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1 Introduction

One of the fundamental assumptions in regression analysis is that all
the observations are correctly observed. However, in many applications
this assumption is violated and the data are contaminated by measure-
ment errors. In these models, estimation based on the above mentioned
assumption leads to inconsistent estimates, meaning that the parame-
ter estimates do not tend to the true values even in very large samples.
In fact, measurement error is known to cause biased parameter esti-
mates (Carroll et al. [0]) and lack of efficiency is a direct consequence
of this misestimates. Ignoring non-negligible measurement error often
leads to incorrect inferences about parameters (see for example, Cook
and Campbel [8]). When the explanatory variables cannot be measured
truly, some additional information is required to obtain consistent esti-
mators of the regression coefficients. The literature introduces several
approaches for finding consistent estimators. One such approach is to
consider the replicated measurement error model and there are some
works on this approach. Devanarayan and stefanski [10] and Nawarathna
and Choudhary [21] studied a heteroscedastic measurement error models
with replicate measurements. Singh et al. [28] investigated a replicated
measurement error model under exact linear restrictions. Wimmer and
Witkovsky [33] explored a measurement error model with replicated data
in comparative calibration problem. See also Gimenez and Patat [14]
and Blas et al. [2]. They did some study on Berkson measurement
errors for replicated data. Dalen et al. [9] used replication to correct
misclassification of a categorized exposure in binary regression. Also,
Chan and Mak [7] and Isogawa [17] investigated the structural form of
the replicated measurement error model under the condition of normally
distributed measurement errors. Cao et al. [5] studied the multivariate
measurement error models for replicated data under heavy-tailed dis-
tributions, as well. Recently, Shalabh et al.[20] did a research on the
inconsistent estimator of parameter in ultrastructural measurement er-
ror model with replicated data, see also Ullah et al. [32] and Shalabh et
al. [27] for non-normal measurement errors in such a case.
Replicated data contaminated with measurement errors are frequently
presented in medical, economic, environmental, chemical and other fields.
Estimation in measurement error models with replicated observa-
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tions, by the corrected score log-likelihood approach has been intro-
duced by Nakamura [20]. This approach is based on the corrected log-
likelihood function, which, when feasible, yields consistent estimators for
the model parameters. In this paper we use the Nakamura’s corrected
score log-likelihood approach to estimate parameters. One of the most
important advantages of this approach is that it directly allows one to
find consistent and asymptotically normal estimators for the parameters
of interest, voiding the problem of estimating the unobserved quantities
or incidental parameters. see for example, Huang [16] and Yang et al.
[34] for the recent uses of this method.

Another important assumption in a classical regression analysis is

that explanatory variables are uncorrelated. When this assumption is
violated, the explanatory variables are nearly dependent which refers as
multicollinearity problem and yields poor estimators of interest param-
eters. In order to resolve this problem several approaches have been
considered, among them, the Ridge regression was introduced by Horel
and Kennard [15] and considers a shrinkage method to overcome the
problem of multicollinearity for the estimation of regression parameters.
This approach has been considered in measurement error models. See
for example, Saleh and Shalabh [25] and Rasekh [23]. In this article we
employ the ridge regression method to combat multicollinearity in the
estimation of parameters in measurement error models with replicated
data.
The organization of this paper is as follows. In Section 2, we obtain a
ridge estimator in replicated measurement error models as well as some
other estimators. Some large sample properties and theoretical com-
parison presented in Section 3 and finally, in Section 4 we present a
simulation study and a real numerical application of our results.

2 Model specification and estimation

Consider the following exact relationship between the n x 1 vector of
study variable 1 and the n x p matrix Z of n values on each of the p
explanatory variables:

n=oae,+2Zp3

3
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where « is the intercept term, e, is the vector of elements unity, and 3
is the p x 1 vector of regression coefficients.

Suppose that the observations on the study and explanatory variables,
1 and Z are contaminated with measurement errors and hence cannot
be observed directly, but instead we assume that they are observed with
additive measurement errors as

Yy =n+e
X =Z+A

where X is n X p matrix whose ith row is 7

75 The n x p matrix of
measurement errors A = (81, &a,..., 6,)7 is associated with Z and as-
sumed to have normally distributed rows, with mean zero and covariance
A and hence A ~ N(0, I, ® A), where I,, is the n x n identity matrix
and ® denotes the Kronecker product, which, for two arbitrary matrices
H = (h;j) and S = (sy;), of dimensions a x b and ¢ x d, respectively,
defined as

h11S h12S ... hppS
HoS— ho1S  h2aS ... hopS .
hais he2S ... haS

Associated with n, The model errors e = (eq, 82,...,€n)T are i.i.d.
normally with mean zero and variance o2. Furthermore, we assume that
€ and A are independent and A is a p X p matrix of known values with
non-negative diagonal elements. For the sake of notational simplicity we
assume that o = 0, then we have the linear measurement error model
as

y =ZB+e (1)
X =Z+A

By considering the model (1) without measurement error term (i.e. y =
Z 3 + e), the log-likelihood function of 3 is as

(8,0% 2, y) = ~ 5 n(2n0?) — 5 5 (y ~ 20) (y - ZB)
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and based on Nakamura [20], the appropriate corrected log-likelihood
function is defined as

£(8,0% X,y) = — 2 n(2n0?) — - ((y — XB)T(y — XB) — " AB)

such that,
E*(0*(8,0% X, y)) = £(B,0% Z,y)

where E* is the conditional expectation with respect to X given y and
Z. The corrected log-likelihood function ¢*(3, 02; X, y) satisfies:

0 0
E*(%E*(H,OQ,X,’!])) = 7166(/8’02;Zay)>

0 0
E*(@E*(ﬂ,a%X,y)) = @5(/@302; Z,y)

and therefore by solving the equations %E*(B,O’Q;X ,y) = 0 and

%E*(,@,U%X,y) = 0 the corrected score estimated of § and o2 re-
spectively are given by

Bup = (XTX —nA) "' XTy
Fie = (v~ XP)"(y ~ XB) — nf" AP)

where subscript M E stands for Measurement Error. In a multi-
collinearity problem, the suggested estimator of 3 based on a shrink-
age strategy, the corrected log-likelihood function for the model (1) for
0 < k < 1 can be defined as

r(B.0% X ) =
~ Dn(no?) — oy {(y - XB) (y ~ XB) ~ ng"AB + k67 B}

Differentiating from ¢*(3, 0%; X ,y) with respect to 3 and o2 yields the
Measurement Error Ridge-type (MER) as

Bupr= (XTX —nA+ kD)~ XTy,
(y—XB)"(y—XB)—nB"AB+ kB"P)

.9 1
OMER = n

5
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which is a ridge estimator of B in measurement error model (1).

Now, suppose on unit 7 there are m replicate values x;1, ..., iy of
the error-prone measure of x;. Furthermore, we assume the replicate
values are independent with x;; = z; +6;; , j = 1,2,...,m and in the
matrix form, X; = Z + A;, j = 1,2,...,m. So, under the normality
assumptions we have A; ~ N(0, I, ® A). Using a direct expectation
we have

ENXTX;)=2Z"Z+nA, j=12,....m,
where E* is the conditional expectation with respect to X given y and
Z.
The most important benefit of replicated data in measurement error
model is that it helps the researcher to find an unbiased estimate of A
from replicated observations on the independent variables (see Nagelk-
erke [19], for more details).

Let we define X' X = L3 | X;7 X and X'y = LY7" ) X;7y.
In this case, the appropriate corrected log-likelihood function is defined
as

E*(,B,O'z;Xl,...,Xm,y) =

s (Dt — i - 578}
j=1 Ni=1

- % In(27wo?) —

such that,
E*(E*(,B,Oz;Xl,XQ? cee ,mey) = E(ﬁ70'2; Zvy)

and by differentiating from ¢*(3,0%; X1, Xa,..., X, y) with respect
to B we obtain the following normal equation

m

1 & 1
~ > XTy- ~ Y (XTX;-nA)B =0,
7j=1 J=1

which yields the corrected log-likelihood for the replicated measurement
error estimator (RME) of 3 as

. —_ 11—
Brvp = (XTX —nA) Xy,

o = >y~ X;8)"(y — X;8) ~ n" AB).
j=1
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Now we are ready to introduce an estimator which employs replication
data to achieve more accuracy and use the ridge penalty to overcome
the multicollinearity, for j = 1,2,...,m we define

(v (% « _( & —AB
v=(8) =-() =7 .7)

where the 0 < k£ < 1 denotes the ridge parameter and ¢ is an error vector
with E(¢) = 0 and Var(p) = 021 p- Then the appropriate corrected log-
likelihood for model (1) is given by

B, X1, Xy y) =
— - In(2m0?) zm(ﬂZ(Z{ BTAﬁ+kBTB}>

and by differentiating with respect to 3 we obtain the following normal
equation

1 O~ 7 1~y T
= Xjy——> (X]X;—nA+kI)B =
— ot
and hence the ridge estimator of 3 using the corrected log-likelihood
method in a replicated measurement error model (RMER) is as

. S -1—
Brupn = (XTX —nA+ kI) XTy. 2)

Note that we can use these replications to consistently estimate the

. . ~ 9 _ 1 m
covariance matrix of measurement errors as opypr = el LY —
X;8)"(y — X;8) — nBTAB + kBT B}. Also, in a similar manner we
can estimate the variance of measurement errors. If we denote x; =
% Z;nzl x;; as the mean of replicate measurements x;1, 2, ..., Tin of
z;, the ith row of matrix Z, then

Doy 2 (@ij — &) (w5 — @'.)T'

A=
n(m—1)
See e.g., Carroll et al.[0] and Buonaccorsi [3] for more details. Fur-
thermore as shown in Rasekh and Fieller [21] an estimate of Z can
be derived as Z = X + mfla*QV,BTA where 7 = y — X3 and 62 =

n162 4+ m_IBTAB and X components is ;..

7
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3 Comparison of estimators

Since the exact distribution and finite sample properties of the RMER
estimator is difficult to drive, we propose to use the large sample asymp-
totic approximation theory to study the asymptotic distribution of the
estimators.

Theorem 3.1. BRMER has asymptotically normal distribution with
mean and variance-covariance matriz respectively (Z7 Z4+kI)"'ZTZ3
and

(Z" Z+ kD)7 [m ' A(no® + BT 27 ZB) + 0*Z1 2] (ZT Z+ kI) 7.

Proof. Since E*(XTX) = ZTZ + nA, and by Fung et al.[12] we can
write )
XTX =Z"Z + nA + 0y(n?).

we also obtain
N XTX +kI) =nY(ZTZ + kI) + A+ Op(n"2)

from (2) we have
. —_ -1 —
\/’E‘BRMER: (n_l(XTX—nA—I-kI)) 7'L_§XTY
-1 -
("N ZTZ+ KD+ 0p(nE)) nEXTY
-1 B _
= (I+0p(n*%)> (n Y27 Z + kD)) 0 XTY
( 1

I+o,,(n—%)) (Y272 + kD)) 01 XTY

where {I—l—Op(rf%)}_1 = I—I—Op(nfé) is obtained from taylor series
expansion and since the limit of C = n~'(ZTZ + kI) exist, hence,
ViBrypr = C €+ Op(nfé) where § = n s XTY is asymptotically
normal with mean n~2 27 Z B (See for example, Fung et al.[12] and Zare
and Rasekh [35]). So, we readily conclude that

Vi(Brypr—(ZT Z+KI) ' ZTZ B) = C Y (§—E(€))+0,(n"2)C €.
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Consequently, /n(Brypr — (Z7 Z+ kI~ Z" Z3) has asymptotically
normal distribution with zero mean.

Also, from (2) the asymptotic variance (AVar) of RMER will obtains as
AVar(\/nBrypr) = C~'Var(€)C . The variance-covariance matrix of

£ is
Var(§) = Ey(Var(£]y)) + Vary (E(§|y))
- nflm’lEy(yTyA) + n71Va7‘y(ZTy)
=n"'mtA(no® + 8127 2B8) + n 0?27 Z
=n"'m Ao + 8127 ZB) + 0?27 Z).

Thus,

AV&T(BRMER) =
(Z'Z + k) [m Ao + 8727 ZB) + 0° 21 Z] (27 Z + kI) 7,

and concequently the desired result is achieved. ]

Obviously for suitable choises of k and m in AVar(Bgypr), we
have the AVar of other mentioned estimators. when k = 0, we obtain
AVar(Brarg), when m = 1, we obtain AVar(8,,zz) and AVar(8,,5) is
obtained by choosing k = 0 and m = 1.

The following corollaries are now the consequent results of the Theorem
3.1.

Corollary 3.2. BRME has asymptotically normal distribution with mean
B and variance-covariance matriz

(Z7Z) " [m ' A(no® + BT Z27ZB) + 0?27 Z] (27 Z) 7.

Corollary 3.3. B MER has asymptotically normal distribution with
mean and variance-covariance matriz respectively (ZT Z+kI)"'ZTZ3
and (Z* Z+ kI)7Y [A(no® + BT Z7ZB) + 0227 Z) (27 Z + kD).

Corollary 3.4. BME has asymptotically normal distribution with mean
B and variance-covariance matriz

(Zz72) [A(no* + BT 272ZP) + 0?27 Z) (27 Z) .
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An extension of univariate mean square error (MSE) in multivariate
manner is the mean square error matrix (MSEM) and for an arbitrary
estimator, say @, defined as

MSEM(9) =E(@ — 6)(8 — )" = Var(8)+B(8)B(8)",

where B(8) =E(8) — 6, stands for bias vector of 8 in estimating 6. Also,
in the asymptotic case, we may have the asymptotic MSEM (AMSEM)
can be obtained as

AMSEM(9) = AVar(8)+Ba (8)Ba(8)"

where B A(é) is the asymptotic bias vector of 8. In order to compare two
given estimators we may have the following definition (see for example
Ozkale [22]):

Definition 3.5. For two estimators 91 and ég , it is said that 92 is su-
perior to 81, with respect to AMSEM sense, if and only if A4(01,02) =
AMSEM(6,)—AMSEM(65) is a non-negative definite matrix.

R We can }“eadily obtain the AMSEM of estimators BRMER: BMERv
Bryr and By, as follows:

AMSEM (Bgygr) = (Z7Z + kI)'N, (2T Z + kI)™! 4 aa”
AMSEM (Bryg) = (272)"'N,uw(2"2)™
AMSEM (Byipr) = (27 Z+ kI)'Ny(Z"Z + kI) ™ + aa”
AMSEM (Byg) = (272)"'N(272)™!

where N,,, = m™'A(no? + 81 21ZB) + 0*°Z7Z and a = ((Z7Z +
kN"'ZTZ - I)B.
Note that, by using Theorem 3.1 we have

AVar(Brygr) =

(Z"Z + kI)™! [mflfx(n&? +B8°Z7Z53) + &2ZTZ} (Z"Z + kI)™!
and the simillar result is confirmed for A@M(B RMER)-
Theorem 3.7 indicates the conditions that Br/gr is superior to Bry g

with respect to AMSEM sense, which easily can be proved using the
following Lemma (see Farebrother [11]). Other comparisons are similar.
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Lemma 3.6. Let M be a positive definite matriz, namely M > 0 and c
be some vector, then M — cc’ > 0 if and only if c"M~1c < 1.

Theorem 3.7. Bpypr is superior to Bry g with respect to AMSEM
sense if and only if a’ M~'a <1 where M = [(Z1 Z2)"'N,,(Z7Z)~! -
(Z'Z + kI)"'N,,(Z2TZ + kI)7).

Proof. To use lemma 3.6 we need to prove that M is positive definite
matrix. Note that

M= (2"2)"'N,,(2"2)"' - (Z27Z + kI)"'N,, 2" Z + kI)™!
=(Z"2)"'Nn(272)" =[Gy (27 2)] "N [(Z" 2)Gy ™))
= (Z2"2)" (N — Gy N, Gy)(272) 7!

where Gy = [I + k(Z1Z)™1)]~". To prove that M > 0 it is suffices to
show that N,,, — G;N,,,G; > 0. Now, if we replace the value of N,,,, we
will have

N,, — GiN,,G, =B +0%(Z212) - Gx(B + 0%*(27 2))Gy,
=B - GBG +0%(Z27Z - GL(Z7 2)G},)

where B = m™'A(no?+87 27 Z3). But B-G.BG > 0and 0%(Z7Z—
G1ZTZGy) > 0. See Ghapani and Babadi [13] for more details. [

4 Numerical study

4.1 The Monte Carlo simulation

In this section we employ the Monte Carlo simulation to compare the
performance of the four estimators in the previous section with respect
to their estimated mean square errors under several degrees of multi-
collinearity. Also, the two different values of error variances are con-
sidered, too. Following McDonald and Galarneau [13], the explanatory
variables are generated by

zij =V (1 = p)wij + pwipt1, i=1,2,...,n, j=1,2,...,p,

11
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where w;; are independent standard normal variables and p is the cor-
relation between any two explanatory variables. We consider three dif-
ferent sets of correlation corresponding to p = 0.20,0.50, 0.80.

In this experiment, p = 4 is the number of explanatory variables and
n = 50, n = 100 and n = 500. We generated the 1-th set of simulated
data as

Yy =ZB+¢g
X =Z+A,01=1,2,---,2000,

where y; = (yu, Y21, > yn)” and Z = (Z(l),Z(Q),Z(3),Z(4)), 7)) =
(Z1j, Zaj -+ Zn)T, § = 1,2,3,4 and €, ~ N(0,0%I,) is rewritten in
accordance with ;. Furthermore, we assume that o = 0.25, 0% =
2, A = diag(0.05,0.05,0.05,0.05) and A = diag(0.15,0.15,0.15,0.15).
For each set of explanatory variables, we consider the coefficient vector
equal to (4,3,2,1). Then, the experiment is replicated 2000 times by
generating new error terms. Once a set of explanatory and dependent
variables is constructed, all variables are standardized and the estimates
are determined using the standardized variables. After generating the
sample, the estimated MSE (EMSE) for any estimator is calculated as
follows:

2000
- 1

EMSE() = 5555~ (B — 8) (B — )
j=1

where B(j) is the estimation of 3 in the jth replication of the simulation.
We use the R software version 3.4.0, R.app 1.70 and all source codes are
available from the first author upon request. Note that the best value
of ridge parameter is calculated from R package glmnet. The results are
summarized in Table 1. This table displays the EMSE’s of ME, MER,
RME and RMER estimators for the various values of p, A, ¢ and n.
Also, in this table we display the value of al’M~'a to compare RME
and RMER estimators with respect to Theorem 3.7.

ME and MER estimated values are calculated using one replicate of
measurement error, i.e. m = 1, while RME and RMER are estimated
through using m = 10 replications. By comparing the simulation results
for ME, MER, RME and RMER, we observe that by increasing the
level of collinearity component, p, A and o2 , the EMSE values of the
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different estimators will increase in general. Moreover, we can see that,
for all cases, the RMER estimator contains smaller EMSE values than
the others. The same results is deduced by comparing RME estimator
with MER and ME estimators. Also, the MER estimator has small
EMSE values than the ME estimator. It is noteworthy that by increasing
p, decreasing EMSE’s for RMER estimator is more remarkable. For
example, the EMSE for ME estimator is 46.485 where it is 6.7514 for
RMER estimator when o2 = 2, A = diag(0.15,0.15,0.15,0.15), p = 0.80
and n = 50. Furthermore, for all cases by increasing the value of n,
the EMSE for all estimators will decrease for all levels of A, ¢ and p.
In addition, for all cases, the value of a’M~'a < 1, which represents
that RMER estimator can perform better than RME estimator as we
theoretically pointed out in Section 3. It is worth mentioning, in all
cases the RMER estimator has smaller EMSE than the other mentioned
methods. However, when the collinearity does not exist or it’s level is
low, this difference is not significant. Therefore, the use of new estimator
is not justifiable in such cases. Also, by considering 5 = (4,3,2,1) and
observing Tables 2, 3 and 4, we figure out that the absolute of difference
between true values of f;’s and their estimated values (|bias(5)|) in
RMER estimator is less than that in all other methods. For example,
in Table 4, for 02 = 2, p = 0.8 and A = diag(0.05,0.05,0.05,0.05) we
estimate |bias(8)| = (0.2728,0.1119,0.0734,0.0612) which means j is
closer to 8 in contrast to ME, MER and RME estimates.

13
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Table 1: EMSE values of the ME, MER, RME and RMER, estimators

5 A =diag(0.05,0.05,0.05,0.05) A = diag(0.15,0.15,0.15,0.015)

n=50 n=100 n=>500 n=50 n=100 n =500

p=0.2
ME 0.12653 0.09052  0.06757 1.03957  0.74285  0.56965
MER 0.12023 0.08812  0.06745 1.01602 0.73467  0.56828
RME 0.25 0.11665 0.08635  0.06652 0.90397  0.66869  0.55248
RMER 0.11492 0.08563  0.06639 0.89717 0.66611  0.55204
a’M~1la 0.6422  0.3754 0.3085 0.5933 0.3143 0.4752
ME 0.30620 0.17689  0.08352 1.561912  0.86315  0.59543
MER 0.30045 0.17610  0.08312 1.49926  0.86027  0.59498
RME 2 0.29301 0.17115  0.08225 1.13054 0.78431  0.57478
RMER 0.29077 0.17035  0.08212 1.12225 0.78159  0.57434
a’M~1la 0.5354  0.7214 0.7156 0.7303 0.5208 0.6136

p=20.5
ME 0.10356  0.06880  0.04692 0.84462  0.55506  0.39812
MER 0.09902 0.06712  0.04679 0.82571  0.54904  0.39716
RME 0.25 0.09322 0.06679  0.04637 0.67581 0.48614  0.38415
RMER 0.09132 0.06601  0.04624 0.66783  0.48326  0.38369
a’M~la 0.4235  0.4574 0.2269 0.7358 0.3454 0.6702
ME 0.31714 0.16556  0.06592 1.52747 0.70492  0.42363
MER 031248 0.16469  0.06556 1.50930 0.70161  0.42316
RME 2 0.30045 0.15750  0.06415 0.93965 0.60006  0.40721
RMER 0.29787 0.15661 0.06402 0.93023 0.59704  0.40674
a’M~la 0.5489  0.7312 0.5232 0.6429 0.6274 0.7201

p=0.8
ME 1.39063 1.09724  0.98734 8.67687  5.79753  3.71574
MER 1.17154 0.93690  0.79834 8.19834  4.74788  3.01004
RME 0.25 0.43715 0.38697  0.23295 6.99749  2.92181  2.29550
RMER 0.25253 0.17880  0.13226 5.57399  2.08505 1.47081
aT’M~'a 0.7907  0.5464 0.6269 0.5214 0.7313 0.7122
ME 1.94745 1.42028  1.17373 46.4850 9.42483  5.81949
MER 1.63035 1.31499  0.97284 17.6864 6.87706  4.61469
RME 2 0.92864 0.69677  0.47655 6.89490 3.93014  2.73132
RMER 0.72020 0.39167  0.17572 6.75143 2.88960  1.64052

aT’M~—1a 0.7440  0.5488 0.7366 0.7636 0.7406 0.7313
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Table 2: Absolute values of bias(Bi) for the ME, MER, RME and
RMER when n=50

o2 A = diag(0.05,0.05, 0.05,0.05) A = diag(0.15,0.15,0.15,0.015)
B1 B2 B3 Ba B1 B2 B3 Ba
p=0.2
ME 0.2118 0.1486 0.0902 0.0382 0.6455 0.4717 0.2614 0.0936
MER 0.25 0.2077 0.1452 0.0898 0.0380 0.6390 0.4670 0.2598 0.0884
RME : 0.1996 0.1435 0.0886 0.0352 0.5793 0.4296 0.1620 0.0882
RMER 0.1991 0.1428 0.0882 0.0350 0.5359 0.4288 0.1615 0.0741
ME 0.2142 0.1572 0.0944 0.0575 1.3082 0.5294 0.2936 0.1074
MER 9 0.2089 0.1551 0.0931 0.0570 1.3059 0.5284 0.2907 0.1064
RME 0.2033 0.1543 0.0925 0.0561 0.6439 0.4540 0.2871 0.1006
RMER 0.2023 0.1537 0.0918 0.0552 0.6409 0.4519 0.2861 0.1001
p=0.5
ME 0.1982 0.1145 0.0406 0.0364 0.6255 0.3462 0.1072 0.0769
MER 0.25 0.1963 0.1135 0.0403 0.0360 0.6224 0.3445 0.1070 0.0759
RME : 0.1832 0.1125 0.0398 0.0327 0.5872 0.3436 0.1008 0.0654
RMER 0.1803 0.1122 0.0390 0.0324 0.5835 0.3203 0.1005 0.0643
ME 0.2024 0.1269 0.0782 0.0480 0.6926 0.4549 0.1123 0.0891
MER 9 0.2009 0.1250 0.0752 0.0477 0.6902 0.4035 0.1120 0.0884
RME 0.1913 0.1241 0.0664 0.0464 0.6780 0.3834 0.1060 0.0873
RMER 0.1882 0.1232 0.0599 0.0458 0.6740 0.3511 0.1054 0.0860
p=0.8
ME 0.9071 0.5271 0.2921 0.1767 1.8405 0.9375 0.4354 0.2712
MER 0.25 0.8506 0.5015 0.2712 0.1583 1.6612 0.8703 0.3855 0.2383
RME : 0.7238 0.4147 0.1985 0.1293 1.2381 0.7242 0.3543 0.1992
RMER 0.2717 0.1202 0.0848 0.0729 1.0198 0.4981 0.2966 0.1372
ME 0.9734 0.5840 0.3323 0.2001 2.6653 2.2506 1.8733 1.6206
MER 5 0.8962 0.5341 0.2963 0.1710 1.6421 1.0429 0.7321 0.8046
RME 0.7760 0.4419 0.2114 0.1501 1.4375 0.5939 0.5840 0.3990

RMER 0.3075 0.1238 0.1009 0.0901 1.2682 0.4649 0.3178 0.1872
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Table 3: Absolute values of bias(Bi) for the ME, MER, RME and
RMER when n=100

o2 A = diag(0.05,0.05, 0.05,0.05) A = diag(0.15,0.15,0.15,0.015)
B1 B2 B3 Ba B1 B2 B3 Ba
p=0.2
ME 0.2012 0.1459 0.0876 0.0304 0.5915 0.4330 0.1048 0.0722
MER 0.25 0.2002 0.1439 0.0847 0.0293 0.5878 0.4303 0.1047 0.0715
RME : 0.1909 0.1361 0.0567 0.0281 0.5567 0.3638 0.1015 0.0638
RMER 0.1891 0.1359 0.0483 0.0231 0.4882 0.3620 0.1011 0.0629
ME 0.2086 0.1512 0.0935 0.0367 0.6071 0.4353 0.2735 0.1024
MER 9 0.2076 0.1505 0.0931 0.0366 0.6032 0.4325 0.2730 0.1022
RME 0.1911 0.1465 0.0892 0.0334 0.5968 0.4270 0.2693 0.0965
RMER 0.1906 0.1457 0.0888 0.0333 0.5956 0.4261 0.2676 0.0959
p=0.5
ME 0.1806 0.1141 0.0355 0.0353 0.5425 0.3291 0.0959 0.0640
MER 0.25 0.1796 0.1134 0.0353 0.0351 0.5415 0.3285 0.0955 0.0637
RME : 0.1725 0.1089 0.0331 0.0326 0.5401 0.3212 0.0936 0.0584
RMER 0.1712 0.1081 0.0323 0.0317 0.5384 0.2457 0.0887 0.0577
ME 0.1845 0.1218 0.0679 0.0452 0.5548 0.3713 0.1034 0.0763
MER 9 0.1837 0.1214 0.0614 0.0441 0.5536 0.3505 0.1033 0.0759
RME 0.1789 0.1204 0.0591 0.0421 0.5476 0.3431 0.0942 0.0751
RMER 0.1710 0.1196 0.0567 0.0416 0.5459 0.2822 0.0933 0.0746
p=0.8
ME 0.8493 0.5002 0.2689 0.1530 1.6735 0.8286 0.3847 0.2312
MER 0.25 0.8217 0.4891 0.2510 0.1471 1.5684 0.7384 0.3077 0.2177
RME : 0.6957 0.4042 0.1886 0.1190 1.4555 0.6477 0.2527 0.2032
RMER 0.2333 0.1118 0.0764 0.0599 0.8597 0.3614 0.1611 0.1168
ME 0.9482 0.5727 0.3710 0.2413 1.9298 0.9463 0.4963 0.3592
MER 5 0.9101 0.5624 0.3266 0.2011 1.6856 0.8247 0.4054 0.3057
RME 0.8053 0.4301 0.2307 0.1322 1.5373 0.6956 0.3249 0.2551

RMER 0.2901 0.1217 0.0886 0.0788 1.0482 0.4428 0.2133 0.1498
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Table 4: Absolute values of bias(Bi) for the ME, MER, RME and
RMER when n=500

o2 A = diag(0.05,0.05, 0.05,0.05) A = diag(0.15,0.15,0.15,0.015)
B1 B2 B3 Ba B1 B2 B3 Ba
p=0.2
ME 0.1912 0.1366 0.0859 0.0296 0.5582 0.4023 0.0985 0.0707
MER 0.25 0.1910 0.1364 0.0817  0.0283 0.5576 0.4019 0.0982 0.0706
RME : 0.1906 0.1171 0.0513 0.0276 0.5448 0.3033 0.0985 0.0609
RMER 0.1799 0.0854 0.0462 0.0218 0.4560 0.2032 0.0884 0.0579
ME 0.1918 0.1379 0.0873 0.0355 0.5607 0.4108 0.2503 0.0907
MER 9 0.1913 0.1376 0.0872 0.0354 0.5605 0.4106 0.2502 0.0907
RME 0.1901 0.1364 0.0868 0.0322 0.5535 0.4056 0.2491 0.0852
RMER 0.1675 0.1363 0.0867  0.0322 0.5523 0.3055 0.2393 0.0852
p=0.5
ME 0.1718 0.1054 0.0348 0.0330 0.5124 0.3024 0.0951 0.0519
MER 0.25 0.1716 0.1053 0.0337  0.0329 0.5121 0.3022 0.0950 0.0512
RME : 0.1713 0.1053 0.0323 0.0316 0.5108 0.3009 0.0857 0.0498
RMER 0.1631 0.1051 0.0278 0.0315 0.5031 0.2045 0.0756 0.0472
ME 0.1724 0.1128 0.0568 0.0412 0.5136 0.3045 0.0982 0.0684
MER 9 0.1721 0.1127  0.0567  0.0408 0.5134 0.3044 0.0971 0.0672
RME 0.1714 0.1118 0.0528 0.0398 0.5129 0.3040 0.0932 0.0659
RMER 0.1675 0.1100 0.0478 0.0381 0.5105 0.2067 0.0831 0.0650
p=0.8
ME 0.7935 0.4599 0.2348 0.1465 1.4815 0.6738 0.3167 0.2482
MER 0.25 0.7530 0.4196 0.1947  0.1259 1.4707 0.6435 0.2858 0.2176
RME : 0.6018 0.3703 0.1545 0.0971 0.9880 0.4041 0.2255 0.1748
RMER 0.2711 0.1062 0.0714  0.0493 0.9167 0.2936 0.1553 0.1037
ME 0.8431 0.5167  0.2941 0.1766 1.6801 0.8310 0.3911 0.2615
MER 9 0.7924 0.4659 0.2523 0.1440 1.5697 0.7589 0.3357 0.2366
RME 0.6765 0.4088 0.1917  0.1293 1.2229 0.4922 0.2803 0.2072
RMER 0.2728 0.1119 0.0734 0.0612 0.9316 0.3487 0.1701 0.1361

4.2 The Real data

In order to apply our theoretical results in a real data set, we apply the
data set were provided by Dr. Paul Nicholson of the Department of Ar-
chaeology and Prehistory, University of Sheffield, UK. The data arises
from an extensive archaeological survey of pottery production and dis-
tribution in the ancient Egyptian city of Amarna. The data consist of
measurements of chemical contents (mineral elements) made on many
samples of pottery. In this regard using two different techniques which
are known as neutron activation analysis (NAA) and inductively cou-
pled plasma (ICP) spectrometry (Smith et al., [30]). The pots in this
example have been collected from different locations around the city and
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each pottery has it’s own fabric code which can be recognised. Archaeol-
ogists believe that observations from pottery with the same fabric code
and from the same provenance can essentially be regarded as replicates.
Consequently, the data set has been divided into twenty-eight groups
and in most groups there is some replication of observations. Weeding
out a few fabric code with maximum two replications, we consider three
initial replications of eighteen remained groups.

Among all mineral elements, we have concentrated on the relation
between the Na values measured by NAA as the dependent variable
versus three mineral elements Al, K, Ti measured by ICP technique
as the explanatory variables. The data are not given here but they are
available from the first author on request. Clearly, because of the nature
of the data and the accuracy of the measuring instruments or human
mistake, all explanatory variables are prone to measurment error as well
as predictors. The correlations between all explanatory variables are
significant, especially between two variables Al and Ti; this correlation
value is equal to 0.85. Therefore we fitted a replicated measurement
error model to this data set. The Ridge parameter (k) is calculated
with R package glmnet and it’s equal to 0.00055. First we obtain the
estimates B, 52 and Z and then we calculate AVar and AMSEM for
all estimators. Estimates of coefficients and their asymptotic variances
(list in parentheses) using these four estimators are summarized in Table

5. From this table, we find that the B;s asymptotic variances of the
RMER estimator are all smaller than those of other estimators. The
same results are held when we compare RME estimator with ME and
MER estimators. Also, with respect to Table 5, the superiority of the
RMER method is also confirmed by the values of Akaike Information
Criterion (AIC) where it is equal to —2(log — likelihood) + 2k + (%ﬁlf:ll))
(for more details, see Akaike [1] and Burnham and Anderson [1]), indeed,
this values are smaller than other estimators. Finaly, according to the
results of Theorem 3.7, to compare RMER estimator by RME, we find
the estimation of a’ M~'a = 2.03E — 6. In another words, Brypg iS
superior to By with respect to AMSEM sense. Also, this value is
equal to 1.88E — 5 and 2.85E — 6 to compare RMER estimator by MER

and ME methods, respectively.
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Table 5: Estimation of regression coefficient and AIC values for Egyp-
tian Pottery data

Estimation ME MER RME RMER
B -0.7711(0.190) -0.7676(0.198)  0.1115(0.037)  0.1113(0.023)

B> 0.9735(0.531)  0.9724(0.566)  0.6997(0.562)  0.6995(0.289)

Bs  6.3535(9.979)  6.3262(10.37)  -0.6074(2.809)  -0.6058(1.554)

AIC 39.159 38.733 37.960 37.900

5 Conclusion

In this work we use the ridge regression method to combat multicollinear-
ity in the estimation of model parameters in replicated measurement
error models. Some large sample properties of our estimator are derived
and compared with some other estimators using a simulation study and
a real data analysis. Some developments of this article may be done else-
where. We hope to do more works with correlated error assumption in
the future. Also we are trying to use the Lasso and Elastic net methods
(description of these regression models can been found in, Tibshirani
[31] and Zou and Hastie [30]) to overcome the sparsity in replicated
measurement error models.
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