RNS-Approximately Nonlinear Additive Functional Equations

H. Azadi Kenary
Yasouj University

Abstract

In this paper, we prove the generalized Hyers-Ulam-Rassias stability of a nonlinear additive functional equation in RNS.

AMS Subject Classification: 39B82; 39B52
Keywords and Phrases: Generalized Hyers-Ulam stability, random normed space, fixed point method

1. Introduction

A classical question in the theory of functional equations is the following question:
When is it true that a function which approximately satisfies a functional equation must be close to an exact solution of the equation?
If the problem accepts a solution, we say that the equation is stable. The first stability problem concerning group homomorphisms was raised by Ulam ([29]) in 1940. In the next year, Hyers ([15]) gave a positive answer to the above question for additive groups under the assumption that the groups are Banach spaces. In 1978, Rassias ([23]) proved a generalization of Hyers's theorem for additive mappings. The result of Rassias has provided a lot of influence during the last three decades in the development of a generalization of the Hyers-Ulam stability concept. This new concept is known as generalized Hyers-Ulam stability or Hyers-Ulam-Rassias stability of functional equations. Furthermore, in 1994, a generalization of Rassias's theorem was obtained by Găvruta

[^0]([14]) by replacing the bound $\epsilon\left(\|x\|^{p}+\|y\|^{p}\right)$ by a general control function $\varphi(x, y)$. The stability problems of several functional equations have been extensively investigated by a number of authors and there are many interesting results concerning this problem ([4]-[27]).
In the sequel, we adopt the usual terminology, notions and conventions of the theory of random normed spaces as in ([28]).
Throughout this paper, let Γ^{+}denote the set of all probability distribution functions $F: \mathbb{R} \cup[-\infty,+\infty] \rightarrow[0,1]$ such that F is left-continuous and nondecreasing on \mathbb{R} and $F(0)=0, F(+\infty)=1$. It is clear that the set $D^{+}=\left\{F \in \Gamma^{+}: l^{-} F(-\infty)=1\right\}$, where $l^{-} f(x)=\lim _{t \rightarrow x^{-}} f(t)$, is a subset of Γ^{+}. The set Γ^{+}is partially ordered by the usual point-wise ordering of functions, that is, $F \leqslant G$ if and only if $F(t) \leqslant G(t)$ for all $t \in \mathbb{R}$. For any $a \geqslant 0$, the element $H_{a}(t)$ of D^{+}is defined by
\[

H_{a}(t)= $$
\begin{cases}0, & \text { if } t \leqslant a, \\ 1, & \text { if } t>a .\end{cases}
$$
\]

We can easily show that the maximal element in Γ^{+}is the distribution function $H_{0}(t)$.

Definition 1.1. A function $T:[0,1]^{2} \rightarrow[0,1]$ is a continuous triangular norm (briefly, a t-norm) if T satisfies the following conditions:
(a) T is commutative and associative; (b) T is continuous; $(c) T(x, 1)=$ x for all $x \in[0,1]$; (d) $T(x, y) \leqslant T(z, w)$ whenever $x \leqslant z$ and $y \leqslant w$ for all $x, y, z, w \in[0,1]$.
Three typical examples of continuous t-norms are as follows: $T_{P}(x, y)=$ $x y, T_{\max }(x, y)=\max \{a+b-1,0\}, T_{M}(x, y)=\min (a, b)$. Recall that, if T is a t-norm and $\left\{x_{n}\right\}$ is a sequence in $[0,1]$, then $T_{i=1}^{n} x_{i}$ is defined recursively by $T_{i=1}^{1} x_{1}=x_{1}$ and $T_{i=1}^{n} x_{i}=T\left(T_{i=1}^{n-1} x_{i}, x_{n}\right)$ for all $n \geqslant 2$. $T_{i=n}^{\infty} x_{i}$ is defined by $T_{i=1}^{\infty} x_{n+i}$.

Definition 1.2. A random normed space (briefly, RNS) is a triple (X, μ, T), where X is a vector space, T is a continuous t-norm and $\mu: X \rightarrow D^{+}$is a mapping such that the following conditions hold:
(a) $\mu_{x}(t)=H_{0}(t)$ for all $x \in X$ and $t>0$ if and only if $x=0$;
(b) $\mu_{\alpha x}(t)=\mu_{x}\left(\frac{t}{|\alpha|}\right)$ for all $\alpha \in \mathbb{R}$ with $\alpha \neq 0, x \in X$ and $t \geqslant 0$;
(c) $\mu_{x+y}(t+s) \geqslant T\left(\mu_{x}(t), \mu_{y}(s)\right)$ for all $x, y \in X$ and $t, s \geqslant 0$. Every normed space $(X,\|\cdot\|)$ defines a random normed space $\left(X, \mu, T_{M}\right)$, where $\mu_{u}(t)=\frac{t}{t+\|u\|}$ for all $t>0$ and T_{M} is the minimum t-norm. This space X is called the induced random normed space. If the t-norm T is such that $\sup _{0<a<1} T(a, a)=1$, then every $R N S(X, \mu, T)$ is a metrizable linear topological space with the topology τ (called the μ-topology or the (ϵ, δ)-topology, where $\epsilon>0$ and $\lambda \in(0,1))$ induced by the base $\{U(\epsilon, \lambda)\}$ of neighborhoods of θ, where $U(\epsilon, \lambda)=\left\{x \in X: \Psi_{x}(\epsilon)>1-\lambda\right\}$.

Definition 1.3. Let (X, μ, T) be an RNS.
(a) A sequence $\left\{x_{n}\right\}$ in X is said to be convergent to a point $x \in X$ (write $x_{n} \rightarrow x$ as $n \rightarrow \infty$) if $\lim _{n \rightarrow \infty} \mu_{x_{n}-x}(t)=1$ for all $t>0$.
(b) A sequence $\left\{x_{n}\right\}$ in X is called a Cauchy sequence in X if $\lim _{n \rightarrow \infty} \mu_{x_{n}-x_{m}}(t)=1$ for all $t>0$.
(c) The RNS (X, μ, T) is said to be complete if every Cauchy sequence in X is convergent.

Theorem 1.4. ([28]) If (X, μ, T) is an RNS and $\left\{x_{n}\right\}$ is a sequence such that $x_{n} \rightarrow x$, then $\lim _{n \rightarrow \infty} \mu_{x_{n}}(t)=\mu_{x}(t)$.

Definition 1.5. Let X be a set. A function $d: X \times X \rightarrow[0, \infty]$ is called a generalized metric on X if d satisfies the following conditions: (a) $d(x, y)=0$ if and only if $x=y$ for all $x, y \in X$; $(b) d(x, y)=d(y, x)$ for all $x, y \in X ;(c) d(x, z) \leqslant d(x, y)+d(y, z)$ for all $x, y, z \in X$.

Theorem 1.6. Let (X, d) be a complete generalized metric space and $J: X \rightarrow X$ be a strictly contractive mapping with Lipschitz constant $L<1$. Then, for all $x \in X$, either

$$
\begin{equation*}
d\left(J^{n} x, J^{n+1} x\right)=\infty \tag{1}
\end{equation*}
$$

for all nonnegative integers n or there exists a positive integer n_{0} such that
(a) $d\left(J^{n} x, J^{n+1} x\right)<\infty$ for all $n_{0} \geqslant n_{0}$;
(b) the sequence $\left\{J^{n} x\right\}$ converges to a fixed point y^{*} of J;
(c) y^{*} is the unique fixed point of J in the set $Y=\left\{y \in X: d\left(J^{n_{0}} x, y\right)<\right.$ $\infty\} ;$
(d) $d\left(y, y^{*}\right) \leqslant \frac{1}{1-L} d(y, J y)$ for all $y \in Y$.

In this paper, we prove the generalized Hyers-Ulam-Rassias stability of the following functional equation:

$$
\begin{equation*}
f(f(x)-f(y))+f(x)+f(y)=f(x+y)+f(x-y) \tag{2}
\end{equation*}
$$

in RNS.

2. Main Results: RNS-Approximation of the Functional Equation (2)

In this section, using direct method, we prove the generalized Hyers-Ulam-Rassias stability of the functional equation (2) in random normed spaces.

Theorem 2.1. Let X be a real linear space, $\left(Z, \mu^{\prime}, \min \right)$ be an $R N$-space and $\phi: X^{2} \rightarrow Z$ be a function such that there exists $0<\alpha<\frac{1}{2}$ such that

$$
\begin{equation*}
\mu_{\phi\left(\frac{x}{2}, \frac{y}{2}\right)}^{\prime}(t) \geqslant \mu_{\alpha \phi(x, y)}^{\prime}(t) \tag{3}
\end{equation*}
$$

for all $x \in X$ and $t>0$ and $\lim _{n \rightarrow \infty} \mu_{\phi\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}\right)}^{\prime}\left(\frac{t}{2^{n}}\right)=1$ for all $x, y \in X$ and $t>0$. Let (Y, μ, \min) be a complete $R N$-space. If $f: X \rightarrow Y$ be a mapping such that

$$
\begin{equation*}
\mu_{f(f(x)-f(y))-f(x+y)-f(x-y)+f(x)+f(y)}(t) \geqslant \mu_{\phi(x, y)}^{\prime}(t) \tag{4}
\end{equation*}
$$

for all $x, y \in X$ and $t>0$. Then the limit $A(x)=\lim _{n \rightarrow \infty} 2^{n} f\left(\frac{x}{2^{n}}\right)$ exists for all $x \in X$ and defines a unique additive mapping $A: X \rightarrow Y$ such that and

$$
\begin{equation*}
\mu_{f(x)-A(x)}(t) \geqslant \mu_{\phi(x, x)}^{\prime}\left(\frac{(1-2 \alpha) t}{\alpha}\right) \tag{5}
\end{equation*}
$$

for all $x \in X$ and $t>0$.
Proof. Putting $y=x$ in (4), we see that

$$
\begin{equation*}
\mu_{f(2 x)-2 f(x)}(t) \geqslant \mu_{\phi(x, x)}^{\prime}(t) . \tag{6}
\end{equation*}
$$

Replacing x by $\frac{x}{2}$ in (6), we obtain

$$
\begin{equation*}
\mu_{2 f\left(\frac{x}{2}\right)-f(x)}(t) \geqslant \mu_{\phi\left(\frac{x}{2}, \frac{x}{2}\right)}^{\prime}(t), \tag{7}
\end{equation*}
$$

for all $x \in X$. Replacing x by $\frac{x}{2^{n}}$ in (7) and using (3), we obtain

$$
\mu_{2^{n+1} f\left(\frac{x}{2^{n+1}}\right)-2^{n} f\left(\frac{x}{2^{n}}\right)}(t) \geqslant \mu_{\phi\left(\frac{x}{2^{n+1}}, \frac{x}{2^{n+1}}\right)}^{\prime}\left(\frac{t}{2^{n}}\right) \geqslant \mu_{\phi(x, x)}^{\prime}\left(\frac{t}{2^{n} \alpha^{n+1}}\right) .
$$

Since

$$
2^{n} f\left(\frac{x}{2^{n}}\right)-f(x)=\sum_{k=0}^{n-1} 2^{k+1} f\left(\frac{x}{2^{k+1}}\right)-2^{k} f\left(\frac{x}{2^{k}}\right),
$$

and so

$$
\begin{aligned}
\mu_{2^{n} f\left(\frac{x}{2^{k}}\right)-f(x)}\left(\sum_{k=0}^{n-1} 2^{k} \alpha^{k+1} t\right) & =\mu_{\sum_{k=0}^{n-1} 2^{k+1} f\left(\frac{x}{2^{k+1}}\right)-2^{k} f\left(\frac{x}{2^{k}}\right)}\left(\sum_{k=0}^{n-1} 2^{k} \alpha^{k+1} t\right) \\
& \geqslant T_{k=0}^{n-1}\left(\mu_{2^{k+1} f\left(\frac{x}{2^{k+1}}\right)-2^{k} f\left(\frac{x}{\left.2^{k}\right)}\right)}\left(2^{k} \alpha^{k+1} t\right)\right) \\
& \geqslant T_{k=0}^{n-1}\left(\mu_{\phi(x, x)}^{\prime}(t)\right)=\mu_{\phi(x, x)}^{\prime}(t) .
\end{aligned}
$$

This implies that $\mu_{2^{n} f\left(\frac{x}{2^{n}}\right)-f(x)}(t) \geqslant \mu_{\phi(x, x)}^{\prime}\left(\frac{t}{\sum_{k=0}^{n-1} 2^{k} \alpha^{k+1}}\right)$. Replacing x by $\frac{x}{2^{p}}$ in the recent inequality, we obtain

$$
\begin{equation*}
\mu_{2^{n+p} f\left(\frac{x}{2^{n+p}}\right)-2^{p} f\left(\frac{x}{2^{p}}\right)}(t) \geqslant \mu_{\phi(x, x)}^{\prime}\left(\frac{t}{\sum_{k=p}^{n+p-1} 2^{k} \alpha^{k+1}}\right) . \tag{8}
\end{equation*}
$$

Since $\lim _{p, n \rightarrow \infty} \mu_{\phi(x, x)}^{\prime}\left(\frac{t}{\sum_{k=p}^{n+p-1} 2^{k} \alpha^{k+1}}\right)=1$, it follows that $\left\{2^{n} f\left(\frac{x}{2^{n}}\right)\right\}_{n=1}^{\infty}$ is a Cauchy sequence in a complete RN -space (Y, μ, \min) and so there exists a point $A(x) \in Y$ such that $\lim _{n \rightarrow \infty} 2^{n} f\left(\frac{x}{2^{n}}\right)=A(x)$. Fix $x \in X$ and put $p=0$ in (8). Then we obtain

$$
\mu_{2^{n} f\left(\frac{x}{2^{n}}\right)-f(x)}(t) \geqslant \mu_{\phi(x, x)}^{\prime}\left(\frac{t}{\sum_{k=0}^{n-1} 2^{k} \alpha^{k+1}}\right)
$$

and so, for any $\epsilon>0$,

$$
\begin{align*}
\mu_{A(x) \pm 2^{n} f\left(\frac{x}{2 n}\right)-f(x)}(t+\epsilon) & \geqslant T\left(\mu_{A(x)-2^{n} f\left(\frac{x}{2^{n}}\right)}(\epsilon), \mu_{2^{n} f\left(\frac{x}{2^{n}}\right)-f(x)}(t)\right) \tag{9}\\
& \geqslant T\left(\mu_{A(x)-2^{n} f\left(\frac{x}{\left.2^{n}\right)}\right.}(\epsilon), \mu_{\phi(x, x)}^{\prime}\left(\frac{t}{\sum_{k=0}^{n-1} 2^{k} \alpha^{k+1}}\right)\right) .
\end{align*}
$$

Taking $n \rightarrow \infty$ in (9), we get

$$
\begin{equation*}
\mu_{A(x)-f(x)}(t+\epsilon) \geqslant \mu_{\phi(x, x)}^{\prime}\left(\frac{(1-2 \alpha) t}{\alpha}\right) \tag{10}
\end{equation*}
$$

Since ϵ is arbitrary, by taking $\epsilon \rightarrow 0$ in (10), we get

$$
\mu_{A(x)-f(x)}(t) \geqslant \mu_{\phi(x, x)}^{\prime}\left(\frac{(1-2 \alpha) t}{\alpha}\right) .
$$

Replacing x and y by $\frac{x}{2^{n}}$ and $\frac{y}{2^{n}}$ in (4), respectively, we get

$$
\mu_{2^{n}\left[f\left(f\left(\frac{x}{2^{n}}\right)-f\left(\frac{y}{2^{n}}\right)\right)-f\left(\frac{x+y}{2^{n}}\right)-f\left(\frac{x-y}{2^{n}}\right)+f\left(\frac{x}{2^{n}}\right)+f\left(\frac{y}{2^{n}}\right)\right]}(t) \geqslant \mu_{\phi\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}\right)}^{\prime}\left(\frac{t}{2^{n}}\right)
$$

for all $x, y \in X$ and $t>0$. Since $\lim _{n \rightarrow \infty} \mu_{\phi\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}\right)}^{\prime}\left(\frac{t}{2^{n}}\right)=1$, we conclude that A satisfies (2). On the other hand

$$
\begin{equation*}
2 A\left(\frac{x}{2}\right)-A(x)=\lim _{n \rightarrow \infty} 2^{n+1} f\left(\frac{x}{2^{n+1}}\right)-\lim _{n \rightarrow \infty} 2^{n} f\left(\frac{x}{2^{n}}\right)=0 . \tag{11}
\end{equation*}
$$

This implies that $A: X \rightarrow Y$ is an additive mapping. To prove the uniqueness of the additive mapping A, assume that there exists another additive mapping $B: X \rightarrow Y$ which satisfies (5). Then we have

$$
\begin{aligned}
\mu_{A(x)-B(x)}(t) & =\lim _{n \rightarrow \infty} \mu_{2^{n} A\left(\frac{x}{2^{n}}\right)-2^{n} B\left(\frac{x}{\left.2^{n}\right)}\right)}(t) \\
& \geqslant \lim _{n \rightarrow \infty} \min \left\{\mu_{2^{n}} A\left(\frac{x}{2^{n}}\right)-2^{n} f\left(\frac{x}{2^{n}}\right)\right. \\
& \left.\left(\frac{t}{2}\right), \mu_{2^{n} f\left(\frac{x}{2^{n}}\right)-2^{n} B\left(\frac{x}{2^{n}}\right)}\left(\frac{t}{2}\right)\right\} \\
& \geqslant \lim _{n \rightarrow \infty} \mu_{\phi\left(\frac{x}{2^{n}}, \frac{x}{2^{n}}\right)}^{\prime}\left(\frac{(1-2 \alpha) t}{2^{n+1} \alpha}\right) \geqslant \lim _{n \rightarrow \infty} \mu_{\phi(x, x)}^{\prime}\left(\frac{(1-2 \alpha) t}{2^{n+1} \alpha^{n}}\right) .
\end{aligned}
$$

Since $\lim _{n \rightarrow \infty} \frac{(1-2 \alpha) t}{2^{n+1} \alpha^{n}}=\infty$, we get $\lim _{n \rightarrow \infty} \mu_{\phi(x, x)}^{\prime}\left(\frac{(1-2 \alpha) t}{2^{n+1} \alpha^{n}}\right)=1$. Therefore, it follows that $\mu_{A(x)-B(x)}(t)=1$ for all $t>0$ and so $A(x)=B(x)$. This completes the proof.

Corollary 2.2. Let X be a real normed linear space, $\left(Z, \mu^{\prime}, \min \right)$ be an $R N$-space and ($Y, \mu, \mathrm{~min}$) be a complete $R N$-space. Let r be a positive real number with $r>1, z_{0} \in Z$ and $f: X \rightarrow Y$ be a mapping satisfying

$$
\begin{equation*}
\mu_{f(f(x)-f(y))-f(x+y)-f(x-y)+f(x)+f(y)}(t) \geqslant \mu_{\left(\|x\|^{r}+\|y\|^{r}\right) z_{0}}^{\prime}(t), \tag{12}
\end{equation*}
$$

for all $x, y \in X$ and $t>0$. Then the limit $A(x)=\lim _{n \rightarrow \infty} 2^{n} f\left(\frac{x}{2^{n}}\right)$ exists for all $x \in X$ and defines a unique additive mapping $A: X \rightarrow Y$ such that and

$$
\mu_{f(x)-A(x)}(t) \geqslant \mu_{\|x\|^{p} z_{0}}^{\prime}\left(\frac{\left(2^{r}-2\right) t}{2}\right),
$$

for all $x \in X$ and $t>0$.
Proof. Let $\alpha=2^{-r}$ and $\phi: X^{2} \rightarrow Z$ be a mapping defined by $\phi(x, y)=$ $\left(\|x\|^{r}+\|y\|^{r}\right) z_{0}$. Then, from Theorem 2.1, the conclusion follows.

Theorem 2.3. Let X be a real linear space, $\left(Z, \mu^{\prime}, \min \right)$ be an $R N$ space and $\phi: X^{2} \rightarrow Z$ be a function such that there exists $0<\alpha<$ 2 such that $\mu_{\phi(2 x, 2 y)}^{\prime}(t) \geqslant \mu_{\alpha \phi(x, y))}^{\prime}(t)$ for all $x \in X$ and $t>0$ and $\lim _{n \rightarrow \infty} \mu_{\phi\left(2^{n} x, 2^{n} y\right)}^{\prime}\left(2^{n} x\right)=1$ for all $x, y \in X$ and $t>0$. Let (Y, μ, \min) be a complete $R N$-space. If $f: X \rightarrow Y$ be a mapping satisfying (4). Then the limit $A(x)=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)}{2^{n}}$ exists for all $x \in X$ and defines a unique additive mapping $A: X \rightarrow Y$ such that

$$
\begin{equation*}
\mu_{f(x)-A(x)}(t) \geqslant \mu_{\phi(x, x)}^{\prime}((2-\alpha) t), \tag{13}
\end{equation*}
$$

for all $x \in X$ and $t>0$.
Proof. Putting $y=x$ in (4), we see that

$$
\begin{equation*}
\mu_{\frac{f(2 x)}{2}-f(x)}(t) \geqslant \mu_{\phi(x, x)}^{\prime}(2 t) . \tag{14}
\end{equation*}
$$

Replacing x by $2^{n} x$ in (14), we obtain that

$$
\begin{equation*}
\mu_{\frac{f\left(2^{n+1} x\right)}{2^{n+1}}-\frac{f\left(2^{n} x\right)}{2^{n}}}(t) \geqslant \mu_{\phi\left(2^{n} x, 2^{n} x\right)}^{\prime}\left(2^{n+1} t\right) \geqslant \mu_{\phi(x, x)}\left(\frac{2^{n+1} t}{\alpha^{n}}\right) . \tag{15}
\end{equation*}
$$

The rest of the proof is similar to the proof of Theorem 2.1.

Corollary 2.4. Let X be a real normed linear space, $\left(Z, \mu^{\prime}, \min \right)$ be an $R N$-space and ($Y, \mu, \mathrm{~min}$) be a complete $R N$-space. Let r be a positive real number with $0<r<1, z_{0} \in Z$ and $f: X \rightarrow Y$ be a mapping satisfying (12). Then the limit $A(x)=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)}{2^{n}}$ exists for all $x \in X$ and defines a unique additive mapping $A: X \rightarrow Y$ such that

$$
\mu_{f(x)-A(x)}(t) \geqslant \mu_{\|x\|^{p} z_{0}}^{\prime}\left(\frac{\left(2-2^{r}\right) t}{2}\right),
$$

for all $x \in X$ and $t>0$.
Proof. Let $\alpha=2^{r}$ and $\phi: X^{2} \rightarrow Z$ be a mapping defined by $\phi(x, y)=$ $\left(\|x\|^{r}+\|y\|^{r}\right) z_{0}$. Then, from Theorem 2.2., the conclusion follows.

References

[1] H. Azadi Kenary, Stability of a Pexiderial functional equation in random normed spaces, Rend. Circ. Mat. Palermo, 60 (2011), 59-68.
[2] H. Azadi Kenary, On the Stability of a Cubic Functional Equation in Random Normed Spaces, J. Math. Extension, 4 (2009), 1-11.
[3] H. Azadi Kenary, J. R. Lee, and C. Park, Nonlinear approxiamtion of an ACQ functional equation in NAN-spaces, Fixed Point Theory and Applications, 60 (2011), 22 pages.
[4] H. Azadi Kenary and Y. J. Cho, Stability of mixed additive-quadratic Jensen type functional equation in various spaces, Computers and Mathematics with Applications, 61 (2011), 2704-2724.
[5] H. Azadi Kenary, S. Y. Jang, and C. Park, A fixed point approach to Hyers-Ulam stability of a functional equation in various normed spaces, Fixed Point Theory and Applications, 67 (2011), 14 pages.
[6] H. Azadi Kenary, S-Y. Jang, and C. Park, Approximation of an additivequadratic functional equation in RN-spaces, J. Compu. Anal. Appl., 14 (2012), 1190-1209.
[7] H. Azadi Kenary and C. Park, Direct and fixed point methods approach to the generalized Hyers-Ulam stability for a functional equation having monomials as solutions, Iranian J. Sci. Tech. : Transc. A, 4 (2011), 301307.
[8] H. Azadi Kenary, C. Park, and S. J. Lee, A Fixed Point Approach To The Fuzzy Stability of Generalized Jensen Quadratic Functional Equation, Journal of Computational Analysis and Applications, 14 (2012), 11181129.
[9] M. Eshaghi Gordji and M. Bavand Savadkouhi, Stability of mixed type cubic and quartic functional equations in random normed spaces, J. Ineq. Appl., (2009), Article ID 527462, 9 pages.
[10] M. Eshaghi Gordji, M. Bavand Savadkouhi, and C. Park, Quadraticquartic functional equations in RN-spaces, J. Ineq. Appl., (2009), Article ID 868423, 14 pages.
[11] M. Eshaghi Gordji and H. Khodaei, Stability of functional equations, Lap Lambert Academic Publishing, 2010.
[12] M. Eshaghi Gordji, S. Zolfaghari, J. M. Rassias, and M. B. Savadkouhi, Solution and stability of a mixed type cubic and quartic functional equation in quasi-Banach spaces, Abst. Appl. Anal., (2009), Article ID 417473, 14 pages.
[13] W. Fechner, Stability of a composite functional equation related to idempotent mappings, Journal of Approximation Theory, 2010.
[14] P. Gǎvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184 (1994), 431-436.
[15] D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA., 27 (1941), 222-224.
[16] D. H. Hyers, G. Isac, and Th. M. Rassias, Stability of functional equations in several variables, Birkhäuser, Basel, 1998.
[17] H. Khodaei and Th. M. Rassias, Approximately generalized additive functions in several variabels, Int. J. Nonlinear Anal. Appl., 1 (2010), 22-41.
[18] Z. Kominek, On a local stability of the Jensen functional equation, $D e$ mon. Math., 22 (1989), 499-507.
[19] D. Mihet and V. Radu, On the stability of the additive Cauchy functional equation in random normed spaces, J. Math. Anal. Appl., 343 (2008), 567-572.
[20] C. Park, Fuzzy stability of a functional equation associated with inner product spaces, Fuzzy Sets and Systems, 160 (2009), 1632-1642.
[21] C. Park, Generalized Hyers-Ulam-Rassias stability of n-sesquilinearquadratic mappings on Banach modules over C^{*}-algebras, J. Comput. Appl. Math., 180 (2005), 279-291.
[22] C. Park, J. Hou, and S. Oh, Homomorphisms between $J C$-algebras and Lie C^{*}-algebras, Acta Math. Sin., 21 (2005), 1391-1398.
[23] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297-300.
[24] Th. M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Applicandae Math., 1 (2000), 23-130.
[25] R. Saadati and C. Park, Non-Archimedean \mathcal{L}-fuzzy normed spaces and stability of functional equations (in press).
[26] R. Saadati, M. Vaezpour, and Y. J. Cho, A note to paper "On the stability of cubic mappings and quartic mappings in random normed spaces", J. Ineq. Appl., 2009, Article ID 214530, doi: 10.1155/2009/214530.
[27] R. Saadati, M. M. Zohdi, and S. M. Vaezpour, Nonlinear L-Random Stability of an ACQ Functional Equation, Journal of Inequalities and Applications, Volume 2011, Article ID 194394, 23 pages.
[28] B. Schewizer and A. Sklar, Probabilistic Metric Spaces, North-Holland Series in Probability and Applied Mathematics, North-Holland, New York, USA., 1983.
[29] S. M. Ulam, Problems in Modern Mathematics, Science Editions, John Wiley and Sons, 1964.

Hassan Azadi Kenary

Department of Mathematics
College of Sciences
Assistant Professor of Mathematics
Yasouj University
P. O. Box 75914-353

Yasouj, Iran
E-mail: azadi@mail.yu.ac.ir

[^0]: Received: May 2011; Accepted: April 2012

