Journal of Mathematical Extension Vol. 6, No. 2, (2012), 11-20

RNS-Approximately Nonlinear Additive Functional Equations

H. Azadi Kenary

Yasouj University

Abstract. In this paper, we prove the generalized Hyers-Ulam-Rassias stability of a nonlinear additive functional equation in RNS.

AMS Subject Classification: 39B82; 39B52 **Keywords and Phrases:** Generalized Hyers-Ulam stability, random normed space, fixed point method

1. Introduction

A classical question in the theory of functional equations is the following question:

When is it true that a function which approximately satisfies a functional equation must be close to an exact solution of the equation?

If the problem accepts a solution, we say that the equation is *stable*. The first stability problem concerning group homomorphisms was raised by Ulam ([29]) in 1940. In the next year, Hyers ([15]) gave a positive answer to the above question for additive groups under the assumption that the groups are Banach spaces. In 1978, Rassias ([23]) proved a generalization of Hyers's theorem for additive mappings. The result of Rassias has provided a lot of influence during the last three decades in the development of a generalization of the Hyers-Ulam stability concept. This new concept is known as generalized Hyers-Ulam stability or Hyers-Ulam-Rassias stability of functional equations. Furthermore, in 1994, a generalization of Rassias's theorem was obtained by Găvruta

Received: May 2011; Accepted: April 2012

([14]) by replacing the bound $\epsilon(||x||^p + ||y||^p)$ by a general control function $\varphi(x, y)$. The stability problems of several functional equations have been extensively investigated by a number of authors and there are many interesting results concerning this problem ([4]-[27]).

In the sequel, we adopt the usual terminology, notions and conventions of the theory of random normed spaces as in ([28]).

Throughout this paper, let Γ^+ denote the set of all probability distribution functions $F : \mathbb{R} \cup [-\infty, +\infty] \to [0, 1]$ such that F is left-continuous and nondecreasing on \mathbb{R} and $F(0) = 0, F(+\infty) = 1$. It is clear that the set $D^+ = \{F \in \Gamma^+ : l^-F(-\infty) = 1\}$, where $l^-f(x) = \lim_{t\to x^-} f(t)$, is a subset of Γ^+ . The set Γ^+ is partially ordered by the usual point-wise ordering of functions, that is, $F \leq G$ if and only if $F(t) \leq G(t)$ for all $t \in \mathbb{R}$. For any $a \geq 0$, the element $H_a(t)$ of D^+ is defined by

$$H_a(t) = \begin{cases} 0, & \text{if } t \leq a, \\ 1, & \text{if } t > a. \end{cases}$$

We can easily show that the maximal element in Γ^+ is the distribution function $H_0(t)$.

Definition 1.1. A function $T : [0,1]^2 \to [0,1]$ is a continuous triangular norm (briefly, a t-norm) if T satisfies the following conditions:

(a) T is commutative and associative; (b) T is continuous; (c) T(x, 1) = x for all $x \in [0, 1]$; (d) $T(x, y) \leq T(z, w)$ whenever $x \leq z$ and $y \leq w$ for all $x, y, z, w \in [0, 1]$.

Three typical examples of continuous t-norms are as follows: $T_P(x, y) = xy, T_{max}(x, y) = \max\{a + b - 1, 0\}, T_M(x, y) = \min(a, b)$. Recall that, if T is a t-norm and $\{x_n\}$ is a sequence in [0, 1], then $T_{i=1}^n x_i$ is defined recursively by $T_{i=1}^1 x_1 = x_1$ and $T_{i=1}^n x_i = T(T_{i=1}^{n-1} x_i, x_n)$ for all $n \ge 2$. $T_{i=n}^\infty x_i$ is defined by $T_{i=1}^\infty x_{n+i}$.

Definition 1.2. A random normed space (briefly, RNS) is a triple (X, μ, T) , where X is a vector space, T is a continuous t-norm and $\mu: X \to D^+$ is a mapping such that the following conditions hold: (a) $\mu_x(t) = H_0(t)$ for all $x \in X$ and t > 0 if and only if x = 0; (b) $\mu_{\alpha x}(t) = \mu_x \left(\frac{t}{|\alpha|}\right)$ for all $\alpha \in \mathbb{R}$ with $\alpha \neq 0, x \in X$ and $t \ge 0$; (c) $\mu_{x+y}(t+s) \ge T(\mu_x(t), \mu_y(s))$ for all $x, y \in X$ and $t, s \ge 0$. Every normed space $(X, \|\cdot\|)$ defines a random normed space (X, μ, T_M) , where $\mu_u(t) = \frac{t}{t+\|u\|}$ for all t > 0 and T_M is the minimum t-norm. This space X is called the induced random normed space. If the t-norm T is such that $\sup_{0 \le a \le 1} T(a, a) = 1$, then every RNS (X, μ, T) is a metrizable linear topological space with the topology τ (called the μ -topology or the (ϵ, δ) -topology, where $\epsilon > 0$ and $\lambda \in (0, 1)$) induced by the base $\{U(\epsilon, \lambda)\}$ of neighborhoods of θ , where $U(\epsilon, \lambda) = \{x \in X : \Psi_x(\epsilon) > 1 - \lambda\}$.

Definition 1.3. Let (X, μ, T) be an RNS.

(a) A sequence $\{x_n\}$ in X is said to be convergent to a point $x \in X$ (write $x_n \to x$ as $n \to \infty$) if $\lim_{n\to\infty} \mu_{x_n-x}(t) = 1$ for all t > 0. (b) A sequence $\{x_n\}$ in X is called a Cauchy sequence in X if $\lim_{n\to\infty} \mu_{x_n-x_m}(t) = 1$ for all t > 0. (c) The RNS (X, μ, T) is said to be complete if every Cauchy sequence in X is convergent.

Theorem 1.4. ([28]) If (X, μ, T) is an RNS and $\{x_n\}$ is a sequence such that $x_n \to x$, then $\lim_{n\to\infty} \mu_{x_n}(t) = \mu_x(t)$.

Definition 1.5. Let X be a set. A function $d : X \times X \to [0, \infty]$ is called a generalized metric on X if d satisfies the following conditions: (a) d(x, y) = 0 if and only if x = y for all $x, y \in X$; (b) d(x, y) = d(y, x) for all $x, y \in X$;(c) $d(x, z) \leq d(x, y) + d(y, z)$ for all $x, y, z \in X$.

Theorem 1.6. Let (X,d) be a complete generalized metric space and $J: X \to X$ be a strictly contractive mapping with Lipschitz constant L < 1. Then, for all $x \in X$, either

$$d(J^n x, J^{n+1} x) = \infty \quad , \tag{1}$$

for all nonnegative integers n or there exists a positive integer n_0 such that

(a) $d(J^n x, J^{n+1} x) < \infty$ for all $n_0 \ge n_0$;

(b) the sequence $\{J^n x\}$ converges to a fixed point y^* of J;

(c) y^* is the unique fixed point of J in the set $Y = \{y \in X : d(J^{n_0}x, y) < \infty\}$;

(d) $d(y, y^*) \leq \frac{1}{1-L}d(y, Jy)$ for all $y \in Y$.

In this paper, we prove the generalized Hyers-Ulam-Rassias stability of the following functional equation:

$$f(f(x) - f(y)) + f(x) + f(y) = f(x + y) + f(x - y),$$
(2)

in RNS.

2. Main Results: RNS-Approximation of the Functional Equation (2)

In this section, using direct method, we prove the generalized Hyers-Ulam-Rassias stability of the functional equation (2) in random normed spaces.

Theorem 2.1. Let X be a real linear space, (Z, μ', \min) be an RN-space and $\phi : X^2 \to Z$ be a function such that there exists $0 < \alpha < \frac{1}{2}$ such that

$$\mu_{\phi(\frac{x}{2},\frac{y}{2})}'(t) \ge \mu_{\alpha\phi(x,y)}'(t) \tag{3}$$

for all $x \in X$ and t > 0 and $\lim_{n \to \infty} \mu'_{\phi(\frac{x}{2^n}, \frac{y}{2^n})}\left(\frac{t}{2^n}\right) = 1$ for all $x, y \in X$ and t > 0. Let (Y, μ, \min) be a complete RN-space. If $f : X \to Y$ be a mapping such that

$$\mu_{f(f(x)-f(y))-f(x+y)-f(x-y)+f(x)+f(y)}(t) \ge \mu'_{\phi(x,y)}(t) \tag{4}$$

for all $x, y \in X$ and t > 0. Then the limit $A(x) = \lim_{n \to \infty} 2^n f\left(\frac{x}{2^n}\right)$ exists for all $x \in X$ and defines a unique additive mapping $A: X \to Y$ such that and

$$\mu_{f(x)-A(x)}(t) \ge \mu_{\phi(x,x)}'\left(\frac{(1-2\alpha)t}{\alpha}\right),\tag{5}$$

for all $x \in X$ and t > 0.

Proof. Putting y = x in (4), we see that

$$\mu_{f(2x)-2f(x)}(t) \ge \mu'_{\phi(x,x)}(t).$$
(6)

Replacing x by $\frac{x}{2}$ in (6), we obtain

$$\mu_{2f(\frac{x}{2})-f(x)}(t) \ge \mu'_{\phi(\frac{x}{2},\frac{x}{2})}(t) \quad , \tag{7}$$

15

for all $x \in X$. Replacing x by $\frac{x}{2^n}$ in (7) and using (3), we obtain

$$\mu_{2^{n+1}f(\frac{x}{2^{n+1}})-2^n f(\frac{x}{2^n})}(t) \ge \mu'_{\phi\left(\frac{x}{2^{n+1}},\frac{x}{2^{n+1}}\right)}\left(\frac{t}{2^n}\right) \ge \mu'_{\phi(x,x)}\left(\frac{t}{2^n\alpha^{n+1}}\right).$$

Since

$$2^{n} f\left(\frac{x}{2^{n}}\right) - f(x) = \sum_{k=0}^{n-1} 2^{k+1} f\left(\frac{x}{2^{k+1}}\right) - 2^{k} f\left(\frac{x}{2^{k}}\right),$$

and so

$$\begin{split} \mu_{2^{n}f\left(\frac{x}{2^{n}}\right)-f(x)}\left(\sum_{k=0}^{n-1}2^{k}\alpha^{k+1}t\right) &= & \mu_{\sum_{k=0}^{n-1}2^{k+1}f\left(\frac{x}{2^{k+1}}\right)-2^{k}f\left(\frac{x}{2^{k}}\right)}\left(\sum_{k=0}^{n-1}2^{k}\alpha^{k+1}t\right)\\ &\geqslant & T_{k=0}^{n-1}\left(\mu_{2^{k+1}f\left(\frac{x}{2^{k+1}}\right)-2^{k}f\left(\frac{x}{2^{k}}\right)}(2^{k}\alpha^{k+1}t)\right)\\ &\geqslant & T_{k=0}^{n-1}\left(\mu_{\phi\left(x,x\right)}'(t)\right) = \mu_{\phi\left(x,x\right)}'(t).\end{split}$$

This implies that $\mu_{2^n f(\frac{x}{2^n}) - f(x)}(t) \ge \mu'_{\phi(x,x)}\left(\frac{t}{\sum_{k=0}^{n-1} 2^k \alpha^{k+1}}\right)$. Replacing x by $\frac{x}{2^p}$ in the recent inequality, we obtain

$$\mu_{2^{n+p}f(\frac{x}{2^{n+p}})-2^{p}f(\frac{x}{2^{p}})}(t) \ge \mu_{\phi(x,x)}'\left(\frac{t}{\sum_{k=p}^{n+p-1}2^{k}\alpha^{k+1}}\right).$$
(8)

Since $\lim_{p,n\to\infty} \mu'_{\phi(x,x)} \left(\frac{t}{\sum_{k=p}^{n+p-1} 2^k \alpha^{k+1}}\right) = 1$, it follows that $\left\{2^n f\left(\frac{x}{2^n}\right)\right\}_{n=1}^{\infty}$ is a Cauchy sequence in a complete RN-space (Y, μ, \min) and so there exists a point $A(x) \in Y$ such that $\lim_{n\to\infty} 2^n f\left(\frac{x}{2^n}\right) = A(x)$. Fix $x \in X$ and put p = 0 in (8). Then we obtain

$$\mu_{2^n f(\frac{x}{2^n}) - f(x)}(t) \ge \mu'_{\phi(x,x)} \left(\frac{t}{\sum_{k=0}^{n-1} 2^k \alpha^{k+1}}\right) \quad .$$

and so, for any $\epsilon > 0$,

$$\mu_{A(x)\pm 2^{n}f\left(\frac{x}{2^{n}}\right)-f(x)}(t+\epsilon) \geq T\left(\mu_{A(x)-2^{n}f\left(\frac{x}{2^{n}}\right)}(\epsilon),\mu_{2^{n}f\left(\frac{x}{2^{n}}\right)-f(x)}(t)\right)$$
(9)

$$\geq T\left(\mu_{A(x)-2^{n}f\left(\frac{x}{2^{n}}\right)}(\epsilon),\mu_{\phi(x,x)}'\left(\frac{t}{\sum_{k=0}^{n-1}2^{k}\alpha^{k+1}}\right)\right).$$

Taking $n \to \infty$ in (9), we get

$$\mu_{A(x)-f(x)}(t+\epsilon) \ge \mu'_{\phi(x,x)}\left(\frac{(1-2\alpha)t}{\alpha}\right).$$
(10)

Since ϵ is arbitrary, by taking $\epsilon \to 0$ in (10), we get

$$\mu_{A(x)-f(x)}(t) \ge \mu_{\phi(x,x)}'\left(\frac{(1-2\alpha)t}{\alpha}\right).$$

Replacing x and y by $\frac{x}{2^n}$ and $\frac{y}{2^n}$ in (4), respectively, we get

$$\mu_{2^{n}\left[f\left(f\left(\frac{x}{2^{n}}\right) - f\left(\frac{y}{2^{n}}\right)\right) - f\left(\frac{x+y}{2^{n}}\right) - f\left(\frac{x-y}{2^{n}}\right) + f\left(\frac{x}{2^{n}}\right) + f\left(\frac{y}{2^{n}}\right)\right](t) \ge \mu_{\phi\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}\right)}'\left(\frac{t}{2^{n}}\right)$$

for all $x, y \in X$ and t > 0. Since $\lim_{n\to\infty} \mu'_{\phi(\frac{x}{2^n}, \frac{y}{2^n})}\left(\frac{t}{2^n}\right) = 1$, we conclude that A satisfies (2). On the other hand

$$2A\left(\frac{x}{2}\right) - A(x) = \lim_{n \to \infty} 2^{n+1} f\left(\frac{x}{2^{n+1}}\right) - \lim_{n \to \infty} 2^n f\left(\frac{x}{2^n}\right) = 0.$$
(11)

This implies that $A : X \to Y$ is an additive mapping. To prove the uniqueness of the additive mapping A, assume that there exists another additive mapping $B : X \to Y$ which satisfies (5). Then we have

$$\begin{aligned} \mu_{A(x)-B(x)}(t) &= \lim_{n \to \infty} \mu_{2^{n}A(\frac{x}{2^{n}})-2^{n}B(\frac{x}{2^{n}})}(t) \\ &\geqslant \lim_{n \to \infty} \min\left\{ \mu_{2^{n}A(\frac{x}{2^{n}})-2^{n}f(\frac{x}{2^{n}})}\left(\frac{t}{2}\right), \mu_{2^{n}f(\frac{x}{2^{n}})-2^{n}B(\frac{x}{2^{n}})}\left(\frac{t}{2}\right) \right\} \\ &\geqslant \lim_{n \to \infty} \mu_{\phi\left(\frac{x}{2^{n}},\frac{x}{2^{n}}\right)}\left(\frac{(1-2\alpha)t}{2^{n+1}\alpha}\right) \geqslant \lim_{n \to \infty} \mu_{\phi\left(x,x\right)}'\left(\frac{(1-2\alpha)t}{2^{n+1}\alpha^{n}}\right). \end{aligned}$$

Since $\lim_{n\to\infty} \frac{(1-2\alpha)t}{2^{n+1}\alpha^n} = \infty$, we get $\lim_{n\to\infty} \mu'_{\phi(x,x)} \left(\frac{(1-2\alpha)t}{2^{n+1}\alpha^n}\right) = 1$. Therefore, it follows that $\mu_{A(x)-B(x)}(t) = 1$ for all t > 0 and so A(x) = B(x). This completes the proof. \Box

Corollary 2.2. Let X be a real normed linear space, (Z, μ', \min) be an RN-space and (Y, μ, \min) be a complete RN-space. Let r be a positive real number with r > 1, $z_0 \in Z$ and $f : X \to Y$ be a mapping satisfying

$$\mu_{f(f(x)-f(y))-f(x+y)-f(x-y)+f(x)+f(y)}(t) \ge \mu'_{(\|x\|^r+\|y\|^r)z_0}(t), \qquad (12)$$

for all $x, y \in X$ and t > 0. Then the limit $A(x) = \lim_{n \to \infty} 2^n f\left(\frac{x}{2^n}\right)$ exists for all $x \in X$ and defines a unique additive mapping $A: X \to Y$ such that and

$$\mu_{f(x)-A(x)}(t) \ge \mu'_{\|x\|^{p_{z_0}}}\left(\frac{(2^r-2)t}{2}\right),$$

for all $x \in X$ and t > 0.

Proof. Let $\alpha = 2^{-r}$ and $\phi : X^2 \to Z$ be a mapping defined by $\phi(x, y) = (||x||^r + ||y||^r)z_0$. Then, from Theorem 2.1, the conclusion follows. \Box

Theorem 2.3. Let X be a real linear space, (Z, μ', \min) be an RNspace and $\phi : X^2 \to Z$ be a function such that there exists $0 < \alpha < 2$ such that $\mu'_{\phi(2x,2y)}(t) \ge \mu'_{\alpha\phi(x,y)}(t)$ for all $x \in X$ and t > 0 and $\lim_{n\to\infty} \mu'_{\phi(2^nx,2^ny)}(2^nx) = 1$ for all $x, y \in X$ and t > 0. Let (Y,μ,\min) be a complete RN-space. If $f : X \to Y$ be a mapping satisfying (4). Then the limit $A(x) = \lim_{n\to\infty} \frac{f(2^nx)}{2^n}$ exists for all $x \in X$ and defines a unique additive mapping $A : X \to Y$ such that

$$\mu_{f(x)-A(x)}(t) \ge \mu'_{\phi(x,x)}((2-\alpha)t),\tag{13}$$

for all $x \in X$ and t > 0.

Proof. Putting y = x in (4), we see that

$$\mu_{\frac{f(2x)}{2} - f(x)}(t) \ge \mu'_{\phi(x,x)}(2t).$$
(14)

Replacing x by $2^n x$ in (14), we obtain that

$$\mu_{\frac{f(2^{n+1}x)}{2^{n+1}} - \frac{f(2^nx)}{2^n}}(t) \ge \mu_{\phi(2^nx,2^nx)}'(2^{n+1}t) \ge \mu_{\phi(x,x)}\left(\frac{2^{n+1}t}{\alpha^n}\right).$$
(15)

The rest of the proof is similar to the proof of Theorem 2.1. \Box

Corollary 2.4. Let X be a real normed linear space, (Z, μ', \min) be an RN-space and (Y, μ, \min) be a complete RN-space. Let r be a positive real number with 0 < r < 1, $z_0 \in Z$ and $f: X \to Y$ be a mapping satisfying (12). Then the limit $A(x) = \lim_{n \to \infty} \frac{f(2^n x)}{2^n}$ exists for all $x \in X$ and defines a unique additive mapping $A: X \to Y$ such that

$$\mu_{f(x)-A(x)}(t) \ge \mu'_{||x||^{p_{z_0}}}\left(\frac{(2-2^r)t}{2}\right),$$

for all $x \in X$ and t > 0.

Proof. Let $\alpha = 2^r$ and $\phi : X^2 \to Z$ be a mapping defined by $\phi(x, y) = (||x||^r + ||y||^r)z_0$. Then, from Theorem 2.2., the conclusion follows. \Box

References

- H. Azadi Kenary, Stability of a Pexiderial functional equation in random normed spaces, *Rend. Circ. Mat. Palermo*, 60 (2011), 59-68.
- [2] H. Azadi Kenary, On the Stability of a Cubic Functional Equation in Random Normed Spaces, J. Math. Extension, 4 (2009), 1-11.
- [3] H. Azadi Kenary, J. R. Lee, and C. Park, Nonlinear approximation of an ACQ functional equation in NAN-spaces, *Fixed Point Theory and Appli*cations, 60 (2011), 22 pages.
- [4] H. Azadi Kenary and Y. J. Cho, Stability of mixed additive-quadratic Jensen type functional equation in various spaces, *Computers and Mathematics with Applications*, 61 (2011), 2704-2724.
- [5] H. Azadi Kenary, S. Y. Jang, and C. Park, A fixed point approach to Hyers-Ulam stability of a functional equation in various normed spaces, *Fixed Point Theory and Applications*, 67 (2011), 14 pages.
- [6] H. Azadi Kenary, S-Y. Jang, and C. Park, Approximation of an additivequadratic functional equation in RN-spaces, J. Compu. Anal. Appl., 14 (2012), 1190-1209.
- [7] H. Azadi Kenary and C. Park, Direct and fixed point methods approach to the generalized Hyers-Ulam stability for a functional equation having monomials as solutions, *Iranian J. Sci. Tech.* : Transc. A, 4 (2011), 301-307.

- [8] H. Azadi Kenary, C. Park, and S. J. Lee, A Fixed Point Approach To The Fuzzy Stability of Generalized Jensen Quadratic Functional Equation, *Journal of Computational Analysis and Applications*, 14 (2012), 1118-1129.
- [9] M. Eshaghi Gordji and M. Bavand Savadkouhi, Stability of mixed type cubic and quartic functional equations in random normed spaces, J. Ineq. Appl., (2009), Article ID 527462, 9 pages.
- [10] M. Eshaghi Gordji, M. Bavand Savadkouhi, and C. Park, Quadraticquartic functional equations in RN-spaces, J. Ineq. Appl., (2009), Article ID 868423, 14 pages.
- [11] M. Eshaghi Gordji and H. Khodaei, Stability of functional equations, Lap Lambert Academic Publishing, 2010.
- [12] M. Eshaghi Gordji, S. Zolfaghari, J. M. Rassias, and M. B. Savadkouhi, Solution and stability of a mixed type cubic and quartic functional equation in quasi-Banach spaces, *Abst. Appl. Anal.*, (2009), Article ID 417473, 14 pages.
- [13] W. Fechner, Stability of a composite functional equation related to idempotent mappings, *Journal of Approximation Theory*, 2010.
- [14] P. Găvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184 (1994), 431-436.
- [15] D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA., 27 (1941), 222-224.
- [16] D. H. Hyers, G. Isac, and Th. M. Rassias, Stability of functional equations in several variables, Birkhäuser, Basel, 1998.
- [17] H. Khodaei and Th. M. Rassias, Approximately generalized additive functions in several variabels, Int. J. Nonlinear Anal. Appl., 1 (2010), 22-41.
- [18] Z. Kominek, On a local stability of the Jensen functional equation, Demon. Math., 22 (1989), 499-507.
- [19] D. Mihet and V. Radu, On the stability of the additive Cauchy functional equation in random normed spaces, J. Math. Anal. Appl., 343 (2008), 567-572.
- [20] C. Park, Fuzzy stability of a functional equation associated with inner product spaces, *Fuzzy Sets and Systems*, 160 (2009), 1632-1642.

- [21] C. Park, Generalized Hyers-Ulam-Rassias stability of n-sesquilinearquadratic mappings on Banach modules over C*-algebras, J. Comput. Appl. Math., 180 (2005), 279-291.
- [22] C. Park, J. Hou, and S. Oh, Homomorphisms between JC-algebras and Lie C*-algebras, Acta Math. Sin., 21 (2005), 1391-1398.
- [23] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297-300.
- [24] Th. M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Applicandae Math., 1 (2000), 23-130.
- [25] R. Saadati and C. Park, Non-Archimedean *L*-fuzzy normed spaces and stability of functional equations (in press).
- [26] R. Saadati, M. Vaezpour, and Y. J. Cho, A note to paper "On the stability of cubic mappings and quartic mappings in random normed spaces", J. Ineq. Appl., 2009, Article ID 214530, doi: 10.1155/2009/214530.
- [27] R. Saadati, M. M. Zohdi, and S. M. Vaezpour, Nonlinear L-Random Stability of an ACQ Functional Equation, *Journal of Inequalities and Applications*, Volume 2011, Article ID 194394, 23 pages.
- [28] B. Schewizer and A. Sklar, *Probabilistic Metric Spaces*, North-Holland Series in Probability and Applied Mathematics, North-Holland, New York, USA., 1983.
- [29] S. M. Ulam, Problems in Modern Mathematics, Science Editions, John Wiley and Sons, 1964.

Hassan Azadi Kenary

Department of Mathematics College of Sciences Assistant Professor of Mathematics Yasouj University P. O. Box 75914-353 Yasouj, Iran E-mail: azadi@mail.yu.ac.ir