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1 Introduction

Throughout this paper R denotes a commutative Noetherian ring with
identity. Further N and N0 will denote the set of natural integers and
non-negative integers respectively. Also Z will denote the set of integer
numbers. Further E is an injective R−module.

The ideas of reduction and integral closure of an ideal in a commu-
tative Noetherian ring R (with identity) were introduced by Northcott
and Rees in [3]. It is appropriate for us to recall these definitions.

Let I and J be ideals of a commutative Noetherian ring R. The ideal
I is a reduction of the ideal J if I ⊆ J and there exists an integer n ∈ N
such that IJn = Jn+1. Also an element x of R is said to be integrally
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dependent on I if there exist a positive integer n and elements ck ∈ Ik,
k = 1, ..., n, such that

xn + c1x
n−1 + · · ·+ cn−1x+ cn = 0.

We know from [3], x ∈ R is integrally dependent on I if and only if I
is a reduction of the ideal I + Rx. Further, we know that the set of all
elements of R which are integrally dependent on I is an ideal of R. This
ideal is called the integral closure of I and is denoted by I−.

Now let E be an injective R−module. In [2], H. Ansari Toroghy and
R. Y. Sharp introduced integral closure of an ideal I of a commutative
ring R relative to an injective R−module E.

Let I and J be ideals of R. The ideal I is said to be a reduction of
the ideal J relative to E, if I ⊆ J and there exists an integer n ∈ N
such that (0 :E IJ

n) = (0 :E J
n+1). Also an element x of R is said to be

integrally dependent on I relative to an injective R−module E, if there
exists a positive integer n such that

(0 :E

n∑
i=1

xn−iIi) ⊆ (0 :E x
n).

We know from [2], an element x of R is integrally dependent on I
relative to an injective R−module E, if and only if I is a reduction of
the ideal I +Rx relative to E. Moreover in [2], it is shown that the set
of all elements of R which are integrally dependent on I relative to E is
an ideal of R. This is denoted by I∗(E) and is called the integral closure
of I relative to E.

Here, we give some definitions and notations which will be helpful
for us in the rest of the paper.

A filtration F = {In}n≥0 on R is a descending sequence of ideals
In of R such that I0 = R and InIm ⊆ In+m for all n,m ∈ N0. Let
F = {In}n≥0 and G = {Jn}n≥0 be two filtrations. We say F ⊆ G if
In ⊆ Jn for every n. Also the filtration {InJn}n≥0 is denoted by FG.

The integral closure of a filtration F = {In}n≥0 is defined in [4].
For every n ≥ 0, let Jn be the set of all x ∈ R such that x satisfies an
equation

xk + a1x
k−1 + · · ·+ ak−1x+ ak = 0
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for a positive integer k and ai ∈ Ini. Then F− = {Jn}n≥0 is a filtration
such that F ⊆ F−. The filtration F− = {Jn}n≥0 is called the integral
closure of the filtration F = {In}n≥0.

In this paper we will introduce the integral closure of a filtration
relative to an injective module and study some related topics.

2 Auxiliary results

In this section we define the concepts of reduction and integral closure
of a filtration relative to injective modules and prove some of their prop-
erties. We begin to remind some definitions.

Definition 2.1. (See [5, 2.1.3].) Let F = {In}n≥0 and G = {Jn}n≥0 be
filtrations on R. F is said to be a reduction of G if F ⊆ G and there
exists a positive integer d such that

Jn =
d∑
i=0

In−iJi for every n ≥ 1.

Here, and throughout this paper, Ii = R if i ≤ 0.

Definition 2.2. (See [5, 2.1.4].) Let R be a Noetherian ring. A filtration
F = {In}n≥0 on R is Noetherian in case there exists a positive integer
d such that

In =

d∑
i=0

In−iIi for every n ≥ 1.

Definition 2.3. Let F = {In}n≥0 and G = {Jn}n≥0 be filtrations on R.
Then F is said to be a reduction of G relative to an injective R−module
E if F ⊆ G and there exists a positive integer d such that

(0 :E Jn) = (0 :E

d∑
i=0

In−iJi) for every n ≥ 1.

Remark 2.4. Let F = {In}n≥0 and G = {Jn}n≥0 be filtrations on R.
Let F be a reduction of G relative to an injective R−module E. Then
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there exists a positive integer d such that

(0 :E Jn) = (0 :E

d∑
i=0

In−iJi) for every n ≥ 1.

Let d < d′. Since
d′∑

i=d+1

In−iJi ⊆ Jn, we have

(0 :E Jn) = (0 :E

d∑
i=0

In−iJi) ∩ (0 :E

d′∑
i=d+1

In−iJi) = (0 :E

d′∑
i=0

In−iJi).

Theorem 2.5. (See [2, 1.3]). Let F = {In}n≥0,G = {Jn}n≥0,H =
{Hn}n≥0, and K = {Kn}n≥0 be filtrations on R and let E be an injective
R−module.

(a) If F ⊆ G ⊆ H and F is a reduction of H relative to E then G is a
reduction of H relative to E.

(b) If F is a reduction of G relative to E and G is a reduction of H
relative to E then F is a reduction of H relative to E.

(c) If F is a reduction of G relative to E and H is a reduction of K
relative to E then FH is a reduction of GK relative to E.

Proof. (a) and (b) are clear.
(c) Since F is a reduction of G relative to E and H is a reduction of

K relative to E then there are two positive integers d, d′ such that for
every n ≥ 1,

(0 :E Jn) = (0 :E

d∑
i=0

In−iJi)

and

(0 :E Kn) = (0 :E

d′∑
t=0

Hn−tKt).

By Remark 2.4, we can assume d = d′. Then for every n ≥ 1, we have

(0 :E JnKn) = ((0 :E Jn) :E Kn) = ((0 :E

d∑
i=0

In−iJi) :E Kn)
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= ((0 :E Kn) :E

d∑
i=0

In−iJi)

= ((0 :E (
d∑
i=0

In−iJi)(
d∑
t=0

Hn−tKt)).

It is easy to see that (
d∑
i=0

In−iJi)(
d∑
t=0

Hn−tKt) =
d∑
i=0

In−iHn−iJiKi. Thus

we have

(0 :E JnKn) = (0 :E

d∑
i=0

In−iHn−iJiKi) for every n ≥ 1

and so FH is a reduction of GK relative to E. �
Now we mention a useful notation from [2]. Let I be an ideal of

R. For a subset P of Spec(R), the notation I(P) denotes (I if I = R
and), if I is proper, the intersection of those primary terms in a minimal
primary decomposition of I which are contained in at least one member
of P. We know I(P) =

⋂
P∈P

I({P}) we shall abbreviate I({P}) (for

P ∈ Spec(R)) by I(P ). Note that I(P ) is just the contraction back to
R of the extension of I to RP under the natural ring homomorphism.

Remark 2.6. (See [2, 1.6].) Let P ∈ Spec(R), I and J be ideals of R.
Let E = E(R/P ). Then the following statements are equivalent:

(a) (0 :E I) ⊆ (0 :E J);

(b) IRP ⊆ JRP ;

(c) I(P ) ⊆ J(P ).

Let F = {In}n≥0 be a filtration on R. For every prime ideal P of R,
{InRP }n≥0 is a filtration on RP . We will denote this filtration on RP
by FP .

Lemma 2.7. Let F = {In}n≥0 be a Noetherian filtration on R. Then
for every prime ideal P of R,

(FP )− = (F−)P .
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Proof. Let F− = {Un}n≥0 and (FP )− = {Hn}n≥0 where F− and (F−)P
are filtrations on R and RP respectively. Let x

1 ∈ UnRP . Then there
exist u ∈ Un and t ∈ R\P such that x

1 = u
t . Thus there exists s ∈ R\P

such that su = stx. Since u ∈ Un we have uk ∈
k∑
i=1

uk−iIni and so

(su)k ∈
k∑
i=1

(su)k−iIni for a positive integer k. But su = stx implies that

( stx1 )k ∈
k∑
i=1

( stx1 )k−iIniRP . Now by Remark 2.6 and
k∑
i=1

(stx)k−iIni ⊆
k∑
i=1

xk−iIni, we have

(0 :E(R/P )

k∑
i=1

xk−iIni) ⊆ (0 :E(R/P )

k∑
i=1

(stx)k−iIni) ⊆ (0 :E(R/P ) (stx)k).

Now since s, t ∈ R \ P we can see that

(0 :E(R/P )

k∑
i=1

xk−iIni) ⊆ (0 :E(R/P ) x
k).

So by Remark 2.6, (x1 )k ∈
k∑
i=1

(x1 )k−iIniRP . In other words x
1 ∈ Hn and

so (F−)P ⊆ (FP )−.

Conversely, let x
1 ∈ Hn. Then (x1 )k ∈

k∑
i=1

(x1 )k−iIniRP for a positive

integer k. Then there are a1 ∈ In1, . . . , ak ∈ Ink and s1, . . . , sk ∈ R \ P
such that

(
x

1
)k +

a1

s1
(
x

1
)k−1 + · · ·+ ak−1

sk−1
(
x

1
)1 +

ak
sk

= 0.

Let s = s1 . . . sk. Then there exists t ∈ R \ P such that

(tsx)k ∈
k∑
i=1

(tsx)k−iIni.

This shows tsx ∈ Un. But x
1 = tsx

ts ∈ UnRP and so (FP )− ⊆ (F−)P and
this completes the proof. �
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By well-known work of Matlis and Gabriel, We know for every in-
jective R−module E, there is a family {Pλ : λ ∈ Λ} of prime ideals
of R such that E =

⊕
λ∈Λ

E(R/Pλ) (we use E(L) to denote the injective

envelope of an R−module L). Further we know the set {Pλ : λ ∈ Λ}
is the set of all associated prime ideals of R which is denoted by AssR(E).

Remark 2.8. Let E =
⊕
λ∈Λ

E(R/Pλ) be an injective R−module. Let

F = {In}n≥0 be a filtration on R. Let Un be the set of all x ∈ R such
that

(0 :E

k∑
i=1

xk−iIni) ⊆ (0 :E x
k)

for a positive integer k. Since R is a Noetherian ring, AssR(E) is a finite
set. We know

(0 :E

k∑
i=1

xk−iIni) ⊆ (0 :E x
k)

for the positive integer k if and only if for every P ∈ AssR(E),

(0 :E(R/P )

k∑
i=1

xk−iIni) ⊆ (0 :E(R/P ) x
k).

But by Remark 2.6, for every P ∈ AssR(E),

(0 :E(R/P )

k∑
i=1

xk−iIni) ⊆ (0 :E(R/P ) x
k)

for the positive integer k if and only if

(
x

1
)k ∈

k∑
i=1

(
x

1
)k−iIniRP .

By Lemma 2.7, we have (FP )− = (F−)P . Let F− = {Jn}n≥0. Then
we see x ∈ Un if and only if x

1 ∈ JnRP for every P ∈ AssR(E). Since
(FP )− = {JnRp}n≥0 is a filtration of ideals on RP , it is easy to see that
{Un}n≥0 is a filtration of ideals on R.
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Definition 2.9. Let F = {In}n≥0 be a filtration on R and let E be an
injective R −module. For every n ≥ 0, we assume that Un contains all
x ∈ R such that

(0 :E

k∑
i=1

xk−iIni) ⊆ (0 :E x
k)

for a positive integer k. By Remark 2.8, we know {Un}n≥0 is a filtration
on R. This filtration is denoted by F∗(E) and is called the integral
closure of a filtration F = {In}n≥0 relative to an injective R−module E.
By Remark 2.8, we can see (F∗(E))P = (F−)P for every P ∈ AssR(E).

For example, let I be an ideal of R and E be an injective R−module.
For F = {In}n≥0 we have F∗(E) = {(In)∗(E)}n≥0 (please note, if I and
J are two ideals of R and E is an injective R−module then we have
I∗(E)J∗(E) ⊆ (IJ)∗(E)).

Theorem 2.10. Let F = {In}n≥0 be a filtration on R and let E be an
injective R−module. Let F∗(E) = {Un}n≥0. Further for a non negative
integer n and x ∈ R, let Lk = Rxk+xk−1In1 +xk−2In2 + · · ·+xIn(k−1) +
Ink and Hk = Ink. Then x ∈ Un if and only if the filtration {Hk}k≥0 is
a reduction of filtration {Lk}k≥0 relative to E.

Proof. (⇒) Let x ∈ Un. Then there exists a positive integer k such
that

(0 :E

k∑
i=1

xk−iIni) ⊆ (0 :E x
k).

Since xk−iIni ⊆ Hk−(k−i)Lk−i for every 1 ≤ i ≤ k,

(0 :E

k∑
i=0

Hk−iLi) = (0 :E

k∑
i=0

Hk−(k−i)Lk−i) ⊆ (0 :E

k∑
i=1

xk−iIni).

But (0 :E
k∑
i=1

xk−iIni) ⊆ (0 :E x
k) and so

(0 :E

k∑
i=0

Hk−iLi) ⊆ (0 :E

k∑
i=0

xk−iIni)) = (0 :E Lk).
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Also we know
k∑
i=0

Hk−iLi ⊆ Lk. Then

(0 :E Lk) = (0 :E

k∑
i=0

Hk−iLi).

Now, we will show that

(0 :E Lt) = (0 :E

k∑
i=0

Ht−iLi) for every t ≥ 1.

First let t < k. Since t < k,

(0 :E

k∑
i=0

Ht−iLi) ⊆ (0 :E H0Lt) = (0 :E Lt).

Also we know
k∑
i=0

Ht−iLi ⊆ Lt. Thus we have

(0 :E Lt) = (0 :E

k∑
i=0

Ht−iLi) for every t < k.

Now let t > k. This is clear that
k∑
i=0

Ht−iLi =
k∑
i=0

xiIn(t−i)) and so

(0 :E

k∑
i=0

Ht−iLi) = (0 :E

k∑
i=0

xiIn(t−i)).

Since (0 :E
k∑
i=1

xk−iIni) ⊆ (0 :E x
k), we can see that

(0 :E

k∑
i=1

xk−iIn(r+i)) ⊆ (0 :E x
k+r).

But by

(0 :E x
k+rIn(t−(k+r))) ⊇ (0 :E

k∑
i=1

xk−iIn(r+i)In(t−(k+r)))
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⊇ (0 :E

k∑
i=1

xk−iIn(t−k+i)) ⊇ (0 :E

k∑
i=0

xiIn(t−i))

we have

(0 :E Lt) = (0 :E

t∑
i=k+1

xiIn(t−i))) ∩ (0 :E

k∑
i=0

xiIn(t−i))

= (0 :E

k∑
i=0

xiIn(t−i)) = (0 :E

k∑
i=0

Ht−iLi)).

Then

(0 :E Lt) = (0 :E

k∑
i=0

Ht−iLi) for every t ≥ 1.

(⇐) Let {Hk}k≥0 be a reduction of filtration {Lk}k≥0 relative to M .
Then there exists a positive integer d such that

(0 :E Lk) = (0 :E

d∑
i=0

Hk−iLi) for every k ≥ 1.

Particularly, we have (0 :E Ld+1) = (0 :E
d∑
i=0

Hd+1−iLi). But by

d∑
i=0

Hd+1−iLi =
d∑
i=0

xiIn(d+1−i) ⊆
d∑
i=0

xiIn(d−i) we have

(0 :E x
d+1) ⊇ (0 :E Ld+1) = (0 :E

d∑
i=0

Hd+1−iLi) ⊇ (0 :E

d∑
i=0

xiIn(d−i)).

Hence x ∈ Un. �
The following theorem shows that F → F∗(E), is a semi-prime oper-

ation.

Theorem 2.11. (See [4, 2.4].) Let F = {In}n≥0 and G = {Jn}n≥0 be
filtrations on R. Then for every injective R−module E, we have
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(a) F ⊆ F∗(E);

(b) if F ⊆ G then F∗(E) ⊆ G∗(E);

(c) (F∗(E))∗(E) = F∗(E);

(d) F∗(E)G∗(E) ⊆ (FG)∗(E).

Proof. (a) and (b) are clear.
(c) By (a) and (b), we have F∗(E) ⊆ (F∗(E))∗(E). Let F = {In}n≥0,

F∗(E) = {Un}n≥0, F− = {Jn}n≥0 and (F∗(E))∗(E) = {Kn}n≥0. Let
x ∈ Kn. By Lemma 2.7 and Remark 2.8, we have

((F∗(E))∗(E))P = ((F∗(E))−)P = ((F∗(E))P )−

= ((F−)P )− = ((F−)−)P

for every P ∈ AssR(E). Also we know from [4, 2.4.3], (F−)− = F−.
Thus there are a ∈ Jn and s ∈ R \ P such that x

1 = a
s . Hence tsx = ta

for t ∈ R \P . Since tsx = ta ∈ Jn, there exists a positive integer k such

that (tsx)k ∈
k∑
i=1

(tsx)k−iIni. Now since ts ∈ R \P , it is easy to see that

(0 :E(R/P )

k∑
i=1

xk−iIni) ⊆ (0 :E(R/P ) x
k)

for every P ∈ AssR(E). Then x ∈ Un and so (F∗(E))∗(E) ⊆ F∗(E). This
follows (c).

(d) Let F∗(E) = {Un}n≥0 and G∗(E) = {Vn}n≥0. Let x ∈ Un and
y ∈ Vn. Further let P ∈ AssR(E). We have

(F∗(E))P (G∗(E))P = (F−)P (G−)P = (F−G−)P .

But by [4, 2.4.4], we know F−G− ⊆ (FG)−. This shows if (FG)− =
{Hn}n≥0 then x

1
y
1 ∈ HnRP . Thus there are a ∈ Hn and s, t ∈ R \ P

such that tsxy = ta. Since ta ∈ Hn, there is a positive integer k such

that (stxy)k ∈
k∑
i=1

(tsxy)k−iIniJni. This implies that

(0 :E(R/P )

k∑
i=1

(xy)k−iIniJni) ⊆ (0 :E(R/P )

k∑
i=1

(tsxy)k−iIniJni)



12 F. DOROSTKAR

⊆ (0 :E(R/P ) (tsxy)k).

Since s, t ∈ R \ P , for every P ∈ AssR(E) we have

(0 :E(R/P )

k∑
i=1

(xy)k−iIniJni) ⊆ (0 :E(R/P ) (xy)k).

Then (0 :E
k∑
i=1

(xy)k−iIniJni) ⊆ (0 :E (xy)k) and so if (FG)∗(E) =

{Wn}n≥0 then xy ∈Wn. �

3 Main results

Let I be an ideal of R and E be an injective R−module. In [2], it is
shown that I∗(E) = I−(AssR(E)). In this section we will prove a similar
theorem for the integral closure of a filtration F relative to an injective
R−module E. First we introduce the following notation.

Let F = {In}n≥0 be a filtration on R and let P be a subset of
Spec(R). For every P ∈ P, we have

In(P)Im(P) ⊆ In(P )Im(P ) = (InRP )c(ImRP )c ⊆ (InImRP )c

⊆ (In+mRP )c = In+m(P ).

Then

In(P)Im(P) ⊆
⋂
P∈P

In+m(P ) = In+m(P).

This shows that {In(P)}n≥0 is a filtration on R. We denote this filtration
by F(P).

Now we are ready to prove the main proposition of this section.

Theorem 3.1. (See [2, 2.6].) Let F = {In}n≥0 be a filtration on R and
let E be an injective R−module. Then F∗(E) = F−(AssR(E)).

Proof. Let F∗(E) = {Un}n≥0 and (F)− = {Jn}n≥0. We will show

Un = Jn(AssR(E)) for every n.
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Let x ∈ Un. Then for every P ∈ AssR(E), x
1 ∈ JnRP . Let Jn =

Q1 ∩ · · · ∩Qk be a minimal primary decomposition of Jn. Let√
Qi ∩ P = ∅ for every 1 ≤ i ≤ l

and √
Qi ∩ P 6= ∅ for every l + 1 ≤ i ≤ k.

Then x
1 ∈ JnRP = (Q1 ∩ · · · ∩Ql)RP and so there are y ∈ Q1 ∩ · · · ∩Ql

and s, t ∈ R \ P such that stx = sy ∈ Q1 ∩ · · · ∩ Ql. Since st /∈
√
Qi

for every 1 ≤ i ≤ l, x ∈ Q1 ∩ · · · ∩ Ql and so x ∈ Jn(P ) for every
P ∈ AssR(E). Hence x ∈ Jn(AssR(E)) and so Un ⊆ Jn(AssR(E)). For
converse inclusion, let x ∈ Jn(P ) for every P ∈ AssR(E). Then x

1 ∈
JnRP for every P ∈ AssR(E). Hence there are y ∈ Jn and s, t ∈ R \ P
such that stx = sy ∈ Jn. Then there is a positive integer k such that

(stx)k ∈
k∑
i=1

(tsx)k−iIni. By s, t ∈ R \ P we can see

(0 :E(R/P )

k∑
i=1

xk−iIni) ⊆ (0 :E(R/P )

k∑
i=1

(tsx)k−iIni)

⊆ (0 :E(R/P ) (stx)n)

⊆ (0 :E(R/P ) x
n).

Thus we have

(0 :E(R/P )

k∑
i=1

xk−iIni) ⊆ (0 :E(R/P ) x
n)

for every P ∈ AssR(E). Thus x ∈ Un and so Jn(AssR(E)) ⊆ Un. This
follows Un = Jn(AssR(E)). �

Definition 3.2. (See [4, 3.1(2)].) Let F = {In}n≥0 be a filtration on R
and F− = {Jn}n≥0. Members of

A−(F) = {P : P ∈ Ass(R/Jn) for some n ≥ 1}

are called the asymptotic prime divisors of F .
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Let E be an injective R−module. We know from [1, 2.2], for each
ideal I of R, the module (0 :E I) has a secondary representation, and so
we can form the finite set of prime ideals AttR(0 :E I). In fact,

AttR(0 :E I) = {P ′ ∈ ass(I)) : P ′ ⊆ P for some P ∈ AssR(E)}.

Definition 3.3. Let F = {In}n≥0 be a filtration on R and E be an
injective R−module. Let F∗(E) = {Un}n≥0. We will show the set

{P : P ∈ Att(0 :E Un) for some n ≥ 1}

by At∗(F , E).

Theorem 3.4. (See [2, 3.2].) Let F = {In}n≥0 be a Noetherian filtration
on R. Let E be an injective R−module. Then At∗(F , E) is a finite set.

Proof. Let F∗(E) = {Un}n≥0 and F− = {Jn}n≥0. By Note 3, we know

At∗(F , E) = {P ′ ∈ ass(Un) : P ′ ⊆ P for some P ∈ AssR(E)}.

But we know from Theorem 3.1, F∗(E) = F−(AssR(E)). Then

At∗(F , E) = {P ′ ∈ ass(Jn(AssR(E)) : P ′ ⊆ P for some P ∈ AssR(E)}

= {P ′ ∈ A−(F) : P ′ ⊆ P for some P ∈ AssR(E)}.

Now the proof is completed by [4, 3.3]. �
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