
Journal of Mathematical Extension
Vol. 16, No. 6, (2022) (7)1-25
URL: https://doi.org/10.30495/JME.2022.1588
ISSN: 1735-8299
Original Research Paper

On Quasi Bi-Slant Submersions from Kenmotsu
Manifolds onto any Riemannian Manifolds

R. Prasad
University of Lucknow

M. A. Akyol∗

Bingol University

P. K. Singh
University of Lucknow

S. Kumar
Shri Jai Narain Post Graduate College

Abstract. The paper deals with the notion of quasi bi-slant submer-
sions from almost contact metric manifolds onto Riemannian manifolds.
These submersions are generalization of hemi-slant submersions and
semi-slant submersions. We study such submersions from Kenmotsu
manifolds onto Riemannian manifolds and discuss some examples of it.
In this paper, we also study the geometry of leaves of distributions which
are involved in the definition of the submersion. Further, we obtain the
conditions for such submersions to be integrable and totally geodesic.

AMS Subject Classification: 00A11; 53C15; 53C43; 53B20; 55B55

Keywords and Phrases: Kenmotsu manifold, slant submersion, bi-
slant submersion, quasi bi-slant submersion, vertical distribution

Received: March 2020; Accepted: June 2021
∗Corresponding Author

1



2 R. PRASAD et al.

1 Introduction

Differential geometry is the most popular branch of mathematics and
physics since ancient days. There are several topics in differential geom-
etry that have very important applications in both, mathematics and
physics. Immersions and submersions are one of them. The properties
of slant submersions became interesting subject in complex geometry
and also in contact geometry.

The theory of Riemannian submersions was initiated by O’Neill [17]
and Gray [9] in 1966 and 1967, respectively. After some time of this
theory, an almost complex type of Riemannian submersions was studied
by Watson [26] in 1976. He also defined almost Hermitian submersions
between almost Hermitian manifolds in which the Riemannian submer-
sion is an almost complex map. The phenomenon of almost Hermitian
submersion to different kinds of sub-classes of almost contact manifolds
was extended by D. Chinea [6] in 1985. In 2013, B. Şahin introduced
the semi-invariant submersions from almost Hermitian manifolds onto
Riemannian manifolds [19] as a generalization of holomorphic submer-
sions and anti-invariant submersions in [23]. Further, the notion of slant
submersions from almost Hermitian manifolds onto arbitrary Rieman-
nian manifolds was also defined and studied by B. Şahin [20]. The
notion of semi-slant submersions from an almost Hermitian manifold
onto a Riemannian manifold were defined and studied by K. S. Park
and R. Prasad [15]. In 2015, the hemi-slant Riemannian submersions
from almost Hermitian manifolds onto Riemannian manifolds was intro-
duced in [25]. As a generalization of hemi-slant submersions, C. Sayar
et al. defined the notion of bi-slant Riemannian submersions from al-
most Hermitian manifolds onto Riemannian manifolds in [24]. Recently,
R. Prasad et al. in [16] defined quasi bi-slant submersions as natural
generalization of slant, semi-slant, hemi-slant, bi-slant, quasi hemi-slant
and show that the geometry of this kind of submersions is different
from previous notions. The different kinds of Riemannian submersions
between Riemannian manifolds endowed with different structures were
studied by several geometers ([1], [2], [3], [4], [8], [10], [11], [12], [13],
[14], [18]). Recent developments in the theory of submersions can be
found in the book [22]. Taking into account these all previos notions,
we are motivated to fill a gap in the literature by giving the notion of
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quasi bi-slant submersions from Kenmotsu manifolds onto Riemannian
manifolds in which the fibers consist of one invariant distribution, two
slant distributions and one Reep vector field. In this paper, as a special
case of the above notion and a generalization of invariant, anti-invariant,
semi-invariant, slant, semi-slant, hemi-slant, bi-slant, quasi hemi-slant
Riemannian submersions, we introduce quasi bi-slant submersion from
Kenmotsu manifolds and investigate the geometry of base space, the
total space and the fibers.

The paper is organized as follows: In the second section, we present
some basic information related to quasi bi-slant Riemannian submersion
needed throughout this paper. In the third section, we obtain some re-
sults on quasi bi-slant Riemannian submersions from Kenmotsu manifold
onto Riemannian manifold and provide some examples of such submer-
sions. We also study the geometry of leaves of distribution involved in
the above submersion. Finally, we obtain certain conditions for such
submersions to be integrable and totally geodesic.

2 Preliminaries

Let M be an almost contact metric manifold [7]. So there exist on M,
a (1, 1) tensor field φ, a vector field ξ, a 1−form η and a Riemannian
metric gM such that

φ2 = −I + η ⊗ ξ, φ ◦ ξ = 0, η ◦ φ = 0, (1)

gM (X, ξ) = η(X), η(ξ) = 1 (2)

and

gM (φX, φY ) = gM (X,Y )− η(X)η(Y ),

gM (φX, Y ) = −gM (X,φY ), (3)

for any vector fields X and Y on M and I is the identity tensor field
[27]. An almost contact metric manifold M equipped with an almost
contact metric structure (φ, ξ, η, gM ) is denoted by (M,φ, ξ, η, gM ).

An almost contact metric manifold M is called a Kenmotsu manifold
if

(∇Xφ)Y = g(φX, Y )ξ − η(Y )φX, (4)
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for any vector fields X and Y on M, where ∇ is the Riemannian con-
nection of the Riemannian metric gM . If (M,φ, ξ, η, gM ) be a Kenmotsu
manifold, then the following equation holds:

∇Xξ = X − η(X)ξ. (5)

Now, we recall following definitions:

Definition 2.1. [21] Let F be a Riemannian submersion from an almost
Hermitian manifold (M, gM , J) onto a Riemannian manifold (N, gN ).
Then we say that F is an invariant Riemannian submersion if the ver-
tical distribution is invariant with respect to the complex structure J,
i.e.,

J(kerF∗) = kerF∗.

Definition 2.2. [23] Let M be an almost Hermitian manifold with Her-
mitian metric gM and almost complex structure J and N be a Rie-
mannian manifold with Riemannian metric gN . Suppose that there ex-
ists a Riemannian submersion F : (M, gM , J) → (N, gN ) such that
J(kerF∗) ⊆ (kerF∗)

⊥. Then we say that F is an anti-invariant Rie-
mannian submersion.

Definition 2.3. [19] Let F be a Riemannian submersion from an almost
Hermitian manifold (M, gM , J) onto a Riemannian manifold (N, gN ).
Then we say that F is a semi-invariant Riemannian submersion if there
is a distribution D1 ⊆ kerF∗ such that

kerF∗ = D1 ⊕D2,

and
JD1 = D1, JD2 ⊆ (kerF∗)

⊥,

where D2 is orthogonal complementary to D1 in kerF∗.

Let µ denotes the complementary orthogonal subbundle to J(kerF∗)
in (kerF∗)

⊥.
Then, we have

(kerF∗)
⊥ = JD2 ⊕ µ.

Obviously µ is an invariant subbundle of (kerF∗)
⊥ with respect to

the complex structure J .
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Definition 2.4. [20] Let F be a Riemannian submersion from an almost
Hermitian manifold (M, gM , J) onto a Riemannian manifold (N, gN ). If
for any non-zero vector X ∈ (kerF∗)p, p ∈ M, the angle θ(X) between
JX and the space (kerF∗)p is constant, i.e., it is independent of the
choice of the point p ∈ M and the tangent vector X in kerF∗, then we
say that F is a slant submersion. In this case, the angle θ is called the
slant angle of the submersion. If the slant angle is 0 < θ < π

2 , then the
submersion is called a proper slant submersion.

Definition 2.5. [15] Let (M, gM , J) be an almost Hermitian manifold
and (N, gN ) a Riemannian manifold. A Riemannian submersion F :
(M, gM , J) → (N, gN ) is called a semi-slant submersion if there is a
distribution D1 ⊂ kerF∗ such that

kerF∗ = D ⊕D1, J(D) = D,

and the angle θ = θ(X) between JX and the space (D1)p is constant for
non-zero X ∈ (D1)p and p ∈M, where D1 is the orthogonal complement
of D in kerF∗.

We call the angle θ, a semi-slant angle.

Definition 2.6. [25] Let M be an almost Hermitian manifold with Her-
mitian metric gM and almost complex structure J, and N be a Rieman-
nian manifold with Riemannian metric gN . A Riemannian submersion
F : (M, gM , J) → (N, gN ) is called a hemi-slant submersion if the ver-
tical distribution kerF∗ of F admits two orthogonal complementary dis-
tributions Dθ and D⊥ such that Dθ is slant with angle θ and D⊥ is
anti-invariant, i.e, we have

kerF∗ = Dθ ⊕D⊥.

In this case, the angle θ is called the hemi-slant angle of the submer-
sion.

Definition 2.7. [24] Let (M, g, J) be a Kaehler manifold and (N, gN)
be a Riemannian manifold. A Riemannian submersion π : (M, g, J) →
(N, gN ) is called a bi-slant submersion, if there are two slant distribu-
tions Dθ1 ⊂ kerπ∗ and Dθ2 ⊂ kerπ∗ such that

kerπ∗ = Dθ1 ⊕Dθ2 ,
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where, Dθ1 and Dθ2 has slant angles θ1 and θ2, respectively.

Define O’Neill’s tensors T and A by

AEL = H∇HEVL+ V∇HEHL, (6)

TEL = H∇VEVL+ V∇VEHL, (7)

for any vector fields E,L on M, where ∇ is the Levi-Civita connection
of gM . It is easy to see that TE and AE are skew-symmetric operators
on the tangent bundle of M reversing the vertical and the horizontal
distributions.

From equations (6) and (7), we have

∇XY = TXY + V∇XY, (8)

∇XU = TXU +H∇XU, (9)

∇UX = AUX + V∇UX, (10)

∇UV = H∇UV +AUV, (11)

for X,Y ∈ Γ(ker f∗) and U, V ∈ Γ(ker f∗)
⊥, where H∇XV = AVX, if

V is basic. It is not difficult to observe that T acts on the fibers as the
second fundamental form, while A acts on the horizontal distribution
and measures the obstruction to the integrability of this distribution .

It is seen that for q ∈M , X ∈ Vq and U ∈ Hq the linear operators

AU , TX : TqM → TqM

are skew-symmetric, that is

g(AUE,L) = −g(E,AUL) and g(TXE,L) = −g(E, TXL)

for each E,L ∈ TqM. Since TV is skew-symmetric, we observe that F
has totally geodesic fibers if and only if T ≡ 0.

Let (M,φ, ξ, η, gM ) be a Kenmotsu manifold and (N, gN ) be a Rie-
mannian manifold and F : M → N is smooth map. Then the second
fundamental form of F is given by

(∇F∗)(V,W ) = ∇FV F∗W − F∗(∇VW ), for V,W ∈ Γ(TpM), (12)
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where we denote conveniently by ∇ the Levi-Civita connections of the
metrics gM and gN and ∇F is the pullback connection.

We recall that a differentiable map F between two Riemannian man-
ifolds is totally geodesic if

(∇F∗)(V,W ) = 0, for all V,W ∈ Γ(TM). (13)

A totally geodesic map is that it maps every geodesic in the total
space into a geodesic in the base space in proportion to arc lengths.

Now, we can easily prove the following lemma as in [5].

Lemma 2.8. Let F be a Riemannian submersion from a Riemannian
manifold (M, gM ) onto an other Riemannian manifold (N, gN ), then we
have

(i) (∇F∗)(U, V ) = 0,
(ii) (∇F∗)(X,Y ) = −F∗(TXY ) = −F∗(∇XY ),
(iii) (∇F∗)(U,X) = −F∗(∇UX) = −F∗(AUX),
where U and V are horizontal vector fields and X and Y are vertical

vector fields.

3 Quasi Bi-Slant Submersions

In this section, we introduce the notion of a quasi bi-slant submer-
sion from Kenmotsu manifolds onto Riemannian manifold and give non-
trivial examples of this kind of submersions and investigate the geometry
of leaves of distributions which are involved in the submersion.

Definition 3.1. Let (M,φ, ξ, η, gM ) be a Kenmotsu manifold and (N, gN )
a Riemannian manifold. A Riemannian submersion

F : (M,φ, ξ, η, gM )→ (N, gN ),

is called a quasi bi-slant submersion if there exist four mutually orthog-
onal distributions D,D1, D2 and < ξ > such that

(i) kerF∗ = D ⊕D1 ⊕D2⊕ < ξ >,
(ii) J(D) = D i.e., D is invariant,
(iii) J(D1) ⊥ D2 and J(D2) ⊥ D1,
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(iv) for any non-zero vector field X ∈ (D1)p, p ∈ M, the angle θ1
between JX and (D1)p is constant and independent of the choice of point
p and X in (D1)p,

(v) for any non-zero vector field X ∈ (D2)q, q ∈ M, the angle θ2
between JX and (D2)q is constant and independent of the choice of
point q and X in (D2)q,

These angles θ1 and θ2 are called slant angles of the submersion.
We easily observe that

(a) If dimD 6= 0, dimD1 = 0 and dimD2 = 0, then F is an invariant
submersion.

(b) If dimD 6= 0, dimD1 6= 0, 0 < θ1 <
π
2 and dimD2 = 0, then F is

proper semi-slant submersion.

(c) If dimD = 0, dimD1 6= 0, 0 < θ1 <
π
2 and dimD2 = 0, then F is

slant submersion with slant angle θ1.

(d) If dimD = 0,dimD1 = 0 and dimD2 6= 0, 0 < θ2 <
π
2 , then F is

slant submersion with slant angle θ2.

(e) If dimD = 0,dimD1 6= 0, θ1 = π
2 and dimD2 = 0, then F is an

anti-invariant submersion.

(f) If dimD 6= 0, dimD1 6= 0, θ1 = π
2 and dimD2 = 0, then F is an

semi-invariant submersion.

(g) If dimD = 0, dimD1 6= 0, 0 < θ1 <
π
2 and dimD2 6= 0, θ2 = π

2 ,
then F is a hemi-slant submersion.

(h) If dimD = 0,dimD1 6= 0, 0 < θ1 <
π
2 and dimD2 6= 0, 0 < θ2 <

π
2 , then F is a bi-slant submersion.

(i) If dimD 6= 0,dimD1 6= 0, 0 < θ1 <
π
2 and dimD2 6= 0, θ2 = π

2 ,
then we may call F is an quasi-hemi-slant submersion.

(j) If dimD 6= 0, dimD1 6= 0, 0 < θ1 <
π
2 and dimD2 6= 0, 0 < θ2 <

π
2 , then F is proper quasi bi-slant submersion.

(k) If dimD 6= 0, dimD1 6= 0, dimD2 6= 0 and θ1 = θ2 = θ, then F
is semi-slant submersion with semi-slant angle θ.

Now, we will give non-trivial examples in order to guarantee the
existence of quasi bi-slant submersions from a Kenmotsu manifold onto
a Riemannian manifold and demonstrate that the method presented in
this paper is effective.

Example 3.2. Let (xi, yi, z) be cartesian coordinates on R2n+1 for i =
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1, 2, 3, ..., n. An almost contact metric structure (φ, ξ, η, g) is defined as
follows:

φ(a1
∂

∂x1
+a2

∂

∂x2
+........+an

∂

∂xn
+b1

∂

∂y1
+b2

∂

∂y2
+........+bn

∂

∂yn
+c

∂

∂z
)

= (−b1
∂

∂x1
+ a1

∂

∂y1
− b2

∂

∂x2
+ a2

∂

∂y2
− .......− bn

∂

∂xn
+ an

∂

∂yn
),

where ξ = ∂
∂z and ai, bi, c are C∞ real valued functions in R2n+1.

Let η = dz, g is Euclidean metric and

{ ∂

∂x1
,
∂

∂x2
, .....,

∂

∂xn
,
∂

∂y1
,
∂

∂y2
, ......,

∂

∂yn
,
∂

∂z
}

is orthonormal base field of vectors on R2n+1. We can easily show that
(φ, ξ, η, g) is Kenmotsu structure on R2n+1. Hence, it is Kenmotsu man-
ifold.

Define a map ψ : R15 −→ R6 by

ψ(x1, ..., x7, y1, ..., y7, z) 7→ (x2 sin θ1−y3 cos θ1, y2, x4 cos θ2−y5 sin θ2,
x5, x7, y7),

which is a quasi bi-slant submersion such that

X1 =
∂

∂x1
, X2 =

∂

∂y1
, X3 =

∂

∂x2
cos θ1 +

∂

∂y3
sin θ1

X4 =
∂

∂x3
, X5 =

∂

∂x4
sin θ2 +

∂

∂y5
cos θ2, X6 =

∂

∂y4
,

X7 =
∂

∂x6
, X8 =

∂

∂y6
, X9 = ξ =

∂

∂z
.

(kerψ∗) = (D ⊕D1 ⊕D2⊕ < ξ >),

where

D =< X1, X2, X7, X8 >,
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D1 =< X3, X4 >,

D2 =< X5, X6 >,

< ξ >=< X9 >,

and

(kerψ∗)
⊥ =<

∂

∂x2
sin θ1 −

∂

∂y3
cos θ1,

∂

∂y2
,
∂

∂x4
cos θ2 −

∂

∂y5
sin θ2,

∂

∂x5
,
∂

∂x7
,
∂

∂y7
>,

with bi-slant angles θ1 and θ2.

Example 3.3. Define a map

φ : R13 → R6

φ(x1, ..., x6, y1, ..., y6, z) 7→ (
x1 − x2√

2
, y1,

√
3x4 − x5

2
, y5, x6, y6),

which is a quasi bi-slant submersion such that

X1 =
1√
2

(
∂

∂x1
+

∂

∂x2
), X2 =

∂

∂y2
, X3 =

∂

∂x3
, X4 =

∂

∂y3
,

X5 =
1

2
(
∂

∂x4
+
√

3
∂

∂x5
), X6 =

∂

∂y4
,

X7 = ξ =
∂

∂z
.

(kerφ∗) = (D ⊕D1 ⊕D2⊕ < ξ >),
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where
D =< X3, X4 >,

D1 =< X1, X2 >,

D2 =< X5, X6 >,

< ξ >=< X7 >,

and

(kerφ∗)
⊥ =<

∂

∂y1
,

1√
2

(
∂

∂x1
+

∂

∂x2
),

1

2
(
√

3
∂

∂x4
− ∂

∂x5
),

∂

∂y5
,
∂

∂x6
,
∂

∂y6
>,

with bi-slant angles θ1 = π
4 and θ2 = π

3 .

Remark 3.4. In this paper, we assume that all horizontal vector fields
are basic vector fields.

Let F be quasi bi-slant submersion from an almost contact metric
manifold (M,φ, ξ, η, gM ) onto a Riemannian manifold (N, gN ). Then, we
have

TM = kerF∗ ⊕ (kerF∗)
⊥. (14)

Now, for any vector field X ∈ Γ(kerF∗), we put

X = PX +QX +RX + η(X)ξ, (15)

where P,Q and R are projection morphisms of kerF∗ onto D,D1 and
D2, respectively.

For X ∈ (Γ kerF∗), we set

φX = ψX + ωX, (16)

where ψX ∈ (Γ ker f∗) and ωX ∈ Γ(ωD1 ⊕ ωD2).
From equations (15) and (16), we have

φX = φ(PX) + φ(QX) + φ(RX),

= ψ(PX) + ω(PX) + ψ(QX) + ω(QX) + ψ(RX) + ω(RX).
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Since φD = D, we get ωPX = 0.

Hence above equation reduces to

φX = ψ(PX) + ψQX + ωQX + ψRX + ωRX.

Thus we have the following decomposition

φ(kerF∗) = D ⊕ (ψD1 ⊕ ψD2)⊕ (ωD1 ⊕ ωD2),

where ⊕ denotes orthogonal direct sum.

Further, let X ∈ Γ(D1) and Y ∈ Γ(D2). Then

gM (X,Y ) = 0.

From definition 3.1(iii), we have

gM (φX, Y ) = gM (X,φY ) = 0.

Now, consider

gM (ψX, Y ) = gM (φX − ωX, Y ),

= gM (φX, Y ),

= 0.

Similarly, we have

gM (X,ψY ) = 0.

Let Z ∈ Γ(D) and X ∈ Γ(D1). Then we have

gM (ψX,Z) = gM (φX − ωX,Z),

= gM (φX,Z),

= −g(X,φZ),

= 0,

as D is invariant i.e., φZ ∈ Γ(D).

Similarly, for Z ∈ Γ(D) and Y ∈ Γ(D2), we obtain

gM (ψY,Z) = 0,
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From above equations, we have

gM (ψX,ψY ) = 0,

and

gM (ωX,ωY ) = 0,

for all X ∈ Γ(D1) and Y ∈ Γ(D2).

So, we can write

ψD1 ∩ ψD2 = {0}, ωD1 ∩ ωD2 = {0}.

If θ2 = π
2 , then ψR = 0 and D2 is anti-invariant, i.e., φ(D2) ⊆

(kerF∗)
⊥. In this case we denote D2 by D⊥.

We also have

φ(kerF∗) = D ⊕ ψD1 ⊕ ωD1 ⊕ JD⊥.

Since ωD1 ⊆ (kerF∗)
⊥, ωD2 ⊆ (kerF∗)

⊥. So we can write

(kerF∗)
⊥ = ωD1 ⊕ ωD2 ⊕ V,

where V is orthogonal complement of (ωD1 ⊕ ωD2) in (kerF∗)
⊥.

Also for any non-zero vector field Z ∈ Γ(kerF∗)
⊥, we have

φZ = BZ + CZ, (17)

where BZ ∈ Γ(kerF∗) and CZ ∈ Γ(V).

Lemma 3.5. Let F be a quasi bi-slant submersion from an almost
contact metric manifold (M,φ, ξ, η, gM ) onto a Riemannian manifold
(N, gN ). Then, we have

ψ2X +BωX = −X + η(X)ξ, ωψX + CωX = 0,

ωBZ + C2Z = −Z,ψBZ +BCZ = 0,

for all X ∈ Γ(kerF∗) and Z ∈ Γ(kerF∗)
⊥.

Proof. Using equations (1), (16) and (17), we have Lemma 3.5. �
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Lemma 3.6. Let F be a quasi bi-slant submersion from an almost
contact metric manifold (M,φ, ξ, η, gM ) onto a Riemannian manifold
(N, gN ). Then, we have

(i) ψ2X = −(cos2 θ1)X

(ii) gM (ψX,ψY ) = cos2 θ1gM (X,Y ),

(iii) gM (ωX,ωY ) = sin2 θ1gM (X,Y ),

for all X,Y ∈ Γ(D1).

Proof. (i) Let F be a quasi bi-slant submersion from an almost contact
metric manifold (M,φ, ξ, η, gM ) onto a Riemannian manifold (N, gN )
with the quasi bi-slant angle θ1.

Then for a non-vanishing vector field X ∈ Γ(D1), we have

(A) cos θ1 = |ψX|
|JX|

and cos θ1 = gM (JX,ψX)
|JX||ψX| .

By using equation (3.3), we have

cos θ1 = gM (ψX,ψX)
|JX||ψX| .

(B) cos θ1 = −gM (X,ψ2X)
|JX||ψX| ,

from equations (A) and (B), we get

ψ2X = −(cos2 θ1)X, for X ∈ Γ(D1).

(ii) For all X,Y ∈ Γ(D1), using equation (16) and Lemma 3.6(i), we
have

gM (ψX,ψY ) = gM (ψX + ωX,ψY ),

= −gM (X,ψ2Y ),

= cos2 θ1gM (X,Y ).

(iii) Using equation (16) and Lemma 3.6(i), (ii), we have Lemma
3.6(iii). �

In a similar way as in above, we obtain the following Lemma:

Lemma 3.7. Let F be a quasi bi-slant submersion from an contact
metric manifold (M,φ, ξ, η, gM ) onto a Riemannian manifold (N, gN ).
Then, we have

(i) ψ2Z = −(cos2 θ2)Z

(ii) gM (ψZ,ψW ) = cos2 θ2gM (Z,W ),

(iii) gM (ωZ, ωW ) = sin2 θ2gM (Z,W ),

for all Z,W ∈ Γ(D2).
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Lemma 3.8. Let F be a quasi bi-slant submersion from a Kenmotsu
manifold (M,φ, ξ, η, gM ) onto a Riemannian manifold (N, gN ). Then,
we have

V∇XψY + TXωY − gM (ψX, Y )ξ + η(Y )ψX = ψV∇XY +BTXY, (18)

TXψY +H∇XωY + η(Y )ωX = ωV∇XY + CTXY, (19)

V∇UBV +AUCV − gM (CU, V )ξ = ψAUV +BH∇UV, (20)

AUBV +H∇UCV = ωAUV + CH∇UV, (21)

V∇XBU + TXCU − gM (ωX,U)ξ = ψTXU +BH∇XU, (22)

TXBU +H∇XCU = ωTXU + CH∇XU, (23)

V∇V ψX+AV ωX−gM (BV,X)ξ+η(X)BV = BAVX+ψV∇VX, (24)

AV ψX +H∇V ωX + η(X)CV = CAVX + ωV∇VX, (25)

for any X,Y ∈ Γ(kerF∗) and U, V ∈ Γ(kerF∗)
⊥.

Proof. Using equations (5)− (7), (16) and (17), we can easily obtain all
assertions. �

Now, we define

(∇Xψ)Y = V∇XψY − ψV∇XY, (26)

(∇Xω)Y = H∇XωY − ωV∇XY, (27)

(∇UC)V = H∇UCV − CH∇UV, (28)

(∇UB)V = V∇UBV −BH∇UV, (29)

for any X,Y ∈ Γ(kerF∗) and U, V ∈ Γ(kerF∗)
⊥.

Lemma 3.9. Let F be a quasi bi-slant submersion from a Kenmotsu
manifold (M,φ, ξ, η, gM ) onto a Riemannian manifold (N, gN ). Then,
we have

(∇Xφ)Y = BTXY − TXωY + gM (ψX, Y )ξ − η(Y )ψX,

(∇Xω)Y = CTXY − TXψY − η(Y )ωX,

(∇UC)V = ωAUV −AUBV,
(∇UB)V = ψAUV −AUCV + gM (CU, V )ξ,

for any vectors X,Y ∈ Γ(kerF∗) and U, V ∈ Γ(kerF∗)
⊥.
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Proof. Using equations (18)− (21) and (24)− (27) we get all equations
of Lemma 3.9. �

The proofs of above Lemmas follow from straightforward computa-
tions, so we omit them.

If the tensors φ and ω are parallel with respect to the linear connec-
tion ∇ on M respectively, then

BTXY = TXωY − gM (ψX, Y )ξ + η(Y )ψX,

and
CTXY = TXψY + η(Y )ωX,

for any X,Y ∈ Γ(TM).

Theorem 3.10. Let F be a proper quasi bi-slant submersion from a
Kenmotsu manifold (M,φ, ξ, η, gM ) onto a Riemannian manifold (N, gN ).
Then, the slant distribution D is integrable if and only if

gM (TY φX−TXφY, ωQZ+ωRZ) = gM (V∇XφY−V∇Y φX,ψQZ+ψRZ),

for X,Y ∈ Γ(D) and Z ∈ Γ(D1 ⊕D2⊕ < ξ >).

Proof. For X,Y ∈ Γ(D), and Z ∈ Γ(D1 ⊕D2 < ξ >), using equations
(1)− (5), (7), (15) and (16), we have

gM ([X,Y ], Z)

= gM (∇XφY, φZ) + η(Z)η(∇XY )− gM (∇Y φX, φZ)− η(Z)η(∇YX),

= gM (∇XφY, φZ)− gM (∇Y φX, φZ),

= gM (TXφY − TY φX,ωQZ + ωRZ)− gM (V∇XφY − V∇Y φX,
ψQZ + ψRZ),

which completes the proof. �

Theorem 3.11. Let F be a proper quasi bi-slant submersion from a
Kenmotsu manifold (M,φ, ξ, η, gM ) onto a Riemannian manifold (N, gN ).
Then, the slant distribution D1 is integrable if and only if

gM (TZωψW − TWωψZ,U)

= gM (TZωW − TWωZ, φPU + ψRU) + gM (H∇ZωW −H∇WωZ,
ωRU),

for all Z,W ∈ Γ(D1) and U ∈ Γ(D ⊕D2⊕ < ξ >).
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Proof. For all Z,W ∈ Γ(D1) and U ∈ Γ(D ⊕D2⊕ < ξ >), we have

gM ([Z,W ], U) = gM (∇ZW,U)− gM (∇WZ,U).

Using equations (1), (2), (8), (15), (16) and Lemma 3.6, we have

gM ([Z,W ], U)

= gM (∇ZφW,φU)− gM (∇WφZ, φU),

= gM (∇ZψW,φU) + gM (∇ZωW,φU)− gM (∇WψZ, φU)

−gM (∇ZωW,φU),

= cos2 θ1gM (∇ZW,U)− cos2 θ1gM (∇WZ,U)− gM (TZωψW
−TWωψZ,U) + gM (H∇ZωW + TZωW,φPU
+ψRU + ωRU)− gM (H∇WωZ + TWωZ,
φPU + ψRU + ωRU).

Now, we have

sin2 θ1gM ([Z,W ], U)

= gM (TZωW − TWωZ, φPU + ψRU) + gM (H∇ZωW −H∇WωZ,
ωRU)− gM (TZωψW − TWωψZ,U),

which completes the proof. �

Theorem 3.12. Let F be a proper quasi bi-slant submersion from a
Kenmotsu manifold (M,φ, ξ, η, gM ) onto a Riemannian manifold (N, gN ).
Then, the slant distribution D2 is integrable if and only if

gM (TXωψY − TY ωψX, V )

= gM (H∇XωY −H∇Y ωX,ωQV ) + gM (TXωY − TY ωX, φPV +

ψQV ),

for all X,Y ∈ Γ(D2) and V ∈ Γ(D ⊕D1⊕ < ξ >).

Proof. For all X,Y ∈ Γ(D2) and V ∈ Γ(D⊕D1 < ξ >), using equations
(1)− (5) and (16), we have

gM ([X,Y ], V ) = gM (∇XψY, φV ) + gM (∇XωY, φV )

−gM (∇Y ψX, φV )− gM (∇Y ωX, φV ).
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From equations (8), (15) and Lemma 3.7, we have

gM ([X,Y ], V )

= cos2 θ2gM ([X,Y ], V ) + gM (H∇XωY −H∇Y ωX,ωQV )

+gM (TXωY − TY ωX, φPV + ψQV )− gM (TXωψY − TY ωψX, V ).

Now, we have

sin2 θ2gM ([X,Y ], V )

= gM (TXωY − TY ωX, φPV + ψQV )− gM (TXωψY − TY ωψX, V )

+gM (H∇XωY −H∇Y ωX,ωQV ),

the proof follows from the above equations. �

Theorem 3.13. Let F be a proper quasi bi-slant submersion from a
Kenmotsu manifold (M,φ, ξ, η, gM ) onto a Riemannian manifold (N, gN ).
Then the vertical distribution (kerF∗) defines a totally geodesic foliation
on M if and only if

gM (TUPV + cos2 θ1TUQV + cos2 θ2TURV,X)

= gM (H∇UωψPV +H∇UωψQV +H∇UωψRV,X)

+gM (TUωV,BX) + gM (H∇UωV,CX),

for all U, V ∈ Γ(kerF∗) and X ∈ Γ(kerF∗)
⊥.

Proof. For all U, V ∈ Γ(kerF∗) and X ∈ Γ(kerF∗)
⊥, using equations

(1)− (5), we have

gM (∇UV,X)

= gM (∇UφPV, φX) + gM (∇UφQV, φX) + gM (∇UφRV, φX).

Now, using equations (7), (8), (15), (16), (17) and Lemmas 3.6 and 3.7,
we have

gM (∇UV,X)

= gM (TUPV,X) + cos2 θ1gM (TUQV,X) + cos2 θ2gM (TURV,X)

−gM (H∇UωψPV +H∇UωψQV +H∇UωψRV,X)

+gM (∇UωPV +∇UωQV +∇UωRV, φX).
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Now, since ωPV + ωQV + ωRV = ωV and ωPV = 0, we have

gM (∇UV,X)

= gM (TUPV + cos2 θ1TUQV + cos2 θ2TURV,X)

−gM (H∇UωψPV +H∇UωψQV +H∇UωψRV,X)

+gM (TUωV,BX) + gM (H∇UωV,CX),

which completes the proof. �

Theorem 3.14. Let F be a proper quasi bi-slant submersion from a
Kenmotsu manifold (M,φ, ξ, η, gM ) onto a Riemannian manifold (N, gN ).
Then, the horizontal distribution (kerF∗)

⊥ is not totally geodesic folia-
tion on M.

Proof. Let X,Y ∈ Γ(kerF∗)
⊥, using equations (2) and (5), we have

gM (∇XY, ξ) = −gM (Y,∇Xξ)
= −gM (Y,X),

since gM (Y,X) 6= 0, so gM (∇XY, ξ) 6= 0. Hence, (kerF∗)
⊥ is not totally

geodesic foliation on M. �

Proposition 3.15. Let F be a proper quasi bi-slant submersion from a
Kenmotsu manifold (M,φ, ξ, η, gM ) onto a Riemannian manifold (N, gN ).
Then the distribution D is not totally geodesic foliation on M.

Proof. For all X,Y ∈ Γ(D), using equations (1), (2), (3) and (5), we
have

gM (∇XY, ξ) = −gM (X,Y ),

which is gM (∇XY, ξ) 6= 0, so D is not totally geodesic foliation. �

Theorem 3.16. Let F be a proper quasi bi-slant submersion from a
Kenmotsu manifold (M,φ, ξ, η, gM ) onto a Riemannian manifold (N, gN ).
Then the distribution D⊕ < ξ > defines a totally geodesic foliation if
and only if

gM (TXφPY, ωQZ + ωRZ) = −gM (V∇XφPY, ψQZ + ψRZ),
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and
gM (TXφPY,CV ) = −gM (V∇XφPY,BV ),

for all X,Y ∈ Γ(D⊕ < ξ >), Z ∈ Γ(D1 ⊕D2) and V ∈ Γ(kerF∗)
⊥.

Proof. For all X,Y ∈ Γ(D⊕ < ξ >), Z ∈ Γ(D1 ⊕D2) and
V ∈ Γ(kerF∗)

⊥, using equations (1)− (5), (15) and (16), we have

gM (∇XY, Z) = gM (∇XφY, φZ),

= gM (∇XφPY, φQZ + φRZ),

= gM (TXφPY, ωQZ + ωRZ) + gM (V∇XφPY,
ψQZ + ψRZ).

Now, again using equations (1)− (5), (7), and (15)− (17), we have

gM (∇XY, V ) = gM (∇XφY, φV ),

= gM (∇XφPY,BV + CV ),

= gM (V∇XφPY,BV ) + gM (TXφPY,CV ),

which completes the proof. �

Proposition 3.17. Let F be a proper quasi bi-slant submersion from a
Kenmotsu manifold (M,φ, ξ, η, gM ) onto a Riemannian manifold (N, gN ).
Then the distribution Di is not totally geodesic foliation on M , for
i = 1, 2.

Proof. For all Z,W ∈ Γ(Di), using equations (1)− (3) and (5), we have

gM (∇ZW, ξ) = −gM (Z,W ),

which is gM (∇ZW, ξ) 6= 0, so Di is not totally geodesic foliation on M ,
for i = 1, 2. �

Theorem 3.18. Let F be a proper quasi bi-slant submersion from a
Kenmotsu manifold (M,φ, ξ, η, gM ) onto a Riemannian manifold (N, gN ).
Then the distribution D1⊕ < ξ > defines a totally geodesic foliation if
and only if

gM (TZωψW,X) = gM (TZωQW,φPX + ψRX) + gM (H∇ZωQW,ωRX),
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and

gM (H∇ZωψW,V ) = gM (H∇ZωW,CV ) + gM (TZωW,BV ),

for all Z,W ∈ Γ(D1⊕ < ξ >), X ∈ Γ(D ⊕D2) and V ∈ Γ(kerF∗)
⊥.

Proof. For all Z,W ∈ Γ(D1⊕ < ξ >), X ∈ Γ(D ⊕D2) and
V ∈ Γ(kerF∗)

⊥, using equations (1)−(5), (8), (15), (16) and Lemma 3.6,
we have

gM (∇ZW,X)

= gM (∇ZφW,φX)

= gM (∇ZψW,φX) + gM (∇ZωW,φX),

= cos2 θ1gM (∇ZW,X)− gM (TZωψW,X)

+gM (TZωQW,φPX + ψRX) + gM (H∇ZωQW,ωRX).

Now, we have

sin2 θ1gM (∇ZW,X)

= −gM (TZωψW,X) + gM (TZωQW,φPX + ψRX)

+gM (H∇ZωQW,ωRX)

Next, from equations (1)− (5), (9), (16), (17) and Lemma 3.6, we have

gM (∇ZW,V ) = gM (∇ZφW,φV ),

= gM (∇ZψW,φV ) + gM (∇ZωW,φV ),

= cos2 θ1gM (∇ZW,V )− gM (H∇ZωψW,V )

+gM (H∇ZωW,CV ) + gM (TZωW,BV ).

Now, we have

sin2 θ1gM (∇ZW,V )

= −gM (H∇ZωψW,V ) + gM (H∇ZωW,CV ) + gM (TZωW,BV ),

which completes the proof. �
Similar to Theorem 3.18, we can prove the following theorem:
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Theorem 3.19. Let F be a proper quasi bi-slant submersion from a
Kenmotsu manifold (M,φ, ξ, η, gM ) onto a Riemannian manifold (N, gN ).
Then the distribution D2⊕ < ξ > defines a totally geodesic foliation if
and only if

gM (TXωψY,Z) = gM (TXωQY, φPZ + φRZ) + gM (H∇XωQY, ωRZ),

and

gM (H∇XωψY, V ) = gM (H∇XωY,CV ) + gM (TXωY,BV ),

for all X,Y ∈ Γ(D2⊕ < ξ >), Z ∈ Γ(D ⊕D1) and V ∈ Γ(kerF∗)
⊥.

Using Theorem 3.14 we can give the following theorem:

Theorem 3.20. Let F be a proper quasi bi-slant submersion from a
Kenmotsu manifold (M,φ, ξ, η, gM ) onto a Riemannian manifold (N, gN ).
Then the map F is not a totally geodesic map.
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[11] Y. Gündüzalp, Slant submersion from Lorentzian almost para con-
tact manifolds, Gulf Journal of Mathematics, 3 (1) (2015), 18− 28.

[12] Y. Gündüzalp and M. A. Akyol, Conformal slant submersions from
cosymplectic manifolds, Turk J. Math., 42 (2018), 2672− 2689.

[13] S. Ianus, A. M. Ionescu, R. Mocanu and G. E. Vilcu, Rieman-
nian submersions from almost contact metric manifolds, Abh. Math.
Semin. Univ. Humbg., 81 (1) (2011), 101− 114.

[14] S. Ianus, R. Mazzocco and G. E. Vilcu, Riemannian submersion
from quaternionic manifolds, Acta Applicandae Mathematicae, 104
(1) (2008), 83− 89.

[15] K. S. Park and R. Prasad, Semi-slant submersions, Bull. Korean
Math. Soc., 50 (3) (2013), 951− 962.

[16] R. Prasad, S. S. Shukla and S. Kumar, On Quasi bi-slant Submer-
sions, Mediterr. J. Math., 16 : 155 (2019).

[17] B. O’Neill, The fundamental equations of a submersion, The Michi-
gan Mathematical Journal, 33 (13) (1966), 459− 469.

[18] M. H. Shahid F. R. Al-Solamy, J. B. Jun and M. Ahmad, Submer-
sion of Semi-Invariant Submanifolds of Trans-Sasakian Manifold,
Asian Academy of Management Journal of Accounting & Finance,
9 (1) (2013).



24 R. PRASAD et al.
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[22] B. Şahin, Riemannian Submersions, Riemannian Maps in Hermi-
tian Geometry and Their Applications, Elsevier, Academic Press
(2017).
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