i) — (i): Suppose that ’Td(2) is supercylcic and let (z, y) be a supercyclic
(

vector for 7;12). In particular « and y are supercyclic vectors for 7. For
all k € N, put U, = B(0, %) Then there exist {m;,}; C Nfori=1,...,n
and A\; € C such that

mjl

NI T2 T @ T Ty 2 LT ) (2, y) € Uy @ (2 + Uj).
Thus
NN 2 T € Uy,
and
AT T2 Ty € x4 U,
for all j € N. This implies that

mjl m]'2 m;
AT T2 LT — 0,

and
Mo

AT T2 Ty — .
Let
Y =7 =COrb(T,z),

which is dense in X. Also for all j € NJA € C and k., € N for ¢ =
1,...,n, define
S;(NTE TS Tk gy = ANTIVTE™ Ty,

Note that

51

T T2 T S (AT T TR ) = NTITVTE e (VT T y)

kry

which tends to /\Tlle T, LTE g as j — o0o. So

M1 Mg mj
T, 72T 7 Sz — 2,

for all z € Z. Also for all \,w € C and t,,, k,, € Nfori =1,...,n, we
have

m

m; ; : ts ts Ky ko
(T T2 T (AT T2 | T )| |18, (w T T2 . Thon )|



TUPLES WITH PROPERTY OF CYCLICITY CRITERIONS 45
tsi rts R MGy TG in ki ko k.
= A Jw] [|T{ T2 Tl (T T2 T ) ||\ T Ty 2 . Ty

Mo

tsi qats m; kr.
<AL ] M| T2 Ty | [T Ty ’

. kr
ST || || T T TRy

Since
m

I\ T Ty 2Ty || — 0,

hence we get

T Ty 2 T (ATEV TS | Tlen )| ]S, (T T . T )| — 0

as j — o0o. Thus for all y € Y and z € Z, we get
17y Ty 2 Ty 1182 — 0
and so 7 satisfies the Supercyclicity Criterion. [

Definition 2.3. Suppose X is a separable infinite dimensional Banach
space and T = (11, T3, ...,T),) be a tuple of continuous linear mappings
on X. Suppose there exist two dense subsets Y and Z in X, a sequence
{pr} of polynomials, and a sequence {Sx} of maps Sy : Z — X such
that:

1) for everyy €Y, pp(Th,Ts, ..., T),)y — 0,

2) for every z € Z, Spz — 0,

3) for every z € Z, pp(T1,To, ..., Ty) Sz — z.
Then we say that T satisfies the Cyclicity Criterion.

Theorem 2.4. Let X be a separable infinite dimensional Banach space
and T = (Th,Ts, ..., T)) be a tuple of operators Ty, Ts, ..., T,,. Then the
followings are equivalent:

i) T satisfies the Cyclicity Criterion.

i) P(T), is cyclic on X ® X.

Proof. (i) — (i1): Suppose that y, Z, py and Sy, are the ones obtained
by the property of the Cyclicity Criterion for 7 = (11,75, ...,1,). Let
Uy, Us, Vi and V5 be four nonempty open subsets of X. We want to find
a polynomial p such that

p(T17T25 ey Tn)(Ul) m ‘/1 7é @
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and
p(Tl,TQ, ,Tn>(U2) N V2 7é Q.

For this let u1,v1,u2,ve belongs to Up,NY, Vi1 NZ, UsNY and Vo N Z,
respectively. Then

u1 + Spv1 — u,
pk(Tl,TQ, ...,Tn)(ul + Skvl) — 1,

ug + Skva — ua,

and
pr(Th, Tay ..., Tpy) (ug + Skva) — va.
Hence,
pi(Th, Toy ..., Tp)(U) NV £ O
and

pk(Tl,Tz, ...,Tn)(UQ) NV, 75 (@)

for k large enough. This implies that 7:1(2) is cyclic on X ® X. The
assertion (i7) — () follows by a similar method used in the proof of the
previous theorem. [l

Theorem 2.5. (Hypercyclicity Criterion for tuples) Suppose that X is
a separable infinite dimensional Banach space and T = (11,75, ...,Ty)
be the n-tuple of operators Ty, Ts, ..., T,, acting on X. If there exist two
dense subsets Y and Z in X, and strictly increasing sequences {m;)};
fori=1,...,n such that :

1. Tlmj(l)...Tﬁnj(")y — 0 forallyeY

2. There exist a sequence of functions {S; : Z — X} such that for every
z€Z,82z—0, and Tfl"'(l)...T;nj(")sz — 2z,

then T is a hypercyclic tuple.

Proof. Let U and V be two nonempty open sets in X and choose y €
YNU and z € ZNV. Define x; = y + S;jz. Then z; — y and we have

M1 Mi(n M1 Mi(n M1 Mi(n
T, 70 T Wy =T Ty + T LT, S
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which tends to z as j — oo. Thus for large j, we have x; € U and
T T ™M e V.

Hence we get
m

7O T MUY NV £ 0,

and so 7 is topologically transitive. Thus by Lemma 2.1, 7 is a hyper-
cyclic tuple. This completes the proof. [

The method of the proof of the following theorem is similar to the proof
of Theorem 2.4 and so we omit it.

Theorem 2.6. Let 7 = (11, T3, ...,T,,) be a tuple of operators acting on
a separable infinite dimensional Banach space X. Then the followings
are equivalent:

(i) T satisfies the Hypercyclicity Criterion.

(1) 7:1(2) is hypercyclic.
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Abstract. In this paper, a class of non-linear Integro-differential equa-
tions is considered in a bounded domain €2 with a smooth boundary 99
as follows:

uee + M| D™ ul3)(—2) ™ u(t)
+/O g(t — s)(—=A)"u(s)ds + |ue|*  ur = |uP " u.

The asymptotic behavior of solutions is discussed by some conditions
on g. Decay estimates of the energy function of solutions are also given.

AMS Subject Classification: 34A34; 65L05
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1. Introduction

Consider the initial boundary value problem for a higher-order integro-
differential equation:

wse + M(|D™ul|3)(=A)™u(t) + 3 g(t = 5)(=A)™u(s)ds

+,|Ut|a_lut = |u[P"tu, t>0 (1)
Ou —_ 0, §=0,1,2,...,m—1, 200t 0
U(I,O):uo,ut(x,O):ul 1’697
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52 E. HESAMEDDINI AND Y. KHALILI

where p > 1,m > 1, > 1, ©Q is a bounded domain of R™,n > 1, with

the smooth boundary 02, so that, divergence theorem can be applied,
d'u
vt
derivation of u, and D denotes the gradient operator, that is Du =

denotes the i—order normal

v is unit outward normal on 052, and

(Ugy s Uz s -ny Ug,, ), and:

m

"
D" =V.V.... V.

Before further progress, without the viscoelastic term, that is g = 0, for
the case that m=1 and M being not a constant function, equation(1) is
Kirchhoff equation which has been introduced in order to describe the
nonlinear vibrations of an elastic string. Kirchhoff ([6]) was the first one
to study the oscillations a stretched string and plates. In this case, the
existence and nonexistence of solutions were discussed by many authors
([3,9,13]).

With g # 0, in the case of M = 1, equation (1) becomes a semilinear
viscoelastic equation. Cavalcanti el.al ([2]) treated equation (1) with
damping term a(z)us; here a(x) may be null on apart of boundary. By
assuming the kernel ¢ in the memory term decays exponentially, they
obtained an exponentially decay rate. On the other hand, Jiang and
Rivera ([4]) proved, in the framework of nonlinear viscoelasticity, the
exponential decay of the energy provided that the kernel g decays ex-
ponentially without imposing damping term. In the case M is not a
constant function, equation (1) is a model in which describe the motion
of deformable solids as hereditary effect is incorporated. This equation
was first studied by Torrejon and Young ([12]) who proved the existence
of weakly asymptotic stable solution for large analytical datum. Later,
Rivera ([6]) showed the existence of global solutions for small datum and
the total energy decays to zero exponentially under some restrictions.
Recently, Wu and Tsai ([11]) discussed the global as well as energy decay
of equation(1). In that paper, the following assumption on the negative
kernel ¢'(t) < 0, for all ¢ > 0 for some r > o, which motivated the present
researcher to consider the problem of how to obtain the energy decay of
the solutions when the above assumption is replaced by ¢'(t) < 0, for all
t>0.
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In this paper, the global solution and the energy decays exponentially
and polynomially under some conditions on g were established. The con-
tent of this paper is organized as follows: In Section 2, some important
Lemmas and assumptions which will be used later and the state the lo-
cal existence Theorem 2.1. are given. In Section 3, the results of global
existence and decay property of the solutions of equation(1) are given
by Theorem 3.1.

2. Preliminary Notes

In this section, the material needed for proving the main result is intro-
duced. The standard Lebesgue space LP(2) and Sobolev space H™(£2)
are used with their usual scalar products and norms. Meanwhile,

O'u

HY' () = {u€ H™(Q): 52 =0, i=0,12,...,m~1}

is defined and the following abbreviations are introduced:

Ll = Il Il = s 12 = 1z s = I lzo@
for any real number p > 1.

It is assumed that:

(A1) M(s) is positive C1—function for s > 0 and M(s) = mg + s4 for
mo>0,q>1and s > 0.

(A2) g € C*(]0,00)) is a bounded function satisfying:
t

mo—/ g(s)=1>0, Vt>0,
0

and there exist positive constants £&; and & such that:

—619(t) < g'(t) < —&29(1). (2)

(A3) 1<p<ooforn<2m,1<p< 22 forn>2m.

n—2m
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It is necessary to state that the local existence theorem for equation(1)
will be established by combining the arguments of [3] and [12].

Theorem 2.1. Assume that M(s),g(z) and p satisfy (A1), (A2) and
(A3) respectively. Then for any given (ug,u1) € (HF'(2) N H>™(Q)) x
H{'(Q), the problem (1) has a unique local solution satisfying:

u e C([0,T]; H(Q)), u € C([0,T); L*()) N L*(Q x (0,T)),
ug € L°°((0,T); L*(Q)).

Lemma 2.2.(Sobolev-Poincare inequality [1]). If p satisfies (Ag) for all
u € H'(Q), then HJ*(Q) — LP(Q), ||u|lp+1 < B||D™ul|2, where B is
the optimal constant of the Sobolev embeding.

Lemma 2.3. ([7]) Let ¢(t) be a nonincreasing and nonnegative function
defined on [0,T], T > 1, satisfying:

P (1) < ko(o(t) — o(t + 1)),

fort €[0,T], ko > 1 and r > 0. Then we have for each t € [0,T],

(t) < p(0)ek=D", r=0
¢(t) < (67"(0) + kor Lt —1)F) T, r>0

where (t —1)" = max{t — 1,0} and k = ln(kfﬂl). Furthermore, the

energy function E(t) of the problem (1) is defined by:

E(t) = §(mo— [y 9(s)ds)| D™u(t)|[3 + 5(goD™u)(t)

(3)
p+1

(g+1)
o 1D ()3 + Y3 — S llul2,

where (goD™u) fo (t — s)[|D™u(s) — D™u(t)||3ds

Lemma 2.4. Assume that (Al
solution of problem (1). Then E(t

1
5

~—

,(A2) and (A3) hold and let u be the

t) decreases, in other words:

A

E'(t) = gD — fuellafi <0,

N

g'oD™u)(t) —
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furthermore, for all t > 0,

E(t) < E(0). (4)

Proof. By multiplying equation(1) by u; and integrating the result over
Q, the following result is obtained:

3 aelluell3 + M D™ u(®))3 fo(~ (yueda + [|uell5 1
(5)

¢ +1
+ o9t —s) Jo(= s)udrds = o |lul[pTy,

for any regular solution, this result remains valid for weak solutions by
a simple density argument. After being integrated m times by parts for
the second term on the left side of (4) and noting = 0, the following
identity will be obtained:

Jol(=A)™Mu(t)|uwdr = (—1)™ [ D*™uuedx = [ D™u(t).D™uq(t)dz

81/1 -

= 5D u®)]3.

(6)
Inserting (6) in (5) and applying (A1), result in:

m +1 m m 1
4 kD u®)E + 5 D)3 + Sl - )
= fg g(t — s) [ D" ug. D™ u(s)dxds — ||ut\|gﬁ,
(7)

Also:
fot g(t — s) [o D" uy. D™ u(s)dads

= [ g(t = ) fo D™ur.[D™u(s) — D™u(t)]dads
+ [ g(t — s)ds [, D™uy.D™u(t)dz
=L [Tg(t— )L [ |D™u(s) — D™u(t)[*dwds

+ [ g(s)ds EL( [, |D™u(t)2dx)ds.
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But,

— 14 { [Eg(t—s) [, |D™u(s) — Dmu(t)|2dxds}

5| Jy () Jo ID™u(n)Pdrds| ®)

L 3 g'(t = s) [y |D™u(s) — D™u(t)deds — Lg(t) [, |D™u(t)[>da.

Then, (8) is inserted in (7) to get:

4L Lmo — fy 9(s)ds) | D™ u(®) |3 + sty | D™ () 54
+4(goD™u(t) + S luellf — s lulpf} (9)

= —lluellgti + 5 Jy o't = ) D™uls) — D™ u(t)|3ds — §|D™u(t)]3.

Using the definition of E(t), the proof is completed. O

3. The Main Result

In this section, the main result is proved.

Theorem 3.1. (Global existence and energy decay) Let the assumptions
of Theorem 2.1. hold and 1 < o < ”+2 If the initial datum satisfies,

L, =2 p—1 +1
HU()Hp_A'_l < )\() = lP*prfl’ E(O) < EO - m)\p (10)

where B is the optimal constant of the Sobolev embedding(Sobolev-Poincare
inequality ). Then the cauchy problem (1) has a unique global solution.
Moreovere,

BE(t) <EO)e DT t>0, a=1, (11)

a— —1 _
Bt < (BT (0)+ 2 clt—1)a1  t>0, a>1, (12)

where k = ln(gglcolﬂl) and c19 and ci12 are given in (41)and (44) respec-

tively.
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Proof. By decreasing of energy E(t), one obtains:

E(t) < E(0) < Ey = 259;11))\8“. (13)

Therefore the following inequality is claimed:
[uC )llp+1 < Ao, VE20. (14)

Suppose (14) is not true, by continuity of ||u(.,?)||p+1-norm; then there
exist a to such that ||u(.,?p)||p+1 = Ao. Using Sobolev-Poincare inequal-
ity the following relation can be presented:

|- 2 1 +1
E(t) 2 5B u(®)llp — ]mﬂu(t)%“ vt > 0. (15)
Then,
_ 1
E(to) > 5B *|lu(to) g1 — gllulto)lpiy
(16)
—1 y\p+l
= 25)+1))‘g = Eo,
in which (16) contradicts with (13).
On the other hand for all ¢ > 0,
2(g+1
UDm™u)l3 = 2B(t) — llurll — 5|1 D™ u(#)||5 "
1
+ prllu(®)ll}i1 + (goD™u)(t)
(17)
< mlp_ B »- +mlp_ B r-
+1
="

By continuation argument and (17), the local solution constructed by
Theorem 2.1. will be exist globally. Furthermore, the large time behav-
ior of equation(1) is considered.

According to (17), the initial condition and Sobolev-Poincare inequality,
the following relation can be concluded:

D™u(t)|3 < 2B(t) + 2B Dmu(t)|5
(18)
<2BE(t) + ZHUD™u(t)]3,
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and consequently:

ID™ ()3 < ( E(0))2. (19)

The parameter 3 is defined as follows:

p+1 p—1
Bl ?((ﬁjll))E(o))z <1 (20)

From (19), (20) and Sobolev-Poincar inequality, the following can be
received:

0<p=

lu@®)ft < BUD™u(®)]3

(21)
< U D™ u(t)]f3.

Therefore, if I(t) is defined as follows:
m m 2 1 m
1) = UD™u(®)|3 + D" u@|3 " + (goD™u)(t) - [lu@®)|1], (22)
then, by considering (21), the following can be presented:
I(t) > (1 = )| D™ u(t)|3 > 0. (23)

Now, F(t) is set as follows:

1
Fett(t) = =4 [T [3 9/ (t = 9)| D™u(s) — D™ul(t)|3dsdt
(24)
t+1 t+1
+ [T @) 8T 1dt + 5 [ g(8)|| D™ u(t)||3dt.
Thanks to mean value Theorem and Holder inequality,
t 1
@13 + fllue(t)ll3 < f7 lJus(D)[13dt
(25)

a—1 1
Q155 (I ue(O)lIS T Hde) =+,

holds for some t; € [t,t + 1] and o € [t + 2,¢ + 1].
Hence, by (24), the following is presented:

Jug(t:) |5 < cF3(t), i=1,2, (26)
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2(a—1)
where ¢ = 4|Q| (e+D?

Afterwards, multiplying equation(1) by w and integrating it over Q X
[t1,t2] the following identity is presented:

D)3 + D)3 — Ju(e) B dt
fQ Utt de‘dt fQ |ut |o¢ 1 ()dl‘dt (27)

+ [12 Jo Jo 9(t = s)D™u(t).[D™u(s) — D™u(t)]dsdadt.
Then, using (22), the following is obtained:

Ji2 1(t)dt
fQ t)ug (t)dadt — fQ ) |ug ()| Ly () dadt
(28)
—l—f (goD™)u(t)dt

+ ft fQ fo (t — s)D™u(t).[D™u(s) — D™u(t)]dsdzdt.

Note that by integrating by parts and Holder inequality, the following
inequality is achieved:

to 2
/ / Bu(t)dadt < ()3 + / / () dzdt.  (29)
t1 i=1 t1

Also the following relation is obtained by considering Young inequality:

fQ Ji gt — s)D™u(t).[D™u(s) — D™u(t)|dsdzdt
(30)
5[ fo (t—=s)| D™ u(t )H%det"‘ % Ju (QODm) (t)dt,

where ¢ is some positive constant to be chosen later.
By using (18) and Sobolev-Poincare inequality, the following result is
concluded:

1
[uti)llp+1 <1 sup E=(s), (31)
t1<s<t2
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where ¢ = (?((Ifirll)))%

Then, by (26) and (29)-(31), the following relation is deduced:

JE It < caF () supy, coey, B2 () + cF2(t)
+f Jo [u(®)|Jug(8)|*dadt + (55 + 1) Z(goD™u)(t)dt

+6 Ji2 Jo 9(t = $)| D™ u(t) |3dsdt,
(32)
where ¢5 = v/2¢1c.
On the other hand, the following inequality is obtained from (2) and
(24):
1

2 m f2 / m 2 a+1
/tl (goD™u)(1)dt < _fz/tl (oD )it < SFH ). (33)

The following relation is achieved by considering (2) and (23):

gt - IDmu()Bdsdt < & [ fLg/(t - )| Dmu(b)|Bdsdt

< & f7 9(O)ID™u(t) |3t

= &6t

< (13& L2 I(t)dt.

B)l&1
(34)
Hence, by choosing § such that 6_‘(](0) = 1 and by using (32)-(34), the
(1-p)i& — 2
following is obtained:
JE It < 2e2F (1) supy, <oy, B2 (5) + 2¢F2(t)
(35)

03F°‘+1(t)+f fQ]u ) e ()| “dadt,

where c3 = (1 + (13(50))151)5%'
By using Holder inequality and Sobolev-Poincare inequality, the follow-

ing is resulted:
22 Jo lu@llue(t)|*dzdt < B f,7 fu(®)l[g 41| D™ u(t)|l2dt
(36)
1
< C18UPy, <o, B2 (s)F(2).
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By putting (36) into (35) and due to decreasing of energy E(t), it can
be concluded that:

(t) + F¥()E2(t) + F2(t) + FoT(t)),  (37)

N

t2
/ [(H)dt < ca(F()E
t1

where ¢4 = max{c, c1,c2,c3}.

Moreover, from (3), (22) and (23), it is seen that:

1
E(t) < gllwl + eslID™u@)ll3 + cs(goD™u)(t) + csI(t),  (38)
where ¢5 = 3 — Iﬁ and cg = (ﬁ + m)
By integrating (38) over (t1,?2) also using (23), (26) and (33), the fol-
lowing is achieved:
to

E(t)dt < §F2(t) +or /t2 I(t)dt + cs FoTL(2), (39)

t1 t1

where c7 = cg + 122 5 and 08—25%.

On the other hand, from the nonincreasing of E(t) one obtain:

* Byt >

t1

E(t2).

l\D\l—‘

Therefore, from (39),

B(t) = B(ty) - 4 [ L g/(t — )| D™u(s) — D™u(t)|[3dsdt

2 @) 1351de + 5 [ g (O D™u(t)13dt
(40)
<2 [ E(t)dt + For(t)

< co(F(E:(t) + FA(H)E2 () + F2(t) + FoL(t)),

where cg = max{c + 2cycq, 2c7¢4, 1 + 2c8 + c7c4}
After that, by Young inequality, the following inequality is achieved:

E(t) < c1o(F2(t) + F2(t) + F*T1(t)), (41)
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where ¢19 = ]12_"’29 .
If « =1in (41), then
E(t) < 3c10(F?(t)) = 3c10(E(t) — E(t + 1)), (42)

therefore (11) follows from (42) and Lemma 2.3.
If a > 1, since:

P () = B(t) — E(t+1) < E(0),
then, the following relation is obtained:

E(t) < co(l+ FAo=D() 4 Fo—1(1)F2(t)

2(a—1) a—1

< cro(1+ (E(0)) ot (8) + (E(0))a+1 () F2(t) (43)

<enF2(1),

2(a—1

) a—
where c11 = (14 (Eo) o%1 (t) + (Eo) o1 (¢)).
Thus, (43) implies (44) as follows:

a+1 atl

B (1) <of FoFU(1) = ens(E(t) — B(t + 1)), (44)

a+1
where c12 = ¢, .

Hence,(12)follows from (44) and Lemma 2.3. This finishes the proof. [

4. Conclusion

In this paper, a difference inequality [Lemma 2.3.] for a class of Integro-
Diferential equations with nonlinear damping has been applied. The
main goal of this work is estimating general decay energy of these equa-
tions. The mentioned target is satisfied by the propose method. Also,
the asymptotic behavior of solutions is discussed.
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Abstract. In this paper we study the irreducibility of some compos-
ite polynomials, constructed by a polynomial composition method over
finite fields. Finally, a recurrent method for constructing families of irre-
ducible polynomials of higher degree from given irreducible polynomials
over finite fields is given.
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1. Introduction

The problem of irreducibility of polynomials over Galois fields is a case of
spacial interest and plays an important role in modern engineering. One
of the methods to construct irreducible polynomials is the polynomial
composition method that allows constructions of irreducible polynomials
of higher degree from given irreducible polynomials over finite fields.

Let F; be the Galois field of order ¢ = p®, where p is a prime and s is a
natural number. For a finite field F, we denote by F; the multiplicative
group of nonzero elements of F,. Recall that the trace function of Fyn
over [F, is defined by

n—1 )
2
Try ., (@) = g a?, aeFyn,
=0
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where Fy» is an extension field of the finite field IF,. For convince we

denote T'rp _,|p, by Tr¢nq- Notice also the transitivity of the trace in
q q

the sense that

q-

Trgnip, (@) = Trr,F, (TTF 0 F, (@), o€ Fgn. (1)

Suppose that P(z) = >, ¢;z* be an irreducible polynomial over F, of
degree n. Its reciprocal polynomial is defined as

P*(z) =2"P(1/x).
Some authors have been studied the irreducibility of the polynomial

axP —br + ¢

); (2)
for some particular cases. Varshamov studied one case from (2) and
gave the following proposition:

Proposition 1.1. ([10, Theorem 3.13]) Let P(z) = Y. ¢z’ be an
irreducible polynomial over Fy and p be the characteristic of Fy. Then
the polynomial P(xP —x —dg) is an irreducible polynomial over Fy if and
only if

T'rgp(ndo — cn—1) # 0.

Also, for this case, Kyuregyan gave a recurrent method for constructing
irreducible polynomials in the following proposition:

Proposition 1.2. (Kyuregyan [8, Theorem 2]) Let F(z) = Y ._, cuz"
be an irreducible polynomial over F, and suppose that there ewist an
element 6o € Fp such that F(éo) = a, with a € F, and

Trq|p(n50 — cn_l)Trq‘p(F/((so)) #0.

Let go(z) = 2P — x + 0p and gi(v) = 2P — x + &), where o, € Fy, k > 1.
Define Fy(x) = F(go(x)), and Fi(v) = F}_{(gr(x)) for k > 1, where
F | (x) is the reciprocal polynomial of Fi_i(x). Then for each k > 0,
the polynomial Fy,(x) is an irreducible polynomial of degree ny = npF+!

over .



ON THE IRREDUCIBILITY OF SOME COMPOSITE .... 67

We note that the above proposition is the generalization of Varshamov’s
theorem, that the reader can find it in [10]. He also gave another re-
current method for constructing irreducible polynomials in the following
proposition:

Proposition 1.3. (Kyuregyan [7], Corollary 2) Let s be odd integer, o
be any element of F5., and the sequence of functions pm,(x) be defined
by

em(2) = am(x) + 6bm ()

under the initial condition
po(z) =z + 0.

Then the polynomial o, (x) of degree 2m defined by the recurrent relation
52

pmoi(@ )
x

m—

om(x) = a?
1s an irreducible polynomial over Fos, where
ay(z) = 2%+ 6%, by(z) ==z

and
(@) = ap,_y () + b,y (2)
and also
b () = am—1(2)bpm—1(x).

The aim of this paper is to determine under what conditions

2 — Soz + 6,

F(z) = 22" P( T, 80,01 € Fe

x
is an irreducible polynomial over Fas, where P(x) is an irreducible poly-
nomial of degree m over Fos, and also giving a recurrent method for
constructing families of irreducible polynomials Fy(z), for k > 0 over fi-
nite fields, when Fy(x) = P(x). Such polynomials are used to implement
arithmetic in extension fields and are found in many applications, in-
cluding coding theory [1] and [6], cryptography [2], [4] and [5], computer
algebra system [3].
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In [9] Melsik K. Kyuregyan and Gohar M. Kyuregyan presented a new
method for constructing irreducible polynomials over finite fields. They
proved the following results which will be used in the proof of our results.

Proposition 1.4. (M. K. Kyuregyan and G. M. Kyureghyan [9], Lemma
1) A monic polynomial f(x) € Fylx] of degree n = dk is irreducible
over Fy if and only if there is a monic irreducible polynomial h(zx) =
Zf:o hiz' over Fua of degree k such that Fy(ho,hy,...,hg) = Fa and
f(z) = Hg;é h®)(z) on Fa[z], where

2. Irreducibility of Composition Polynomials

In this section we examine the irreducibility of composite polynomial
xQ”P(””Z_i’if‘*"sl) over Fas. We prove some results that will be helpful to
construct sequences of high degree irreducible polynomials over a finite
fields. The following proposition will be helpful to derive our results.

Proposition 2.1. ([10], Corollary 3.6) For a,b € Fy the trinomial P —
ar — b 1s irreducible over F, if and only if a = AP=L for some A € F,

and Trq|p(%) # 0.

Theorem 2.2. Let P(z) = > i, c;z’ be an irreducible polynomial over
Fos of degree n. Then

2 Sor 46
Fz) = o2 p(E =000 5 5 e B

X

s an irreducible polynomial of degree 2n over Fys if and only if

51, P*'(0)

TV’25|2(5T2)(P*7(0)

+mn)) #0.
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Proof. Let a € Fasn be a root of P(z). Irreducibility of P(z) over Fas
implies that it can represented over [Fosn as

n—1

P(z)=cp, H (x — ™).

u=0

By substituting 9”2_‘?72“”'“51 for  and multiplying its both sides by x?7,
we get

2
on 1y T — 00T + 01
Fla) = 22 p("— 0
n—1 2
n X —(50.%‘—1—51 su
= ¢z’ I_I(T—a2 )
u=0
n—1 ysu ) (50 28U (51 2su
—a [J0-a?) @ - () a- () )
u=0
n—1 9su osu
2571 0 0
=al-a) = [[@ (70 o= (7))
u=0

Proposition 4 implies that F(x) is an irreducible polynomial over Fos if
and only if

is an irreducible polynomial over Fosn. Then by Proposition 5, F'(z) is
an irreducible polynomial over Fos if and only if

P 5
Tromnp(—2=15) = Troenio( =5 (a0 — 1)) # 0.
T 8

On the other side by (1),

T7“2~m|2(§32)(a —1) = T7“28|2(T7’2m|2s(%(a ) )
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Recall that for an irreducible polynomial f(z) =Y a;x’ of degree n
over [F,, we have

anp—1
Trqnlq(ﬁ) = — an s
where 3 € Fgn is a root of f(z)(see [6], page 51). So
) )
Tr25n|25(5i;(04 - 1)) = 67§T7125n|23 (CE - 1)
0 0
01
== ?(TTzS?’LlQS (Oé) - T?ﬂ2sn‘25(1))
0
01 Cn-1
S : 4
St ) @

Hence (3) and (4) imply that

01 01 ,Cp1
T7“2sn\2(§(04 —1)) = TT23|2(5*2(07 +n)).
0 0 Cn

By the given condition Tr25|2(§—5(%((00)) +n)) # 0, F(z) is an irreducible
0

polynomial over Fos. [

Example 2.3. Consider the irreducible polynomial P(z) = 22 + = +
(av + 1) over the Galois field F4 = {0,1,a, a + 1}, where « is a root of
the irreducible polynomial 22 4+ 2 + 1 over Fy. According to Theorem 2.

)

= (2% = (a+ 1Dz + oz)2+x2(x2—(oz+1):v+oz)+(oz+l)x4
= (a+ D)zt +(a+D)a® +(a + 1)

2 —(a+z+a
22

F(z) = 2*P(

is an irreducible polynomial over Fy.

Corollary 2.4. Let P(z) = > I ; c;z® be an irreducible polynomial over
Fo of degree n. Then
22—z +1

F(z) = 2°"P( =

)

1s an irreducible polynomial of degree 2n over Fo if and only if

Cn—1

+n #0.

Cn
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3. Recurrent Method

In this section we shall describe a computationally simple and explicit
recurrent method for constructing higher degree irreducible polynomials
over finite field Fas starting from an irreducible polynomial.

Theorem 3.1. Let P(x) be an irreducible polynomial of degree n over

Fys. Define
Fy(z) = P(x),
22—z
Fo(z) = 2" By (U2 k> (5)
Suppose that
P'(1 P*(0
TT23|2(P((1))) . TT252<_P*((O)) + TL) 7é 0.

Then (Fy(x))g>1 is a sequence of irreducible polynomials over Fas of
degree n2F.

Proof. We start our proof by setting dg, 61 = 1 in Theorem 2.2. Ac-
cording to Theorem 2.2. and hypothesis of theorem , F}(x) is an irre-
ducible polynomial over Fos of degree 2n. Also by Theorem 2.2. for
every k > 2, Fy(x) is an irreducible polynomial over Fos if and only if

Tr23|2(1;’“}%1(((§)))) # 0. On the other hand, from (5), we have

Fi@) =" Fi(2)
n2k 12 _ (1
= ()" (2 (1()”5”5
= F1(2* -z +1), (6)

for every k > 1. So
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and
F'(0) = Fr (1), (8)
for every £ > 1. On the other side
2
- 1
Fi(w) =" 2R (), ©)
So
Fy(1) = Fy (1), (10)
for every k > 1. Using (8) and (9), we get
F'(0) = P'(1). (11)
Obviously by (5)
Fi(1) = Fi—1 (1), (12)

for every k > 1. So (7) and (12) imply that F}}(0) = P(1), for every
k > 1. Thus by hypothesis of theorem FJ(z) is an irreducible polynomial
over Fys, for every k > 2, and the proof is completed. [

Corollary 3.2. Consider the irreducible polynomial Fy(z) = 22 +x + 1
over the Galois field Fo. According to Theorem 3., for each k > 1

2k+1 x2—aj—f—1

Fi(x) = F— 1(T)a

is a sequence of irreducible polynomials over Fy of degree 2F+1.
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Abstract. In this paper, we propose a method to obtain approximate
solutions to Fredholm integral-differential equations by employing the
homotopy analysis method (HAM). The HAM gives the possibility to
increase convergence region and rate of series solution. we show that the
adomian decomposition method (ADM) cannot give better results than
the present method. Five examples are presented to illustrate conver-
gence and accuracy of the method to the solution. Also, we compute the
absolute error to show that obtained results have reasonable accuracy.
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1. Introduction

The homotopy analysis method have been used for many years for solv-
ing mathematical problems. This new method has been presented by
Liao ([1]) and applied to nonlinear oscillators with discontinuities ([2-
4]), heat transfer ([5,6]), boundary layer flows ([7-9]), chaotic dynamical
systems ([10]), systems of ODEs ([11]), delay differential equation ([12]),
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ordinary differential equations ([13]), Glauert-jet problem ([14]), chaotic
dynamical systems ([15]) and strongly nonlinear oscillatory system ([16]).
Consider the following Feredholm integro-Differential equation

m b
> BOu0) = FO)+ [ K9G, u™(s)ds, (1)
7=0 @
Oul(t .
g]ﬁ. )\t:a = N\iyi=0,1,...,m1,
Otu(t .
875(2 )‘t:b == )\i,l = 0, 1, ey, M.

where u(t) : [a,b] — R is the unknown function. where K(¢,s) and
P;(t), j =0,1,2,...,m are known functions.

In this paper, we propose an analytical method to solve the Feredholm’s
Integro-Differential Equations. Comparisons are made between ADM
and the proposed method. It is demonstrated that the solutions obtained
by the ADM are special cases of the present method. For the purpose,
we first give the following definition and theorems.

Definition 1.1. Let ¢ be a function of the homotopy parameter q, then

Dn(d’) =L

nl dq™ 1q=0"
s called the nth-order homotopy-derivative of ¢, where n > 0 is an
mnteger.

Theorem 1.2. For homotopy-series

o0
¢ = upg",
k=0

it holds the recurrence formulas
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where m > 1 is integer.
Proof. See [17]. O

Theorem 1.3. For homotopy-series
o0
¢ = upg",
k=0
it holds the recurrence formulas

Do(sin(¢)) = sin(uo), Do(cos(¢)) = cos(uo),

—_

Dyn(sin(@)) = Y (1~ ) Dy(cos(8)) D (9),

k=0

[y

m—

Dip(cos(9)) = Y (1= ) Di(sin(9) Dy 1(6).

k

Il
=)

where m > 1 1is integer.

Proof. See [17]. O

2. Main Results

2.1 Analysis of the Method for the Feredholm Integro-
Differential Equations

From (4) we define the nonlinear operator

NS Z P 255D iy
/ K9G8 (s:0), o T oDy (3)
and we choose the auxiliary linear operator as follows
DSt = S,

otm
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where ¢ € [0,1] is an embedding parameter; S(t; ¢), is real function of ¢
and ¢, respectively. Let i denote a nonzero auxiliary parameter. Also,
assume ug denote the initial guess of the exact solution u(t).

We construct the zero-order deformation equation

(1 —q)L[S(t;q) — uo] = ¢hN (S(t:9), 9), (3)
subject to the boundary conditions
855(151‘7(])’15:& =i, i =0,1,...,my,
a%(ti"])h:b =X\, i=0,1,...,mo.
Using Taylor’s theorem, we expand S(¢;¢) in the power series of q as
follows
S(tiq) =uo+ Y _u;(t)g, (4)
j=1
where

u;j(t) = D;j(S(t:q)).

Note that (2.) contains an auxiliary parameter A. Assuming that is
correctly chosen so that (2.) is convergent at ¢ = 1, we have the series
solution

u(t) = S(t;1) =uo + »_ u;(t),
j=1

Operating on both sides of (2), we have the so-called nth-order defor-
mation equation

Lluy,(t) = xntn—1(t)] = ARy (uo, w1, ..oy Up—1,1),

Oitun_1(t)
ati
D1 (t)
ati

’t:a = O7Z = 07 17 -y,

iy = 0,i=0,1,...,ms.
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where
0, n<l1,

Xn =
1, otherwise.

and
Ry(ug, - tn-1,t) = Dp1(N(uo+ Y u;(t)q’))
Then, we have

ZP (Bu, = FE)( = xa)

/ K(t, 5)Dy_1( G(S(s;q>,...,mi(jjq>))ds. (5)

We gain u,, (n =1,2,3,...), successively. At the Mth-order approxima-
tion we have

M
u(t) ~ Unr(t,h) = ug + > uj(t)

j=1
2.2 Convergence of Method and Comparison to ADM

Theorem 2.2.1. If the series solution

0+ u)

converges then it is an exact solution of of (4).

Proof. If the series solution:

t)+ Y ui(t)
j=1
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is convergent, then:
lim u;(t) = 0. (6)

Jj—oo

Using (6), we obtain:

W%gnOOZL Un(t) = XnUp—1(t)] = lim w,y,(t) =0.

m—00

Since h # 0, we deduce:
ZR (ug, U1y ooy Up—1,t) = 0.

Now, from (2), it conclude:

> R. = ZZ (), = ST F@)(1 - xa)
n=1 j=0

n=1 n=1
- / K(t:5) Y Dot (G(S(5:0) s 2Dy 0. (1)
a n=1

If the series solution

) = uo(t +Zu]

is convergent, then the series

o0

S D1 (G(S(s50), -, Loy
n=1

will converge to G(u(s), ..., u™ D (s),ul™ (s)) (see [18]).
Now, by using (7) we have:

m b
> Pty (t) = F(t) + / K(t,8)G(u(s), ..., u™ D (s), ul™ (s))ds. (8)

Jj=0

This completes the proof. [
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Remark 2.2.2. The valid region of h for convergence of series solution
uo(t) + 372, u;(t), can be found although approzimately by plotting the
curves of unknown quantities versus h. Let to € [a,b], then Ups(to, h), is
function of h. In accordance with h-curve of Ups(to, h), we can find the
valid region of h [1].

Theorem 2.2.3. (Comparison to ADM) If h = —1 and L{ug(t)] = F(t),
the present method will be converted to ADM.

Proof. See [1]. O

3. Test Examples

In this section, we solve five test problems to demonstrate the accurate
nature of the proposed method. The validity of the method is based on
assumption that the series (2.) converges at ¢ = 1.

There is the convergence-control parameter 7 which guarantees that this
assumption can be satisfied. We need to concentrate on the convergence
of the obtained results by properly choosing h.

Example 3.1. Consider the following nonlinear integro differential
equation

{ u'(t) =2 — sm(l) (2 +1) fo 2(t? 4+ 1) cos(u(z))dz,
u(0) =0, u’(O) =0.

The exact solution of this problem is u(t) = ¢* ([18]).

We choose up(t) = 0 as initial approximation guess. We study the
influence of A on the convergence of Ug(0.5,1). We can investigate the
influence of 7 on the convergence region of Ug(0.5, i) by means of h-curve
as shown in Fig. 1. From Fig. 1, the convergence region of U(0.5, ) is
[—1.2,—0.5]. The Error function |Ups(t, k) — u(t)| with M = 6 has been
plotted for different A in Fig. 2.

Example 3.2. Consider the following linear integro differential equation

{ u’(t) =t —sin(t) — fog tzu(z)dz,
w(0) =0, '(0)=1.
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The exact solution of this problem is u(t) = sin(¢) ([18]).

We choose ugp(t) = t as initial approximation guess. The curve of
Us(5, D) is plotted in Fig. 3 to determine the valid region of . As shown
in Fig. 3, the series solutions of Us(%, h) converge at [—1.05, —0.55]. The
results presented in Table 1 clearly show the good accuracy of present
method.

Example 3.3. Consider the following nonlinear integro differential
equation
{ W) =1—e '+ [ e Ot
u(0) = 0.

The exact solution of this problem is u(t) = ¢ ([19]).

Let us choose up(t) = 0 as initial approximation guess. Fig. 4 shows
the A-curve obtained from the % at t = 0.5. From this figure, the
valid values of A fall in the range [—0.45, —0.35]. The Error function
|Uns(t, h) — u(t)| with M = 6 has been plotted for different value of £ in

Fig. 5.

Example 3.4. Consider the following nonlinear integro differential
equation

{ W(t) =2~ 4 [ (a? — t)ud(t)dt,

The exact solution of this problem is u(t) = ¢ ([20]).

Let us choose ug(t) = 0 as initial approximation guess. In Fig. 6, h-
curve of Ug(0.4, 1) has been plotted, as we see the valid region of A is
[—1.2,—0.3]. The numerical solution obtained from the present method
is much more accurate than the numerical solution given by the ADM,
as shown in Table 2.

Example 3.5. Consider the following linear integro differential equation

{ ' (t) + 2/ (t) — zu(z) = et — 2sin(t) — f_ll sin(t)e *u(z)dz,
u(0) =1, «/(0)=1.

The exact solution of this problem is u(t) = e! ([21]).
We choose ug(t) = 1+t as initial approximation guess. To find the valid
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region of A, the h-curve given by the ag; at t = —0.5 is drawn in Fig.
7, which indicates that the valid region of % is about [—1.2, —0.4]. The
convergence region of the solution given by ADM is ¢ € [-0.5,0.5], as

shown in Fig. 8. When h = —1,—-0.9, —0.7, we obtain an approximate
solution which is much more accurate than the solution given by the
ADM as shown in Table 3.

T T T
-3 -2 =l 1]
control parameter b

Figure 1: The h-curve of U}(0.5,h) (Example 3.1).
0%
10°* 4
10°% 4

Emar -6

] 0z 0.4 06 0g 1

x
[=—=h=Tnr h=-07 —h=-1]

Figure 2: The error with & = —0.6, A = —0.7 and & = —1 (Example 3.1).
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Table 1: Absolute error (Example 3.2).

t Ueact h=-1 h=-08 h=-07 ADM
71071 0.3090169944 4.9E-6 26FE -8 290FE -7 54E — 6
7971 0.3420201433 6.8E-6 3.6E -8 4.0E -7 74E —6
n.871 0.3826834325 9.6E-6 49E -8 56E -7 1.1E -5
7771 0.4338837393 1.4E-5 7T1E -8 81E -7 1.5E -5
7.671 0.5000000000 2.2E-5 1.0E -7 1.2E -6 25E -5
7571 0.5877852524 3.9E-5 1.7TE -7 1.9E -6 4.3E -5
7471 0.7071067810 7.7E-5 27E -7 3.1E -6 84FE —5
m.371 0.8660254040 1.8E-4 38E -7 4.3E — 6 2.0E -4
m.271 1.0000000000 6.2E-4 1.3E -6 1.5E -5 6.8E —4

Table 2: Absolute error (Example 3.4).
t Uegact h=-1.0 h=-0.8 h=-1.1 ADM
0 0.0 0.0 0.0 0.0 0.0

0.2 0.2 5.1E-3 5.0E -4 0.7TE —4 5.9E -3

0.4 0.4 9.6E-3 9.5E -4 1.1E -3 1.1E -3

0.6 0.6 1.3E-2 1.2 -3 14E -3 1.5E -3

0.8 0.8 1.5E-2 1.3E -3 1.5E -3 1.6E —3

1.0 1.0 1.4E-2 14F -3 1.6E —3 1.5E -3

Table 3: Absolute error (Example 3.5).

t Uezact h=-1 h=-09 h=-07 ADM
-1 0.3678794412 2.7TE-4 49F — 6 6.0F —6 divergent
—0.8  0.4493289641 7.7E-5 6.4E — 6 15E -5 divergent
—0.6  0.5488116361 1.7E-5 22E -6 49E -6 divergent
—0.4  0.6703200460 5.0E-6 52FE -7 52E -6 37E —2
—0.2  0.8187307531 3.6E-7 1.9FE -6 45E -6 45E -3

0 1 0 1.7TE -7 1.6E -7 0

0.2 1.221402758 5.6e-6 2.0E -6 6.7E — 6 4.0e — 3
0.4 1.491824698 1.9E-6 6.4EFE — 6 2.6E -5 29EF -2
0.6 1.822118800 2.2E-5 3.0E—6 33E -5 8.8E —2
0.8 2.225540928 7.3E-5 6.5FE —7 3.1E—5 divergent

1 2.718281828 1.7E-4 TAE — 7 2.6E —5 divergent
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Figure 3: The h-curve of Us(5,h) (Example 3.2).
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Figure 4: The h-curve of U}(0.5,h) (Example 3.3).
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Error

%5
10°% 4

10°7 4

] 0z 0.4 06 0g 1

x
— —h=035----- h=-0.40 —— h=-0.45

Figure 5: The error with i = —0.35, h = —0.4 and h = —0.45 (Example 3.3).

054

ug4
-05

2l5s

T T
-15 -1 -05 il
control parameter b

Figure 6: The A-curve of Ug(0.4, /) (Example 3.4).
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Figure 7: The h-curve of Us(—0.5, %) (Example 3.5).
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Figure 8: Comparison of the exact result with the 5th-order approximation

given by ADM (Example 3.5).
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Conclusion

In this paper, an semi-analytical method was proposed for solving Fered-
holm Integro-Differential Equations. The efficiency of this method is
demonstrated by solving five examples. We have illustrated that the
ADM cannot give better results than the present method. In fact, the
ADM are only the especial case of the present method.
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Numerical Range in C*-Algebras

M. T. Heydari

Yasouj University

Abstract. Let A be a C*-algebra with unit 1 and let S be the state
space of A, i.e., S ={p € A" : ¢ > 0,0(1) = 1}. For each a € A, the
C*-algebra numerical range is defined by

V(a) :={p(a) : p € S§}.

We prove that if V' (a) is a disc with center at the origin, then ||[a4a*|| =
lla —a™|.

AMS Subject Classification: 47A12; 46K10
Keywords and Phrases: Support line, numerical ranges, norm

1. Introduction

Let T be a bounded linear operator on a complex Hilbert space H. We
can write

T =A+iB, (1)

where A and B are Hermitian operators. Such a decomposition is
unique; we have

1 * 1 *
:i(T—l—T),B 2(T—T). (2)

A - -

i
The elements A, B are called the real and imaginary parts of T', denoted
by Re(T) and Im(T), respectively, and the decomposition (1) is called
the Cartesian decomposition of T'.

The numerical range of T is the set

Received: June 2011; Accepted: March 2012
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W(T) :={{Tz,z) : x € H,|z| = 1},

in the complex plane, where (.,.) denotes the inner product in H. In
other words, W(T') is the image of the unit sphere {x € H : ||z|| = 1} of
‘H under the (bounded) quadratic form z — (T'x,x).

Some properties of the numerical range follow easily from the defini-
tion. Recall that, the numerical range is unchanged under the unitary
equivalence of operators: W(T) = W(U*TU) for any unitary operator
U. It also behaves nicely under the operation of taking the adjoint of
an operator: W (T*) = {z: z € W(T)}. One of the most fundamental
properties of the numerical range is it’s convexity, stated by the famous
Toeplitz-Hausdorff Theorem. Other important property of W (T) is that
its closure contains the spectrum of the operator. Also, W(T) is a con-
nected set and it is compact in the finite dimensional case.

2. Numerical Range and Norm

Suppose E is a bounded convex subset of the plane. For 0 < 6§ < 27
define

pE(0) ;= sup{Re(e ?2) : z € E}. (3)

Note that for z € C, the number Re(e~%%) is the real dot product of
the plane vectors e’ and z, i.e., the signed length of the projection of z
in the direction of €. Thus the set

[Iy = {z € C: Re(e™2) < pp(0)},

is a closed half-plane that contains E and intersects 0E. The boundary
Ly of [], is called the support line of E perpendicular to e, The
magnitude of pg(f) is the orthogonal distance from the origin to Lg.
The function pg(6) : [0,27) :— R defined by (3) is called the support
function of E. The Hahn-Banach theorem insures that the closure of
E is the intersection of all the half-planes [[, as 6 runs from 0 to 2.
Hence two bounded convex sets with the same support function have
the same closures( see [3]).
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In our applications the set E will always contain the origin in its closure,
in which case pg > 0 . We will be particularly interested in the support
function of a standard ellipse.

Proposition 2.1. Suppose gL,b > 0 and E s the elliptical disc deter-
mined by the inequality 2—;4—3{)’—2 < 1. Thenpg(0) = Va2 cos? 0 + b2sin? 6.
(0< 0 < 2m).

Proof. We parameterize the boundary of E by the complex equation
z(t) = acost + ibsint, with 0 < ¢t < 27m. So

pe(0) = sup{Re(e ™z):z¢€ E}
= sup{acosfcost+bsinfsint, 0 <t < 2m}.

Put f(t) = acos@cost + bsinfsint,0 < t < 2w. Since f is twice dif-
ferentiable so, by second derivative test, it has a local maximum at
tant = gtan 0. After a little calculation with right triangles this yields
the equations

acosf bsin 0

cost = , sint =
Va2 cos? 0 + b2sin? 6

Va2 cos?2 f + b2sin2 0

and then by substituting, pg(0) = Va2cos?0 + b2sin26. (0 < 6 <
2r). O

We note in closing that this result persists in the limiting case b = 0.
In this case E is the real segment [—a,a], for which the definition of
support function yields pg(6) = a|cos(0)|. If a = b, then pg(f) = a,
indeed if E is a disc with center at the origin then the function pg(0) is
constant for all 6.

Proposition 2.2. If T is a bounded linear operator on a Hilbert space
H such that W(T) is a disc with center at the origin. Then

[Re(T)]| = [[Im(T)]
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Proof. We compute the support function pr of W(T') in this standard
fashion:

pr(0): = sup{Re(e ?2):zeW(T)}
= sup{Re(e ™ <Tf,f>):feH,|fll =1}
sup{< Hof, [ >: f € H,||f]| =1}

where Hg := Re(e™T) = 1(e="T + "T*).
Since Hy is a self-adjoint operator on H and W(T) is a disc with cen-
ter at the origin, then the last calculation show that for each 0 < 6 < 27,

pr(0) = sup{| < Hpf, [ >|: f € H,[|fl| =1} = || Hol|.

Now, Proposition 2. implies that, pr(0) and also ||Hy|| is constant for
all . In particular, ||Hol = [[Hz| or

1T+ T = [T = T7.

This completes the proof. [
Let A be a C*-algebra with unit 1 and let S be the state space of A,

ie, S={p e A" : ¢ > 0,9(1) = 1}. For each a € A, the C*-algebra
numerical range is defined by

Vi(a) :=={p(a) : p € S}.

It is well known that V'(a) is non empty, compact and convex subset of
the complex plane and V(al + Ba) = a+ SV (a) where a € A, o, 3 € C,
and if z € V(a), |2| < ||la]| (for further details see [2]).

As an example, let A be the C*-algebra of all bounded linear operators
on a complex Hilbert space H and A € A. It is well known that V(A)
is the closure of W (A), where

W(A) .= {(Ax,z) : x € H,||z| = 1},

is the usual numerical range of the operator A.
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Theorem 2.3. Let a € A be such that V(a) be a disc with center at the
origin. Then
[Re(a)ll = [[Tm(a)]]

Proof. Let p be a state of A. Then there exists a cyclic representation
¢, of A on a Hilbert space H, and a unit cyclic vector x, for ¢, such
that

pla) = (pp(a)zy, zp), a € A

By Gelfand-Naimark Theorem, the direct sum ¢ : a — 3 s Dpp(a) is
a faithful representation of A on the Hilbert space H = ) pes OH,p (see
[6]). Therefore, for each p € S, p(a) € W(p,(a)) C W(p(a)), and hence
V(a) is contained in W (p(a)). On the other hand if x is a unit vector
of H, then the formula p(b) = (p(b)x, z),b € A defines a state on A and
hence p(a) = (p(a)z,z) € V(a). So it follows that

W(Ta) = V(CL), (4)

where T, = ¢(a). (see also Theorem 3 of [1]).

Since p(Re(a)) = Re(T,), o(Im(a)) = Im(T,) and ¢ is isometry, thus
by equation (4) and Proposition (2.) the proof is completed. [

Example 2.4. Let U denote the open unit disc in the complex plane.
Recall that the Hardy space H? consists the functions f(z) = 320 fln)zn

~ ~

holomorphic in U such that Yo% ;| f(n)|> < oo, with f(n) denoting the
n-th Taylor coefficient of f. The inner product inducing the norm of

H? is given by < f,g >:= Yo% f(n)g(n). The inner product of two
functions f and ¢ in H? may also be computed by integration:

1 ——dz
< f,g>= m/amf(z)g(z)za
where OU is positively oriented and f and g are defined a.e. on U via
radial limits.

Each holomorphic self map ¢ of U induces on H? a composition operator
C,, defined by the equation C,f = fo(f € H 2). A consequence of
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a famous theorem of J. E. Littlewood [7] asserts that C, is a bounded
operator. (see also [9] and [4]). In fact,

1 11 10(0)
VizTeor Il syizpor

In the case ¢(0) # 0 Joel H. Shapiro has been shown that the second
inequality changes to equality if and only if ¢ is an inner function.

A conformal automorphism is a univalent holomorphic mapping of U
onto itself. Each such map is linear fractional, and can be represented
as a product w.qy,, where

p—z
= ,(z € 1),
0p(z) = f—— (= € V)
for some fixed p € U and w € 9U (see [§8]).

The map «, interchanges the point p and the origin and it is a self-inverse
automorphism of U.

Each conformal automorphism is a bijection map from the sphere C | J{oco}
to itself with two fixed points (counting multiplicity). An automorphism
is called:

e clliptic if it has one fixed point in the disc and one outside the
closed disc,

e hyperbolic if it has two distinct fixed point on the boundary 0U,
and

e parabolic if there is one fixed point of multiplicity 2 on the bound-
ary dU.

For r € U, a r-dilation is a map of the form d,(z) = rz and we call r the
dilation parameter of §, and in the case that » > 0,d, is called positive
dilation. A conformal r-dilation is a map that is conformally conjugate
to an r-dilation, i.e., a map ¢ = a~' 06, o v, where r € U and « is a
conformal automorphism of U.

For w € dU, an w-rotation is a map of the form p,,(z) = wz. We call w
the rotation parameter of p,,. A straightforward calculation shows that
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every elliptic automorphism ¢ of U must have the form
Y= ap O Pw © Oép’

for some p € U and some w € 9U.
In [3] the shapes of the numerical range for composition operators in-
duced on H? by some conformal automorphisms of the unit disc specially
parabolic and hyperbolic are investigated. The authors proved, among
other things, the following results:

1. If ¢ is a conformal automorphism of U is either parabolic or hy-
perbolic then W (C,,) is a disc centered at the origin.

2. If p is a hyperbolic automorphism of U with antipodal fixed points
and it is conformally conjugate to a positive dilation z — rz (0 <
r < 1) then W(C,,) is the open disc of radius 1//r centered at the
origin.

3. If ¢ is elliptic and conformally conjugate to a rotation z — wz
(Jw| = 1) and w is not a root of unity then W(C,,) is a disc centered
at the origin.

So, we have the following consequences:

Proposition 2.5. If ¢ is a conformal automorphism of U, except finite
order elliptic automorphism, then

1Ce + Coll = G = Cl-

Also C, is not self adjoint. If ¢ is a finite order elliptic automorphism
with rotation parameter w of order k, then

o(Cyp) = {1, w,w?, ...,w" '}
If w # %1, then 0(Cy,) is not a subset of R and so C,, is not self adjoint.

Corollary 2.6. C, is Hermitian if and only if ¢(z) = z or — z.
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