Specific Complete Measure in the Structure of a Utility Function

S. Mohammadzadeh*
University of Bojnord

Abstract

In this article, an outer measure is constructed on a pseudoordered set (X, \succsim) and then it will be shown that it is in fact a measure defined on the whole power set of X. Applying this, a measurable utility function θ is defined which represents the relation \succsim on X. Also, we discuss the continuity and upper semi-continuity of θ in certain points of X. Finally, the results are used to improve some of the theorems in economics.

AMS Subject Classification: Primary 28C15, Secondary 28A12
Keywords and Phrases: measure, utility function, continuous, upper semi-continuous

1 Introduction

Suppose that (X, \succsim) is a pseudo-ordered space; that is, \succsim is a binary relation on X with two following properties:
(i) Completeness: For all $x, y \in X$, either $x \succsim y$ or $y \succsim x$;
(ii) Transitivity: For all $x, y, z \in X$, if $x \succsim y$ and $y \succsim z$, then $x \succsim z$. The relation $x \succ y$ means $x \succsim y$, but not $y \succsim x$. Also $x \sim y$ means $x \succsim y$ and $y \succsim x$. For any $x_{0} \in X$, consider the subsets $W\left(x_{0}\right)=$ $\left\{x \in X ; x_{0} \succ x\right\}, B\left(x_{0}\right)=\left\{x \in X ; x \succ x_{0}\right\}$ and $I\left(x_{0}\right)=\left\{x \in X ; x \sim x_{0}\right\}$

[^0]of X. The topology on X generated by the collections $\{W(y) ; y \in X\}$ and $\{B(y) ; y \in X\}$ is called the order topology. For each $x, y \in X$ the open interval (x, y) is defined by $(x, y)=\{z \in X ; x \prec z \prec y\}$. The other intervals $[x, y],(x, y]$ and $[x, y)$ are defined similarly. In the following, we will assume that X has a minimum element and it is unbounded from above.
A real-valued function $u: X \longrightarrow \mathbb{R}$ is called a utility function representing the relation \succsim, if it is an strictly increasing function with respect to the relation \succsim; that is, for all $x, y \in X$,
$$
x \sim y \Rightarrow u(x)=u(y) \text { and } x \succ y \Rightarrow u(x)>u(y) .
$$

A function $u: X \longrightarrow \mathbb{R}$ is said to be upper semi-continuous if $\{x \in$ $X ; u(x)<r\}$ is open for each $r \in \mathbb{R}$. The relation \succsim on X is called order separable if there is a countable set $D \subseteq X$ such that for all $x, y \in X$,

$$
x \succ y \Rightarrow\left(\exists d_{1}, d_{2} \in D ; x \succsim d_{1} \succ d_{2} \succsim y\right) .
$$

For every $D \subseteq X$, the topology on X generated by the family $\{W(y) ; y \in$ $D\}$ is called D-lower order topology. Also the topology generated by $\{W(y) ; y \in D\}$ and $\{B(y) ; y \in D\}$ is called D-order topology.

In the study of utility theory in economics, one of the topics discussed is the existence of a continuous utility function on a pseudo-ordered space (X, \succsim); although, in many cases the weaker condition upper semicontinuity for the utility function works; See [4], [2] and [7]. recently, Voorneveld and Weibull constructed a utility function u based on specific outer measure μ^{*}; they proved the upper semi-continuity of u on D-lower order topology of $X,[8]$. Also, in [5], the combination of measure and utility theory have been used to represent an order relation.

In this paper, to improve the results of [8], an outer measure ν is constructed and it is shown that ν is in fact a complete measure on all power set of X. In the last section, as an application of this measure function in economics, we define a utility function θ based on ν and discuss about the continuity and upper semi-continuity of this function on specific subsets of X. Although, the structure of the function ν in this paper is very similar to the function μ^{*} in [8], it can help to use the properties of complete measure to achieve new results about the utility function θ. This is while, the outer measure μ^{*} is not accurate for measurement many subsets of X such as $B(x)$ and (x, y).

2 Introducing a Complete Measure

Suppose \succsim is an order separable relation on X. The set D in the definition of order separability is countable, so we can give each $d \in D$ a positive weight, $\omega(d)$, such that weights have a finite sum. Put $\varepsilon_{t(d)}=\omega(d)$ in which $t: D \longrightarrow \mathbb{N}$ is an injection. Without loss of generality we assume that $\sum_{d \in D} \omega(d)=\sum_{d \in D} \varepsilon_{t(d)}=\sum_{i=1}^{\infty} \varepsilon_{i}=1$; see [8].

Suppose that ν be a real-valued function on power set of $X, 2^{X}$, such that $\nu(\emptyset)=0, \nu(X)=1$ and for every nonempty proper subset A of X,

$$
\nu(A):=\inf \left\{\sum_{i} \sum_{d^{\prime} \in D \cap A ; d^{\prime} \precsim d_{i}} \omega\left(d^{\prime}\right) ; W_{i}=W\left(d_{i}\right) \in \mathrm{F} \text { and } A \subseteq \bigcup_{i \in \mathbb{N}} W_{i}\right\} .
$$

Without loss of generality we consider the set D consists of the minimum of X which will be denoted by \tilde{d}. In this case we assume that $\omega(\tilde{d})=0$ and hence $\nu(W(\tilde{d}))=0$.
Proposition 2.1. The function ν defines an outer measure on X.
Proof. Suppose that $A \subseteq B \subseteq X$. Then $A \subseteq \cup W_{i}$ for each sequence $\left\{W_{i}\right\}$ in F with $B \subseteq \cup W_{i}$. Thus

$$
\nu(A) \leq \sum_{i} \sum_{d^{\prime} \in D \cap A ; d^{\prime} \preccurlyeq d_{i}} \omega\left(d^{\prime}\right) \leq \sum_{i} \sum_{d^{\prime} \in D \cap B ; d^{\prime} \precsim d_{i}} \omega\left(d^{\prime}\right)
$$

for every such sequence $\left\{W_{i}\right\}$ and so $\nu(A) \leq \nu(B)$.
Now let $\left\{A_{t}\right\}$ be a sequence of subsets of X and for each $t \in \mathbb{N}$ let
$\nu\left(A_{t}\right)=\inf \left\{\sum_{i} \sum_{d^{\prime} \in D \cap A_{t} ; d^{\prime} \precsim d_{i}^{t}} \omega\left(d^{\prime}\right) ; W_{i}^{t}=W\left(d_{i}^{t}\right) \in \mathrm{F}\right.$ and $\left.A_{t} \subseteq \bigcup_{i \in \mathbb{N}} W_{i}^{t}\right\}$.
Then for every $\varepsilon>0$ there exist a sequence $\left\{W_{i}^{t}\right\}_{i \in \mathbb{N}}$ such that

$$
\sum_{i} \sum_{d^{\prime} \in D \cap A_{t} ; d^{\prime} \preccurlyeq d_{i}^{t}} \omega\left(d^{\prime}\right) \leq \nu\left(A_{t}\right)+\frac{\varepsilon}{2^{t}} .
$$

Therefore

$$
\begin{aligned}
\sum_{i} \sum_{d^{\prime} \in D \cap\left(\cup_{t} A_{t}\right) ; d^{\prime} \precsim d_{i}^{t}} \omega\left(d^{\prime}\right) & \leq \sum_{i} \sum_{t} \sum_{d^{\prime} \in D \cap A_{t} ; d^{\prime} \precsim d_{i}^{t}} \omega\left(d^{\prime}\right) \\
& \leq \sum_{t} \nu\left(A_{t}\right)+\varepsilon .
\end{aligned}
$$

Since $\bigcup_{t \in \mathbb{N}} A_{t} \subseteq \bigcup_{i, t \in \mathbb{N}} W_{i}^{t}$,

$$
\nu\left(\bigcup_{t \in \mathbb{N}} A_{t}\right) \leq \sum_{t} \nu\left(A_{t}\right)+\varepsilon \quad \forall \varepsilon>0
$$

and this completes the proof.
Recall that a set $A \subseteq X$ is called ν - measurable if for each $E \subseteq X$,

$$
\nu(E)=\nu(E \cap A)+\nu\left(E \cap A^{c}\right) .
$$

By the Caratheodory's theorem, [1, Theorem 1.11], the collection \mathcal{M} of ν-measurable sets is a σ-algebra and the restriction of ν to \mathcal{M} is a complete measure. The elements of \mathcal{M} are called measurable sets.

Proposition 2.2. Every subset of X is a ν-measurable set.
Proof. Suppose that E is an arbitrary subset of X. Then for each $A \subseteq X$ and for $\varepsilon>0$, there exist a sequence $\left\{W_{i}\right\} \subseteq \mathrm{F}$ such that

$$
\nu(A)+\varepsilon \geq \sum_{i} \sum_{d^{\prime} \in D \cap A ; d^{\prime} \precsim d_{i}} \omega\left(d^{\prime}\right)
$$

for which $A \subseteq \cup W_{i}$ and $W_{i}=W\left(d_{i}\right)$ for all $i \in \mathbb{N}$.
Put $A_{1}=A \cap E$ and $A_{2}=A \cap E^{c}$. Then $A_{1}, A_{2} \subseteq \cup W_{i}$ and so

$$
\begin{aligned}
\nu(A)+\varepsilon & \geq \sum_{i} \sum_{d^{\prime} \in D \cap A \cap E ; d^{\prime} \precsim d_{i}} \omega\left(d^{\prime}\right)+\sum_{i} \sum_{d^{\prime} \in D \cap A \cap E^{c} ; d^{\prime} \preccurlyeq d_{i}} \omega\left(d^{\prime}\right) \\
& =\sum_{i} \sum_{d^{\prime} \in D \cap A_{1} ; d^{\prime} \precsim d_{i}} \omega\left(d^{\prime}\right)+\sum_{i} \sum_{d^{\prime} \in D \cap A_{2} ; d^{\prime} \precsim d_{i}} \omega\left(d^{\prime}\right) \\
& \geq \nu\left(A_{1}\right)+\nu\left(A_{2}\right) .
\end{aligned}
$$

Since this hold for every $\varepsilon>0$, thus

$$
\nu(A) \geq \nu(A \cap E)+\nu\left(A \cap E^{c}\right) \quad \forall A \subseteq X
$$

Therefore E is ν-measurable.
Corollary 2.3. ν is a complete measure on 2^{X}.

3 Applications in Economics

In terms of economics, the set (X, \succsim) with the conditions mentioned in previous sections can be considered as a consumption set. In any model of consumer choice, a consumption set is the set of all alternatives that the consumer can conceive. In this case, X is considered as a closed convex subset of \mathbb{R}_{+}^{n} which contains 0 . The pseudo-ordering relation \succsim is called the preference relation and the sets $W\left(x_{0}\right), B\left(x_{0}\right)$ and $I\left(x_{0}\right)$ are called the sets of elements 'worse than x_{0} ', 'preferred to x_{0} ' and 'indifference to $x_{0}{ }^{\prime}$, respectively. For more information about these economic terms one can refer to [3].

In this section we suppose that \succsim is an order separable relation on X. Define the function θ from X into \mathbb{R} in the form

$$
\theta(x):=\nu(W(x)) \quad \forall x \in X
$$

and put $I(D)=\{x \in X ; x \sim d$ for some $d \in D\}$. In the following, we examine some of the properties of θ as a utility function.

Theorem 3.1. The mapping θ is a measurable utility function represents \succsim on X and is continuous on $X \backslash I(D)$ in the D-order topology of X.

Proof. Note that for each $d \in D, \theta(d)=\sum_{d^{\prime} \in D \cap W(d)} \omega\left(d^{\prime}\right)$. Hence for each $x, y \in X$ if $x \sim y$, then $W(x)=W(y)$ and so $\theta(x)=\theta(y)$; if $x \prec y$, there are $d_{1}, d_{2} \in D$ with $x \precsim d_{1} \prec d_{2} \precsim y$ and so

$$
\theta(x)=\nu(W(x)) \leq \nu\left(W\left(d_{1}\right)\right)<\nu\left(W\left(d_{2}\right)\right) \leq \nu(W(y))=\theta(y) ;
$$

that is, θ represents \succsim on X. Now for each $\varepsilon>0$ there is $k \in \mathbb{N}$ such that

$$
\forall m, n \in \mathbb{N} \quad m>n \geq k \Rightarrow \sum_{i=n+1}^{m} \varepsilon_{i}<\varepsilon
$$

Suppose $x \in X \backslash I(D)$. By order separability of \succsim, the sets $W(x) \cap D$ and $B(x) \cap D$ are infinite and for each $d_{1} \in W(x) \cap D$ and $d_{2} \in B(x) \cap D$ there exist $d_{3}, d_{4} \in D$ such that $d_{1} \prec d_{3} \prec x \prec d_{4} \prec d_{2}$. Since there are only finitely many $d^{\prime} \in D$ with $t\left(d^{\prime}\right)<k$ we can choose $d_{1} \in W(x) \cap D$ and $d_{2} \in B(x) \cap D$ such that $t\left(d^{\prime}\right) \geq k$ for each $d^{\prime} \in D$ with $d_{1} \precsim d^{\prime} \prec d_{2}$.

Put $V=B\left(d_{1}\right) \cap W\left(d_{2}\right)=\left(d_{1}, d_{2}\right)$. Trivially V is an open set in D-order topology contains x. Let $y \in V$; then

$$
\begin{aligned}
|\theta(y)-\theta(x)| & <\theta\left(d_{2}\right)-\theta\left(d_{1}\right)=\nu\left(W\left(d_{2}\right)\right)-\nu\left(W\left(d_{1}\right)\right) \\
& =\sum_{d^{\prime} \in D ; d_{1} \precsim d^{\prime} \prec d_{2}} \omega\left(d^{\prime}\right)=\sum_{d^{\prime} \in D ; d_{1} \precsim d^{\prime} \prec d_{2}} \varepsilon_{t\left(d^{\prime}\right)}<\varepsilon .
\end{aligned}
$$

By the above theorem, θ is upper semi-continuous on $X \backslash I(D)$ in the D-order topology. In the next theorem, we discuss the upper semicontinuity of θ on the weaker topology, D-lower order topology.

Theorem 3.2. The function θ is upper semi-continuous in the D-lower order topology in
(i) any point x of $I(D)$ for which there exists $d^{\prime} \in B(x) \cap D$ with $\left(x, d^{\prime}\right)=\emptyset$;
(ii) any point of $X \backslash I(D)$.

Proof. Suppose that $r \in \mathbb{R}$ and $\{x \in X ; \theta(x)<r\}$ is a non trivial subset of X. If $x \in I(D)$ and there is a $d^{\prime} \in B(x) \cap D$ with $\left(x, d^{\prime}\right)=\emptyset$, then

$$
\{y \in X ; y \precsim x\}=\left\{y \in X ; y \prec d^{\prime}\right\}=W\left(d^{\prime}\right)
$$

is a neighborhood of x in D-lower order topology and for each $y \in W\left(d^{\prime}\right)$, $\theta(y) \leq \theta(x)<r$ and this proves (i).

Now let $x \in X \backslash I(D)$. Then there is $k \in \mathbb{N}$ such that for all $n \geq k$, $\sum_{i=n+1}^{\infty} \varepsilon_{i}<r-\theta(x)$. similar to the proof of the last theorem, there exist $d_{1} \in W(x) \cap D$ and $d_{2} \in B(x) \cap D$ such that $t\left(d^{\prime}\right) \geq k$ for all $d^{\prime} \in D$ with $d_{1} \precsim d^{\prime} \prec d_{2}$. For each $y \in W\left(d_{2}\right)$,

$$
\begin{aligned}
\theta(y)<\theta\left(d_{2}\right) & =\sum_{d^{\prime} \in D \cap W\left(d_{2}\right)} \omega\left(d^{\prime}\right) \\
& =\sum_{d^{\prime} \in D ; d^{\prime} \prec d_{1}} \omega\left(d^{\prime}\right)+\sum_{d^{\prime} \in D ; d_{1} \precsim d^{\prime} \prec d_{2}} \omega\left(d^{\prime}\right) \\
& <\theta\left(d_{1}\right)+(r-\theta(x))<\theta(x)+(r-\theta(x))=r ;
\end{aligned}
$$

that is, $W\left(d_{2}\right)$ is a neighborhood of x which is a subset of $\{x \in X ; \theta(x)<$ $r\}$; this completes the proof of $(i i)$.

The use of each of theorems 3.1 and 3.2, depends on the conditions of (X, \succsim). For example, if \succsim is upper semi-continuous, it is order separable [6].

We hope that applying θ as a measure function will lead to more desirable results about the utility function. The properties such as monotonicity, subadditivity, continuity from below, etc. can be applied to the function ν and examined what new results would be obtained for the utility function θ. For example, If $\left\{x_{n}\right\}$ is an increasing sequence in X (i.e., $\left.x_{1} \precsim x_{2} \precsim x_{3} \precsim \ldots\right)$, then $\left\{W\left(x_{n}\right)\right\}$ is an increasing sequence of measurable sets in X and by the property "continuity from below" of measure, $\lim _{n} \theta\left(x_{n}\right)=\lim _{n} \nu\left(W\left(x_{n}\right)\right)=\nu\left(\bigcup_{n} W\left(x_{n}\right)\right)$. In this case, if $\left\{x_{n}\right\}$ is in $X \backslash I(D)$ and converges to some element x_{0} of this space, in D-order topology, then by theorem 3.1, $\theta\left(x_{0}\right)=\lim _{n} \theta\left(x_{n}\right)=\nu\left(\bigcup_{n} W\left(x_{n}\right)\right)$. Also, by the monotonicity property of measure, since $\nu(X)=1$, for every $x \in X$,

$$
\theta(x)=\nu(W(x))=\nu(X)-\nu(\bar{B}(x))=1-\nu(\bar{B}(x)),
$$

where, $\bar{B}(x)=B(x) \cup I(x)$ is called the set of elements "at least as good as x ". In other words, the utility function θ can be obtained by measuring the set $\bar{B}(x)$, too.

References

[1] G. B. Folland, Real Analysis, Modern Techniques And Their Applications: Second Edition, John Wiley and Sons, Inc. Canada, (1999).
[2] J.-Y. Jaffray, Existence of a continuous utility function: An elementary proof, Econometrica 43 ($5 / 6$) (1975) 981-983.
[3] G. A. Jehle and P. J. Reny, Advanced Microeconomic Theory: Third Edition, Prentice Hall, England, (2011).
[4] A. Mas-Colell , M. D. Whinston and J. R. Green, Microeconomic Theory, Oxford University Press, Oxford, (1995).
[5] T. Mitra and M. Kemal Ozbek, On representation of monotone preference orders in a sequence space, Soc. Choice Welf 41 (2013) 473-487.
[6] T. Rader, The existence of a utility function to represent preferences, Review of Economic Studies 30 (1963) 229-232.
[7] D. Sondermann, Utility representations for partial orders, Journal of Economic Theory 23 (1980) 183-188.
[8] M.Voorneveld and J. W. Weibull, An elementary proof that wellbehaved utility functions exist, Theoretical Economics Letters 6 (2016) 450-457.

Somayeh Mohammadzadeh

Assistant Professor of Mathematics
Department of Mathematics
Faculty of Science
University of Bojnord, P. O. Box 1339
Bojnord, Iran
E-mail: smohamad@ub.ac.ir

[^0]: Received: March 2020; Accepted: December 2020

