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1 Introduction

The Diophantine equation of diagonal type

k∑
i=1

Aix
mi
i = 0, Ai,mi ∈ Z,mi > 0

is one of the historical classical equations. A number of the math-
ematicians have worked on this equation. Of well-known results
among them are the generalized Fermat’s theorem [1], Euler con-
jecture [5], Waring problem [3], and equal sums of like powers [4, 6].

By a symmetric equation, it is meant an equation of the form

f(x1, x2, . . . , xn) = f(y1, y2, . . . , yn),

where f is a symmetric polynomial of n unknowns with integer
coefficients. In this article, we concentrate on the solutions of the
symmetric diagonal Diophantine equations of the form

k∑
i=1

Aix
mi
i =

k∑
i=1

Aiy
mi
i ,

and consider the equations

Ax6 + By3 + Cz3 = Au6 + Bv3 + Cw3, A,B,C ∈ Z, A 6= 0.

For more details about symmetric diagonal equations we cite [2].
By dividing both sides of the above equation by A we get

x6 + ky3 + k′z3 = u6 + kv3 + k′w3, k, k′ ∈ Q.

In the case k′ = 0, the rational points of the symmetric diagonal
equation x6+ky3 = u6+kv3, k ∈ Q are studied in [7] in which, using
the elliptic curve method, it is conjectured that this equation has
infinitely many nontrivial rational solutions. The same strategy
is used in [9] to claim the existence of infinitely many nontrivial
rational solutions of the equation x5 + ky3 = u5 + kv3.

The aim of this article is to claim the following conjecture. We
approach to this conjecture in two different ways in Section 3.
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Conjecture 1.1. For all rational numbers k and k′, the symmetric
diagonal Diophantine equation

x6 + ky3 + k′z3 = u6 + kv3 + k′w3

has infinitely many nontrivial solutions.

In this article, all rank computations are implemented by the
‘mwrank’ software. Moreover, we assume that all solutions of the
equation x6+ky3+k′z3 = u6+kv3+k′w3 are integral and nontrivial.
Note that any rational solution leads to an integral solution. By a
trivial solution of the equation axm + byn + czk = aum + bvn + cwk

we mean either of the following cases.

(i) (x, y, z) = (u, v, w);

(ii) x = rnk, y = smk, z = tmn, u = tnk, v = rmk, w = smn, for
some rationals r, s, t, when a = b = c.

2 Preliminary results

Let K be a field and C be the algebraic curve defined over K by

v2 = au4 + bu3 + cu2 + du + e, a 6= 0, (1)

Consider the K-rational affine point (u, v) = (p, q) on C. We may
assume p = 0 by changing u to u+p, if necessary. Then e = q2 and
the equation (1) turns to

v2 = au4 + bu3 + cu2 + du + q2, a 6= 0. (2)

Let q = 0. If d = 0, the curve (2) will have a singularity at (u, v) =
(0, 0). Therefore, assume d 6= 0. Dividing both side of (2) by u4 we
get ( v

u2

)2
= d
(1

u

)3
+ c
(1

u

)2
+ b
(1

u

)
+ a.
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Put X = 1/u and Y = 1/u2 Then, we obtain the elliptic curve
Y 2 = dX3 + cX2 + bX + a in the Weierstrass form. The harder
case is when q 6= 0 in which case we have the following result [8,
Theorem 2.17].

Theorem 2.1. Let K be a field of characteristic not 2 and C be
the algebraic curve defined over K by

C : v2 = au4 + bu3 + cu2 + du + q2, q 6= 0.

Suppose C has a K-rational point (p, q). Let

X =
2q(v + q) + du

u2
, Y =

4q2(v + q) + 2q(du + cu2)− (d2u2/2q)

u3
.

Define

a1 = d/q, a2 = c− (d2/4q2), a3 = 2qb, a4 = −4q2a, a6 = a2a4.

Then the curve C is in one to one corresponding with the elliptic
curve

E : Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6.

The inverse transformation is

u =
2q(X + c)− (d2/2q)

Y
, v = −q +

u(uX − d)

2q
.

The point (u, v) = (0, q) on C corresponds to the point (X, Y ) =∞
on E and (u, v) = (0,−q) on C corresponds to (X, Y ) = (−a2, a1a2−
a3) on E.

In [7, Theorem 1.1], the authors showed that for a large number
of values of k the equation

x6 + ky3 = u6 + kv3, k ∈ Q. (3)
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has infinitely many nontrivial solutions; that is, (x, y) 6= (u, v).
Then they exhibited more collection of rational numbers k for which
the equation is satisfied and due to these observations, they conjec-
tured that for any rational number k, the equation (3) has infinitely
many nontrivial solutions. Since part of the basic demonstration in
the current paper is hanging on this result, we restate it with a bit
difference and improve its proof by resolving a mistake.

Theorem 2.2. For each integer k with 1 ≤ k ≤ 100, the Diophan-
tine equation

x6 + ky3 = z6 + kw3

has infinitely many nontrivial solutions.

Following the proof of Theorem 1.1 in [7], the parametric system
of changing variables

x = u +
4

k
s2, y = v − u

2
, z = u− 4

k
s2, w = u + y = v +

u

2

leads to the quartic equation

v2 =
(4

k
s
)2
u4 +

(10

3

(4

k

)4
s6 − 1

12

)
u2 +

(4

k

)6
s10.

Then, using Theorem 2.1 we get the elliptic curve

Ek,s : Y 2 = X3 + a2X
2 + a4X + a6, (4)

over Q(k, s), where

a2 =
10

3

(4

k

)4
s6 − 1

12
, a4 = −4

(4

k

)8
s12,

a6 = −40

3

(4

k

)12
s18 +

1

3

(4

k

)8
s12.

Table 1 shows the positive-rank elliptic curves (4) for 1 ≤ k ≤ 100
and appropriate values of s. The computation for higher integer
values of k is similar and not complicated. Even for rational values
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k,s rank r
1,1; 2,1; 3,1; 5,1/4; 6,1; 7,1; 9,1/2; 10,1/2; 11,1; 12,1; 13,1/2; 14,1; 15,1; 16,1/2; 18,1; 19,1; r = 1
20,2; 21,3/2; 22,2; 25,1; 28,1; 29,1/2; 30,1; 32,1; 35,5; 37,1; 38,1; 41,1/4; 43,2; 49,14; 53,1;
54,1; 55,5; 56,1; 58,3; 62,1; 64,1; 65,4; 69,3; 71,1; 73,1/4; 75,1; 79,5; 82,4; 83,1; 85,2; 90,3;
92,2; 93,3; 94,2; 95,1; 98,3; 100,2; 1/2,1; 2/3,2; 2/7,5; 1/16,6; 4/7,8; 5/3,10

4,4; 17,1/2; 23,3/4; 24,1/3; 26,1; 27,1/3; 31,2; 33,3; 34,3; 36,1; 39,3; 40,6; 42,1; 44,2; 45,1; r = 2
46,7; 47,7; 48,5; 50,4; 51,3; 52,4; 57,7; 59,1; 60,7; 61,2; 63,5; 67,4; 68,4; 70,1; 72,5; 74,6;
76,13; 77,4; 80,3; 81,3; 84,3; 86,3; 87,2; 88,7; 89,3; 91,6; 96,8; 97,4; 99,1;3/7,3; 2/9,4; 3/4,9

8,14; 66,3; 78,13 r = 3

3/5,7 r = 4

Table 1: Positive ranks for the elliptic curve Ek,s.

of k there are positive-rank elliptic curves. Some of these elliptic
curves are denoted in Table 1 in bold fonts.

Of course, one can transform the elliptic curve (4) into the fol-
lowing short Weierstrass form and then attempt to find the positive-
rank elliptic curves for that. The transformation can be done either
by software (such as maple, sage, etc.) or using the manipulation
formulas (see for example [8, Section 2.1]).

EA,B : Y 2 = X3 + AX + B,

where

A = −218103808 s12 − 20480 k4s6 + k8

432k8
,

B = −(8192 s6 + k4) (−28672 s6 + k4) (−10240 s6 + k4)

23328 k12
.

3 Settling Conjecture 1.1

In this section, we settle Conjecture 1.1. The next result shows
that the sufficient condition for the equation

x6 + ky3 + k′z3 = u6 + kv3 + k′w3, k, k′ ∈ Q.

to have infinitely many solutions is that it has the same property
for the case k′ = 0.
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Proposition 3.1. If the the equation

X6 + `Y 3 = U6 + `V 3 (5)

has infinitely many solutions for any nonzero rational number `,
then the equation

x6 + ky3 + k′z3 = u6 + kv3 + k′w3

has also infinitely many solutions for nonzero rational numbers
k, k′.

Proof. Let k and k′ be rational numbers. The hypothesis guaran-
tees the existence of infinitely many solutions of the equation (5)
for ` = kt3 + k′t′3, where t and t′ are rational numbers. That is to
say that,

X6 + k(tY )3 + k′(t′Y )3 = U6 + k(tV )3 + k′(t′V )3

has infinitely many solutions. The result is now follows. �
Now, Conjecture 1.1 is settled by Theorem 2.2.

Corollary 3.2. Let k, k′, t, t′ be any rational number such that kt3+
k′t′3 is an integer with 1 ≤ kt3 + k′t′3 ≤ 100. Then, the equation

x6 + ky3 + k′z3 = u6 + kv3 + k′w3

has infinitely many solutions.

As an alternative way, we settle Conjecture 1.1 directly for some
values of k and k′ by a computational process.

Proposition 3.3. For any positive integers k, k′ with 1 ≤ k ≤ 50,
1 ≤ k′ ≤ 20, the equation

x6 + ky3 + k′z3 = u6 + kv3 + k′w3, k, k′ ∈ Q. (6)

has infinitely many solutions.
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k,k′,s rank r
1,4,1; 1,5,1; 1,7,1; 1,8,1; 1,9,4; 1,15,1; 2,1,1; 2,2,1; 2,3,1; 2,6,2; 2,7,2; 2,20,1/4; 3,1,2; 3,4,3; 3,9,1; r = 1
3,11,1; 3,14,4; 3,17,1; 3,20,1; 4,6,2; 4,7,2; 4,10,3; 4,14,1; 4,16,2; 4,19,3; 4,20,3; 5,3,1; 5,4,1; 5,5,2;
5,11,1/4; 5,12,2; 5,13,1; 5,16,1; 5,17,1; 6,4,1; 6,5,1; 6,9,1; 6,13,1/5; 6,14,2; 6,18,11; 7,3,1; 7,4,1;
7,13,1; 7,15,1; 7,18,1; 8,2,1; 8,3,1; 8,13,2; 8,16,1; 9,1,1; 9,2,1; 9,6,1; 9,7,1; 9,8,1/2; 9,9,1;
9,10,1/4; 9,11,1; 9,12,1; 9,15,1; 9,19,1; 10,4,1; 10,7,1; 10,15,1; 10,20,1; 11,14,1; 11,15,13; 11,20,2;
12,3,1; 12,9,2; 12,10,2; 12,14,7; 12,19,2; 13,3,3; 13,5,2; 13,8,1; 13,11,2/3; 13,12,1; 13,20,2; 14,1,4;
14,7,1/2; 14,11,6; 14,15,1; 14,18,1; 14,20,1; 15,1,2; 15,2,7; 15,6,1; 15,9,2; 15,19,1; 16,1,1; 16,8,1;
16,9,1; 16,12,1; 16,13,2; 16,14,1; 16,16,1; 16,18,2; 17,10,1; 17,12,2; 17,13,5; 17,14,7/12; 18,9,3;
18,11,2; 18,15,3/5; 18,16,1; 18,19,1; 19,1,1; 19,6,10; 19,15,6/5; 19,17,1/17; 20,2,3; 20,11,12;
20,13,1; 20,15,2; 20,19,2; 21,3,2; 21,8,4; 21,10,1; 21,11,3; 21,16,1; 21,20,1; 22,5,2; 22,11,1;
22,16,2; 23,5,3; 23,6,2; 23,8,2; 23,12,1/5; 23,14,2; 23,18,2; 23,19,11; 24,1,2; 24,3,2; 24,12,2;
24,13,1; 24,17,1; 24,18,1; 25,6,2; 25,7,1; 25,9,1; 25,12,2; 25,14,2; 25,17,1/2; 25,19,1; 26,7,7;
26,8,2; 26,9,1; 26,12,1; 26,15,1/5; 26,18,1; 26,19,11/2; 26,20,1; 27,1,1; 27,2,2; 27,4,5; 27,9,7;
27,10,3/2; 27,13,1; 27,16,1; 27,17,1/4; 27,19,37/76; 28,5,2; 28,10,4; 28,11,1; 28,13,2; 28,17,5;
29,6,1; 29,8,8; 29,12,2; 29,14,1/5; 29,15,1; 29,18,2; 29,20,2; 30,1,1; 30,2,1; 30,3,1; 30,8,1; 30,14,1;
30,15,2; 30,16,7; 31,12,1; 31,13,1; 31,16,1; 31,17,3; 31,18,2; 32,3,6; 32,10,2; 32,14,1; 32,16,1;
32,17,1; 32,19,1/19; 33,1,34; 33,2,1; 33,4,1; 33,5,1/5; 33,7,2; 33,14,1/2; 33,16,1/2; 34,6,1;
34,11,20; 34,12,1/2; 34,13,2; 34,17,1; 34,18,1; 35,4,1; 35,8,2; 35,9,3; 35,10,2; 35,17,1; 36,2,6;
36,4,1; 36,5,2; 36,13,2; 36,16,2; 36,20,1/2; 37,5,2; 37,9,1; 37,16,2; 37,18,1; 38,3,3; 38,12,1;
38,14,2; 38,19,2; 39,3,7; 39,4,1; 39,7,1; 39,11,1; 39,14,2; 39,16,1; 39,17, 11/8; 39,20,2; 40,5,4;
40,6,3; 40,7,1; 40,13,1; 41,2,1; 41,4,1; 41,5,4; 41,9,2; 41,9,2; 41,13,1; 42,1,4; 42,3,2; 42,7,1;
42,11,2; 42,15,7; 42,18,1; 42,20,2; 43,6,1; 43,8,3; 43,15,1; 43,16,3/8; 43,18,7; 44,3,5; 44,12,1/12;
44,13,2; 44,15,1/12; 44,16,2; 44,19,4/19; 45,4,1; 45,9,1; 45,11,2; 45,12,2; 45,13,1; 45,14,4;
45,15,5; 45,18,2; 45,20,1; 46,7,2/3; 46,10,2; 46,11,2; 46,16,2; 46,17,4/15; 47,3,1; 47,6,3; 47,8,3/2;
47,15,2; 47,16,8; 48,1,1; 48,5,2; 48,6,5; 48,9,5; 48,12,1/36; 48,13,2; 48,20,1; 49,2,4; 49,4,2;
49,8,2; 49,12,2; 49,13,9/17; 49,16,5; 49,17,7; 49,18,2; 50,2,2; 50,8,7; 50,11,1/5; 50,16,9/8; 50,18,3
1,10,1; 1,16,16; 1,18,6; 3,2,1/4; 3,10,7; 3,15,2; 3,16,3; 4,5,6; 4,13,38; 4,15,3; 4,17,12; 6,8,6; 1 ≤ r ≤ 2
6,16,7; 7,2,10; 7,16,2; 8,14,3/5; 9,18,10; 9,20,1/17; 10,5,7; 10,14,1/5; 10,16,4; 10,18,5; 11,10,1;
11,12,1/18; 11,13,6; 12,5,8; 12,12,7; 12,15,4; 12,18,1; 13,2,1; 13,15,4; 13,18,3; 14,10,7; 14,12,9;
14,16,1/6; 15,7,3/4; 15,10,2; 15,12,9; 15,14,12; 16,15,1; 16,19,10; 17,6,8; 17,9,7; 18,13,11/5;
18,17,10; 19,13,7; 19,20,4; 20,4,8; 20,8,10; 21,4,3; 21,9,5; 21,12,5/2; 21,14,28/3; 22,13,1/2;
22,14,4; 23,2,7; 23,13,2; 23,15,3; 24,11,1/2; 24,19,3; 25,8,4; 25,10,10; 25,13,2; 25,16,1/3; 26,10,5;
27,8,1; 28,2,1; 28,8,16; 28,12,7; 28,14,12; 29,2,3; 29,3,2; 29,9,8; 29,13,7; 30,5,10; 30,11,7/33;
30,17,4; 31,1,7; 31,2,7; 31,8,3; 31,9,6; 31,14,2/5; 31,20,1/18; 32,8,3; 32,11,11; 33,3,5; 33,18,1/12;
35,11,7; 35,19,7; 36,3,4; 36,10,8; 36,12,11; 36,14,6; 36,17,8/9; 37,4,11; 37,6,3; 37,10,3; 37,12,3;
37,13,4; 38,6,10; 38,8,2; 38,11,1/6; 38,15,7; 38,16,17; 38,17,2; 38,20,9; 39,15,4; 39,18,9; 39,19,3;
40,8,31; 40,11,4; 40,12,9; 40,19,3/2; 40,20,6; 41,10,8; 41,16,16; 41,17,5; 41,18,1/15; 42,4,9;
42,6,9; 43,3,8; 43,7,3; 43,10,4/5; 43,12,2; 43,14,25/4; 43,19,4; 44,11,16; 44,14,2; 44,17,3; 44,20,5;
45,19,1/19; 46,8,4; 46,14,1/4; 46,15,17/8; 47,4,8; 47,13,16; 48,11,13/11; 48,17,4; 48,18,15;
49,6,5; 49,10,1; 49,11,7/8; 50,7,20; 50,17,2/17; 50,19,4/5
1,12,1; 1,17,2; 1,20,19; 2,4,2; 2,5,5; 2,9,6; 3,19,5; 4,11,2; 5,6,1; 5,10,4; 5,19,6; 6,11,3; 6,17,1/2; 1 ≤ r ≤ 3
7,5,8; 8,10,7; 8,17,1/22; 9,13,7; 10,19,7/18; 11,17,2; 12,17,2; 13,10,3/4; 13,19,7; 14,14,4; 14,17,2;
15,8,10; 15,13,2; 15,18,12; 16,6,4; 16,17,13; 18,3,8; 18,18,1; 18,20,2; 19,3,5; 19,8,10; 19,11,1;
20,7,4; 20,9,4; 20,16,4; 21,17,11/8; 21,18,1; 22,1,4; 22,2,10; 22,7,4; 22,9,41; 22,10,3; 22,17,10;
22,19,25/19; 22,20,11; 23,7,1/17; 23,10,5; 23,11,7; 24,2,6; 24,8,10; 24,16,6; 25,11,13; 25,20,5;
26,3,7; 26,5,3/10; 26,11,6; 27,3,2/3; 27,5,2; 27,6,37; 27,14,5/4; 27,18,2; 27,20,5; 29,11,21/11;
29,17,1; 30,4,5; 30,19,1; 30,20,2; 31,6,8; 31,10,4; 31,19,1; 32,15,1; 33,11,8; 33,17,4; 34,1,3;
34,7,1; 34,8,3; 34,14,3; 34,15,2; 35,18,1/8; 36,7,6; 36,11,7; 36,18,3; 37,19,15; 38,2,9; 39,6,1;
39,8,6; 40,2,5; 40,9,30; 40,10,8; 40,14,2; 40,17,4/17; 40,18,1; 41,3,10; 41,11,5; 41,14,1/4; 42,19,7;
43,13,8; 43,20,14; 44,6,4; 45,5,4; 45,7,10; 45,8,26; 45,16,1; 46,4,10; 46,5,2; 46,9,14; 46,19,1;
47,5,3; 47,7,8; 47,11,3/5; 47,17,15; 47,18,9; 49,5,10; 49,20,1/2; 50,1,10; 50,3,6; 50,14,9/2
13,14,17; 21,19,3; 23,17,1/25; 30,13,1/19; 32,4,12; 33,19,15; 45,17,14/31; 48,10,9 1 ≤ r ≤ 4
1,1,7; 1,2,2; 1,3,3; 1,6,1; 1,13,1/3; 1,14,1/34; 1,19,2; 2,8,2; 2,10,2; 2,13,1; 2,14,1/4; 2,15,1; r = 2
2,16,1; 2,17,1/4; 2,18,2; 3,3,2; 3,5,1; 3,6,5; 3,7,1; 3,8,2; 3,18,1; 4,1,5; 4,3,2; 4,4,2; 4,8,3; 4,9,2;
4,12,2; 4,18,2; 5,1,2; 5,7,1/8; 5,8,1/3; 5,9,8; 5,14,1; 5,18,1/3; 6,1,10; 6,6,2; 6,7,5/3; 6,10,1;
6,15,2; 6,19,4; 6,20,7; 7,6,1; 7,7,1; 7,9,2; 7,10,4; 7,11,2; 7,14,1; 7,17,11; 7,20,4; 8,4,1; 8,5,7;
8,6,6; 8,7,7; 8,8,7; 8,9,5; 8,15,2; 8,18,1; 8,19,2; 8,20,3; 9,3,7; 9,4,1; 9,5,2; 9,14,1; 9,16,1/10;
9,17,1; 10,1,1; 10,2,2; 10,3,2; 10,6,6; 10,8,1; 10,9,2; 10,10,5; 10,12,1; 10,13,2; 10,17,1; 11,1,7;
11,2,2; 11,3,3; 11,4,5; 11,5,2; 11,6,2; 11,7,1; 11,8,7; 11,9,1; 11,11,17; 11,16,2; 11,18,2; 12,1,2;
12,2,2; 12,4,5; 12,6,1; 12,7,2; 12,8,1; 12,11,7; 12,13,1; 12,16,1; 13,1,2; 13,4,3; 13,7,1; 13,9,5;
13,13,1; 13,16,2; 14,2,2; 14,3,3; 14,6,6; 14,8,7; 14,9,1; 14,13,2; 15,3,1; 15,4,1; 15,5,2; 15,11,2;
15,16,3; 15,17,3; 15,20,1/16; 16,3,2; 16,4,9; 16,5,1; 16,7,2; 16,11,1; 16,20,2; 17,1,4; 17,2,2;
17,3,5; 17,4,4; 17,5,1; 17,11,1; 17,15,7; 17,16,2; 17,17,2; 17,18,2; 17,19,5; 17,20,2; 18,1,2;
18,2,4; 18,4,1; 18,5,1/10; 18,6,5; 18,7,5; 18,8,1; 18,10,1; 18,12,5; 18,14,2; 19,4,7; 19,5,2; 19,7,1;
19,10,2; 19,14,2; 19,16,1/5; 19,18,7; 19,19,9; 20,1,2; 20,3,4; 20,5,2; 20,6,3; 20,10,2; 20,12,3;
20,18,4; 20,20,1; 21,1,7; 21,2,7; 21,5,1; 21,7,1; 21,13,1; 21,15,2; 22,3,1; 22,4,9; 22,6,2; 22,8,4;
22,12,2; 22,15,1; 22,18,4; 23,3,1; 23,4,1/8; 23,9,2; 23,16,2; 24,4,4; 24,5,3; 24,7,4; 24,9,7; 24,19,2;
24,14,2; 24,15,4; 24,20,2; 25,1,1; 25,2,7; 25,3,5; 25,4,1; 25,5,2; 25,15,2; 25,18,1/12; 26,1,2;
26,2,7; 26,4,1; 26,6,2; 26,13,2; 26,14,3; 26,16,1; 26,17,11/17; 27,7,1; 27,11,1/3; 27,15,3; 28,1,10;
28,3,2; 28,4,2; 28,6,3; 28,9,2; 28,15,2; 28,18,6; 28,19,2; 29,1,3; 29,5,4; 29,7,5; 29,10,2; 29,16,1;
29,19,1; 30,6,2; 30,7,2; 30,18,2; 31,3,2; 31,4,4; 31,5,1; 31,7,1; 31,11,2; 31,15,4; 32,1,2; 32,2,2;
32,6,4; 32,9,5; 32,12,3; 32,13,2; 32,18,1/6; 32,20,2; 33,6,2; 33,8,2; 33,9,3; 33,10,1/4; 33,12,9;
33,13,7; 33,15,1; 33,20,1/2; 34,2,4; 34,5,7; 34,9,2; 34,10,1; 34,16,1; 34,19,2; 34,20,1/2; 35,1,2;
35,2,2; 35,3,1; 35,5,5; 35,6,2; 35,7,1; 35,12,1; 35,13,2; 35,14,3; 35,15,1; 35,16,2; 35,20,1; 36,6,2;
36,8,1; 36,15,2; 36,19,2; 37,1,3; 37,8,2; 37,11,1; 37,14,1/7; 37,20,1/2; 38,1,3; 38,4,1; 38,5,2;
38,7,2; 38,9,1/18; 38,10,2; 38,13,2; 38,18,1; 39,1,7; 39,5,5; 39,9,3; 39,10,4; 40,1,2; 40,3,10;
40,4,5; 40,15,2; 40,16,2; 41,1,3; 41,6,3; 41,12,1; 41,15,2; 41,19,2; 41,20,2; 42,2,4; 42,5,2; 42,8,1;
42,9,2; 42,10,2; 42,12,6; 42,17,1; 43,4,1; 43,5,1; 43,9,1; 43,11,7; 43,17,1/4; 44,1,10; 44,4,3;
44,5,4; 44,8,2; 44,9,2; 44,10,1; 44,18,1; 42,13,2; 42,14,4; 45,1,4; 45,2,1; 45,3,1; 45,6,2; 45,10,1;
46,2,10; 46,3,3; 46,12,7; 46,13,43/39; 46,20,8; 47,1,11; 47,9,5; 47,10,2; 47,12,2; 47,14,1/2;
47,20,1; 48,2,10; 48,3,5; 48,4,3; 48,7,10; 48,8,8; 48,14,1; 48,15,2; 48,19,2; 49,1,10; 49,33,3;
49,7,1; 49,9,2; 49,14,8; 49,15,3; 50,4,5; 50,5,2; 50,6,9; 50,9,1; 50,10,1; 50,12,2; 50,20,2
7,5,4; 13,17,1; 14,19,7; 17,8,14; 23,20,2; 28,16,5; 28,20,7; 32,5,4; 37,3,15; 37,15,21/5; 41,7,8; 2 ≤ r ≤ 3
41,8,4
2,19,1/22; 3,12,6; 4,2,10; 5,2,6; 6,3,10; 7,19,1/3; 20,14,3; 24,6,4; 27,12,7; 32,7,7; 42,16,1/24; 2 ≤ r ≤ 4
48,16,1/24
1,11,7; 2,11,7; 2,12,2; 3,13,4; 5,15,2; 6,2,2; 6,12,5; 7,1,2; 7,12,3; 8,1,8; 8,11,2; 8,12,9; 10,11,10; r = 3
11,19,3/2; 12,20,2; 13,6,2; 14,4,3; 14,5,2; 15,15,1/3; 16,2,7; 17,7,1; 19,2,2; 19,12,2; 20,17,2;
21,6,8; 23,1,1; 28,7,10; 29,4,4; 30,12,2; 34,3,2; 34,4,10; 36,1,2; 36,9,9; 37,2,2; 37,17,7; 39,2,7;
39,12,3; 39,13,2; 43,1,7; 43,2,6; 44,2,2; 44,7,4; 46,1,2; 46,6,4; 46,18,2; 47,2,22; 49,19,3/19;
50,13,4; 50,15,4
16,10,7; 37,7,7 r = 4

Table 2: Positive ranks for the elliptic curve E(k,k′,s).
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Proof. Intersect the variety (6) with the hyperplanes

x = tg + 1, y = 1− g, z = h− g,

u = tg − 1, v = 1 + g, w = h + g,

where g 6= 0. Then we get the following quartic equation

h2 =
2t5

k′
g4 +

1

3k′
(20t3 − k − k′)g2 +

2t− k

k′
.

Put 2t−k
k′

= s2. Then, by Theorem 2.1, we obtain the following
elliptic curve over Q(k, k′, s).

E(k,k′,s) : Y 2 = X3 + a2X
2 + a4X + a6,

where

a2 =
1

6k′
(
5(s2k′ + k)3 − 2k − 2k′

)
, a4 =

−s2

4k′
(s2k′+k)5, a6 = a2a4.

As depicted in Table 2, for each pair of the 1000 values of k, k′ in
Proposition 3.3, a positive-rank elliptic curve E(k,k′,s) is found for
some s. This settles once more Conjecture 1.1. �
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