Journal of Mathematical Extension Vol. 15, No. 4, (2021) (4)1-8 URL: https://doi.org/10.30495/JME.2021.1578 ISSN: 1735-8299 Original Research Paper

Specific Complete Measure in the Structure of a Utility Function

S. Mohammadzadeh^{*}

University of Bojnord

Abstract. In this article, an outer measure is constructed on a pseudoordered set (X, \succeq) and then it will be shown that it is in fact a measure defined on the whole power set of X. Applying this, a measurable utility function θ is defined which represents the relation \succeq on X. Also, we discuss the continuity and upper semi-continuity of θ in certain points of X. Finally, the results are used to improve some of the theorems in economics.

AMS Subject Classification: Primary 28C15, Secondary 28A12 **Keywords and Phrases:** measure, utility function, continuous, upper semi-continuous

1 Introduction

Suppose that (X, \succeq) is a pseudo-ordered space; that is, \succeq is a binary relation on X with two following properties:

(i) Completeness: For all $x, y \in X$, either $x \succeq y$ or $y \succeq x$;

(*ii*) Transitivity: For all $x, y, z \in X$, if $x \succeq y$ and $y \succeq z$, then $x \succeq z$. The relation $x \succ y$ means $x \succeq y$, but not $y \succeq x$. Also $x \sim y$ means $x \succeq y$ and $y \succeq x$. For any $x_0 \in X$, consider the subsets $W(x_0) = \{x \in X; x_0 \succ x\}, B(x_0) = \{x \in X; x \succ x_0\}$ and $I(x_0) = \{x \in X; x \sim x_0\}$

Received: March 2020; Accepted: December 2020

of X. The topology on X generated by the collections $\{W(y); y \in X\}$ and $\{B(y); y \in X\}$ is called the order topology. For each $x, y \in X$ the open interval (x, y) is defined by $(x, y) = \{z \in X; x \prec z \prec y\}$. The other intervals [x, y], (x, y] and [x, y) are defined similarly. In the following, we will assume that X has a minimum element and it is unbounded from above.

A real-valued function $u: X \longrightarrow \mathbb{R}$ is called a utility function representing the relation \succeq , if it is an strictly increasing function with respect to the relation \succeq ; that is, for all $x, y \in X$,

$$x \sim y \Rightarrow u(x) = u(y) \text{ and } x \succ y \Rightarrow u(x) > u(y).$$

A function $u : X \longrightarrow \mathbb{R}$ is said to be upper semi-continuous if $\{x \in X; u(x) < r\}$ is open for each $r \in \mathbb{R}$. The relation \succeq on X is called order separable if there is a countable set $D \subseteq X$ such that for all $x, y \in X$,

$$x \succ y \Rightarrow (\exists d_1, d_2 \in D; x \succeq d_1 \succ d_2 \succeq y).$$

For every $D \subseteq X$, the topology on X generated by the family $\{W(y); y \in D\}$ is called *D*-lower order topology. Also the topology generated by $\{W(y); y \in D\}$ and $\{B(y); y \in D\}$ is called *D*-order topology.

In the study of utility theory in economics, one of the topics discussed is the existence of a continuous utility function on a pseudo-ordered space (X, \succeq) ; although, in many cases the weaker condition upper semicontinuity for the utility function works; See [4], [2] and [7]. recently, Voorneveld and Weibull constructed a utility function u based on specific outer measure μ^* ; they proved the upper semi-continuity of u on D-lower order topology of X, [8]. Also, in [5], the combination of measure and utility theory have been used to represent an order relation.

In this paper, to improve the results of [8], an outer measure ν is constructed and it is shown that ν is in fact a complete measure on all power set of X. In the last section, as an application of this measure function in economics, we define a utility function θ based on ν and discuss about the continuity and upper semi-continuity of this function on specific subsets of X. Although, the structure of the function ν in this paper is very similar to the function μ^* in [8], it can help to use the properties of complete measure to achieve new results about the utility function θ . This is while, the outer measure μ^* is not accurate for measurement many subsets of X such as B(x) and (x, y).

2 Introducing a Complete Measure

Suppose \succeq is an order separable relation on X. The set D in the definition of order separability is countable, so we can give each $d \in D$ a positive weight, $\omega(d)$, such that weights have a finite sum. Put $\varepsilon_{t(d)} = \omega(d)$ in which $t : D \longrightarrow \mathbb{N}$ is an injection. Without loss of generality we assume that $\sum_{d \in D} \omega(d) = \sum_{d \in D} \varepsilon_{t(d)} = \sum_{i=1}^{\infty} \varepsilon_i = 1$; see [8].

Suppose that ν be a real-valued function on power set of X, 2^X , such that $\nu(\emptyset) = 0$, $\nu(X) = 1$ and for every nonempty proper subset A of X,

$$\nu(A) := \inf\{\sum_{i} \sum_{d' \in D \cap A; d' \preceq d_i} \omega(d'); W_i = W(d_i) \in \mathcal{F} \text{ and } A \subseteq \bigcup_{i \in \mathbb{N}} W_i\}.$$

Without loss of generality we consider the set D consists of the minimum of X which will be denoted by \tilde{d} . In this case we assume that $\omega(\tilde{d}) = 0$ and hence $\nu(W(\tilde{d})) = 0$.

Proposition 2.1. The function ν defines an outer measure on X.

Proof. Suppose that $A \subseteq B \subseteq X$. Then $A \subseteq \cup W_i$ for each sequence $\{W_i\}$ in F with $B \subseteq \cup W_i$. Thus

$$\nu(A) \leq \sum_{i} \sum_{d' \in D \cap A; d' \precsim d_i} \omega(d') \leq \sum_{i} \sum_{d' \in D \cap B; d' \precsim d_i} \omega(d')$$

for every such sequence $\{W_i\}$ and so $\nu(A) \leq \nu(B)$. Now let $\{A_t\}$ be a sequence of subsets of X and for each $t \in \mathbb{N}$ let

$$\nu(A_t) = \inf\{\sum_i \sum_{d' \in D \cap A_t; d' \preceq d_i^t} \omega(d'); W_i^t = W(d_i^t) \in \mathcal{F} and A_t \subseteq \bigcup_{i \in \mathbb{N}} W_i^t\}.$$

Then for every $\varepsilon > 0$ there exist a sequence $\{W_i^t\}_{i \in \mathbb{N}}$ such that

$$\sum_{i} \sum_{d' \in D \cap A_t; d' \precsim d_i^t} \omega(d') \le \nu(A_t) + \frac{\varepsilon}{2^t}.$$

Therefore

$$\begin{split} \sum_{i} \sum_{d' \in D \cap (\cup_{t} A_{t}); d' \precsim d_{i}^{t}} \omega(d') &\leq \sum_{i} \sum_{t} \sum_{d' \in D \cap A_{t}; d' \precsim d_{i}^{t}} \omega(d') \\ &\leq \sum_{t} \nu(A_{t}) + \varepsilon. \end{split}$$

Since $\bigcup_{t \in \mathbb{N}} A_t \subseteq \bigcup_{i,t \in \mathbb{N}} W_i^t$,

$$\nu(\bigcup_{t\in\mathbb{N}}A_t)\leq \sum_t\nu(A_t)+\varepsilon\quad\forall\varepsilon>0$$

and this completes the proof. $\hfill \Box$

Recall that a set $A \subseteq X$ is called ν - measurable if for each $E \subseteq X$,

$$\nu(E) = \nu(E \cap A) + \nu(E \cap A^c).$$

By the Caratheodory's theorem, [1, Theorem 1.11], the collection \mathcal{M} of ν -measurable sets is a σ -algebra and the restriction of ν to \mathcal{M} is a complete measure. The elements of \mathcal{M} are called measurable sets.

Proposition 2.2. Every subset of X is a ν -measurable set.

Proof. Suppose that E is an arbitrary subset of X. Then for each $A \subseteq X$ and for $\varepsilon > 0$, there exist a sequence $\{W_i\} \subseteq F$ such that

$$\nu(A) + \varepsilon \geq \sum_{i} \sum_{d' \in D \cap A; d' \precsim d_i} \omega(d')$$

for which $A \subseteq \bigcup W_i$ and $W_i = W(d_i)$ for all $i \in \mathbb{N}$. Put $A_1 = A \cap E$ and $A_2 = A \cap E^c$. Then $A_1, A_2 \subseteq \bigcup W_i$ and so

$$\nu(A) + \varepsilon \geq \sum_{i} \sum_{d' \in D \cap A \cap E; d' \preceq d_{i}} \omega(d') + \sum_{i} \sum_{d' \in D \cap A \cap E^{c}; d' \preceq d_{i}} \omega(d')$$

$$= \sum_{i} \sum_{d' \in D \cap A_{1}; d' \preceq d_{i}} \omega(d') + \sum_{i} \sum_{d' \in D \cap A_{2}; d' \preceq d_{i}} \omega(d')$$

$$\geq \nu(A_{1}) + \nu(A_{2}).$$

Since this hold for every $\varepsilon > 0$, thus

$$\nu(A) \ge \nu(A \cap E) + \nu(A \cap E^c) \quad \forall A \subseteq X$$

Therefore E is ν -measurable. \Box

Corollary 2.3. ν is a complete measure on 2^X .

3 Applications in Economics

In terms of economics, the set (X, \succeq) with the conditions mentioned in previous sections can be considered as a consumption set. In any model of consumer choice, a consumption set is the set of all alternatives that the consumer can conceive. In this case, X is considered as a closed convex subset of \mathbb{R}^n_+ which contains 0. The pseudo-ordering relation \succeq is called the preference relation and the sets $W(x_0)$, $B(x_0)$ and $I(x_0)$ are called the sets of elements 'worse than x_0 ', 'preferred to x_0 ' and 'indifference to x_0 ', respectively. For more information about these economic terms one can refer to [3].

In this section we suppose that \succeq is an order separable relation on X. Define the function θ from X into \mathbb{R} in the form

$$\theta(x) := \nu(W(x)) \quad \forall x \in X$$

and put $I(D) = \{x \in X; x \sim d \text{ for some } d \in D\}$. In the following, we examine some of the properties of θ as a utility function.

Theorem 3.1. The mapping θ is a measurable utility function represents \succeq on X and is continuous on $X \setminus I(D)$ in the D-order topology of X.

Proof. Note that for each $d \in D$, $\theta(d) = \sum_{d' \in D \cap W(d)} \omega(d')$. Hence for each $x, y \in X$ if $x \sim y$, then W(x) = W(y) and so $\theta(x) = \theta(y)$; if $x \prec y$, there are $d_1, d_2 \in D$ with $x \preceq d_1 \prec d_2 \preceq y$ and so

$$\theta(x) = \nu(W(x)) \le \nu(W(d_1)) < \nu(W(d_2)) \le \nu(W(y)) = \theta(y);$$

that is, θ represents \succeq on X. Now for each $\varepsilon > 0$ there is $k \in \mathbb{N}$ such that

$$\forall m, n \in \mathbb{N} \qquad m > n \ge k \Rightarrow \sum_{i=n+1}^{m} \varepsilon_i < \varepsilon$$

Suppose $x \in X \setminus I(D)$. By order separability of \succeq , the sets $W(x) \cap D$ and $B(x) \cap D$ are infinite and for each $d_1 \in W(x) \cap D$ and $d_2 \in B(x) \cap D$ there exist $d_3, d_4 \in D$ such that $d_1 \prec d_3 \prec x \prec d_4 \prec d_2$. Since there are only finitely many $d' \in D$ with t(d') < k we can choose $d_1 \in W(x) \cap D$ and $d_2 \in B(x) \cap D$ such that $t(d') \ge k$ for each $d' \in D$ with $d_1 \preceq d' \prec d_2$. Put $V = B(d_1) \cap W(d_2) = (d_1, d_2)$. Trivially V is an open set in D-order topology contains x. Let $y \in V$; then

$$\begin{aligned} |\theta(y) - \theta(x)| &< \theta(d_2) - \theta(d_1) = \nu(W(d_2)) - \nu(W(d_1)) \\ &= \sum_{d' \in D; d_1 \precsim d' \prec d_2} \omega(d') = \sum_{d' \in D; d_1 \precsim d' \prec d_2} \varepsilon_{t(d')} < \varepsilon. \end{aligned}$$

1	-	-	-	-
	_			

By the above theorem, θ is upper semi-continuous on $X \setminus I(D)$ in the *D*-order topology. In the next theorem, we discuss the upper semi-continuity of θ on the weaker topology, *D*-lower order topology.

Theorem 3.2. The function θ is upper semi-continuous in the *D*-lower order topology in

(i) any point x of I(D) for which there exists $d' \in B(x) \cap D$ with $(x, d') = \emptyset$;

(*ii*) any point of $X \setminus I(D)$.

Proof. Suppose that $r \in \mathbb{R}$ and $\{x \in X; \theta(x) < r\}$ is a non trivial subset of X. If $x \in I(D)$ and there is a $d' \in B(x) \cap D$ with $(x, d') = \emptyset$, then

$$\{y \in X; y \precsim x\} = \{y \in X; y \prec d'\} = W(d')$$

is a neighborhood of x in D-lower order topology and for each $y \in W(d')$, $\theta(y) \leq \theta(x) < r$ and this proves (i).

Now let $x \in X \setminus I(D)$. Then there is $k \in \mathbb{N}$ such that for all $n \geq k$, $\sum_{i=n+1}^{\infty} \varepsilon_i < r - \theta(x)$. similar to the proof of the last theorem, there exist $d_1 \in W(x) \cap D$ and $d_2 \in B(x) \cap D$ such that $t(d') \geq k$ for all $d' \in D$ with $d_1 \preceq d' \prec d_2$. For each $y \in W(d_2)$,

$$\begin{split} \theta(y) < \theta(d_2) &= \sum_{\substack{d' \in D \cap W(d_2)}} \omega(d') \\ &= \sum_{\substack{d' \in D; d' \prec d_1}} \omega(d') + \sum_{\substack{d' \in D; d_1 \precsim d' \prec d_2}} \omega(d') \\ &< \theta(d_1) + (r - \theta(x)) < \theta(x) + (r - \theta(x)) = r; \end{split}$$

that is, $W(d_2)$ is a neighborhood of x which is a subset of $\{x \in X; \theta(x) < r\}$; this completes the proof of (*ii*). \Box

The use of each of theorems 3.1 and 3.2, depends on the conditions of (X, \succeq) . For example, if \succeq is upper semi-continuous, it is order separable [6].

We hope that applying θ as a measure function will lead to more desirable results about the utility function. The properties such as monotonicity, subadditivity, continuity from below, etc. can be applied to the function ν and examined what new results would be obtained for the utility function θ . For example, If $\{x_n\}$ is an increasing sequence in X (i.e., $x_1 \leq x_2 \leq x_3 \leq ...$), then $\{W(x_n)\}$ is an increasing sequence of measurable sets in X and by the property "continuity from below" of measure, $\lim_n \theta(x_n) = \lim_n \nu(W(x_n)) = \nu(\bigcup_n W(x_n))$. In this case, if $\{x_n\}$ is in $X \setminus I(D)$ and converges to some element x_0 of this space, in D-order topology, then by theorem 3.1, $\theta(x_0) = \lim_n \theta(x_n) = \nu(\bigcup_n W(x_n))$.

Also, by the monotonicity property of measure, since $\nu(X) = 1$, for every $x \in X$,

$$\theta(x) = \nu(W(x)) = \nu(X) - \nu(B(x)) = 1 - \nu(B(x)),$$

where, $\bar{B}(x) = B(x) \cup I(x)$ is called the set of elements "at least as good as x". In other words, the utility function θ can be obtained by measuring the set $\bar{B}(x)$, too.

References

- [1] G. B. Folland, *Real Analysis, Modern Techniques And Their Applications: Second Edition*, John Wiley and Sons, Inc. Canada, (1999).
- [2] J.-Y. Jaffray, Existence of a continuous utility function: An elementary proof, *Econometrica* 43 (5/6) (1975) 981-983.
- [3] G. A. Jehle and P. J. Reny, Advanced Microeconomic Theory: Third Edition, Prentice Hall, England, (2011).
- [4] A. Mas-Colell, M. D. Whinston and J. R. Green, *Microeconomic Theory*, Oxford University Press, Oxford, (1995).
- [5] T. Mitra and M. Kemal Ozbek, On representation of monotone preference orders in a sequence space, *Soc. Choice Welf* 41 (2013) 473-487.

S. MOHAMMADZADEH

- [6] T. Rader, The existence of a utility function to represent preferences, *Review of Economic Studies* 30 (1963) 229-232.
- [7] D. Sondermann, Utility representations for partial orders, *Journal* of Economic Theory 23 (1980) 183-188.
- [8] M.Voorneveld and J. W. Weibull, An elementary proof that wellbehaved utility functions exist, *Theoretical Economics Letters* 6 (2016) 450-457.

Somayeh Mohammadzadeh

Assistant Professor of Mathematics Department of Mathematics Faculty of Science University of Bojnord, P. O. Box 1339 Bojnord , Iran E-mail: smohamad@ub.ac.ir