Journal of Mathematical Extension Vol. 16, No. 2, (2022) (4)1-12 URL: https://doi.org/10.30495/JME.2022.1572 ISSN: 1735-8299 Original Research Paper

On the Space of Real Valued Statistically Convergent Sequences

Y. Sohooli

Shiraz Branch, Islamic Azad University

K. Jahedi^{*} Shiraz Branch, Islamic Azad University

A. Alikhani-Koopaei

Pennsylvania State University

Abstract. The aim of this paper is to introduce an equivalence relation on the space of real valued statistically convergence sequences, C_{st} , and an inner product on the set of its equivalence classes. We equip C_{st} with the induced *J*- metric, d_J , by the given inner product. We prove that C_{st} is a complete *J*-metric space. We also show that the space of all real valued convergent sequences is a dense subspace of (C_{st}, d_J) .

AMS Subject Classification: 11B05, 54E35. **Keywords and Phrases:** Natural density of sets, statistically convergence, equivalence relation, quotient space.

1 Introduction

The concept of statistically convergence was introduced by Fast in [4] and Steinhaus in [10] independently in the same year 1951. It has

Received: February 2020; Accepted: August 2020

^{*}Corresponding Author

many applications in various areas such as measure theory, trigonometric space, operator theory, etc. (e.g. [1, 2, 3, 5, 9, 11]). Let K be a subset of N. The symbol $\delta(K)$ is called *natural density* of K and if the following limit exists, it is defined by

$$\delta(K) = \lim_{n \to \infty} \frac{1}{n} \left| \left\{ k \le n : \ k \in K \right\} \right| = \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{\infty} \chi_K(k),$$

where χ_K is the characteristic function of K and |A| denotes the cardinality of the set A. Obviously, $0 \leq \delta(K) \leq 1$ holds for all $K \subseteq \mathbb{N}$. If $\delta(K) = 1$, we say K is a *natural dense subset* of \mathbb{N} and $\delta(K^c) = 0$. If $\mathcal{K} = \{K \subseteq \mathbb{N} : \delta(K) = 1\}$, we have $K_1 \cap K_2$ and $K_1 \cup K_2$ are in \mathcal{K} where K_1, K_2 are in \mathcal{K} (see [10]). Let $x = \{x_n\}_n$ be a sequence. We say $\{x_n\}$ has *P*-property "for almost all n" (or x_n satisfies *P*-property, a.a.n) when the natural density set of all n that x_n has not *P*-property is zero.

Definition 1.1. ([6]) A real valued sequence $\{x_n\}_n$ is said to be *statistically converges* to l, if for every $\varepsilon > 0$, $\delta\left(\left\{k \in \mathbb{N} : |x_k - l| \ge \varepsilon\right\}\right) = 0$ holds. In this case, we write st- $\lim_{n \to \infty} x_n = l$ or $x_n \xrightarrow{st.} l$ as $n \to \infty$.

Note that each finite set has zero density, therefore every convergent sequence is statistically convergent, but the converse of this statement is not true in general (see [6]).

Definition 1.2. ([6]) A sequence $x = \{x_n\}_n$ is called *statistically Cauchy* if for each $\varepsilon > 0$ there exists $N(\varepsilon)$ such that

$$\delta\left(\left\{k \in \mathbb{N} : |x_k - x_{N(\varepsilon)}| \ge \varepsilon\right\}\right) = 0.$$

Fridy in 1985 ([6]) showed that the structure of statistically convergent sequence is analogous to the structure of convergent subsequence that the set of its index is a natural dense subset of \mathbb{N} .

Theorem 1.3. ([6]) A sequence $x = \{x_n\}_n$ is statistically convergent if and only if it is statistically Cauchy sequence. Also, st- $\lim_{n\to\infty} x_n = l$ if and only if there exists a convergent sequence $y = \{y_n\}_n$ such that $x_n = y_n$ a.a.n. Kaya et. al in ([7]) represented a different proof from that of [6] to show that a sequence x is statistically convergent to l if and only if there exists $K \subseteq \mathbb{N}$ with $\delta(K) = 1$ such that x is converges to l in K, i.e

st-
$$\lim_{n \to \infty} x_n = \lim_{\substack{n \to \infty \\ n \in K}} x_n = l.$$

Let C_{st} be the space of all real valued statistically convergent sequences. Following lemma guarantees that the statistically convergent sequences space C_{st} is a vector space under addition and scalar multiplication over \mathbb{R} .

Lemma 1.4. ([4]) Assume that $\{x_n\}_n$ and $\{y_n\}_n$ are in C_{st} such that st- $\lim_{n\to\infty} x_n = L_1$ and st- $\lim_{n\to\infty} y_n = L_2$, for some L_1 and L_2 in \mathbb{R} . Then,

- (i) $st-\lim_{n \to \infty} (x_n + y_n) = L_1 + L_2.$
- (*ii*) $st-\lim_{n\to\infty} (x_n y_n) = L_1 L_2.$
- (*iii*) $st-\lim_{n\to\infty} (cx_n) = cL_1$, for any $c \in \mathbb{R}$.

In this paper we introduce an equivalence relation "~" on the vector space C_{st} to give an inner product on the quotient space C_{st}/\sim . We define the induced *J*-metric d_J on C_{st} and prove that (C_{st}, d_J) is a complete metric space. We also show that the subspace C of all real valued convergent sequences is a dense subspace of metric space (C_{st}, d_J) .

2 Main Results

Remember that a mapping $f : \mathbb{R} \to \mathbb{R}$ is called *sequentially continuous* if $\lim_{n\to\infty} f(x_n) = f(x)$ whenever $\lim_{n\to\infty} x_n = x$. Analogous to the concept of sequentially continuous we give the following definition which is used in the sequel.

Definition 2.1. A mapping $f : \mathbb{R} \to \mathbb{R}$ is said to be *statistically sequentially continuous*, when

st-
$$\lim_{n \to \infty} x_n = x$$
 implies that st- $\lim_{n \to \infty} f(x_n) = f(x)$.

Lemma 2.2. Every sequentially continuous function on \mathbb{R} is statistically sequentially continuous.

Proof. Let $\{x_n\}_n$ be a sequence which is statistically converges to l and f be a sequentially continuous map. Then there exists a subset K of \mathbb{N} with $\delta(K) = 1$ such that

st-
$$\lim_{n \to \infty} x_n = \lim_{\substack{n \to \infty \\ n \in K}} x_n = l.$$

Since f is a sequential continuous map then

st-
$$\lim_{n \to \infty} f(x_n) = \lim_{\substack{n \to \infty \\ n \in K}} f(x_n) = f(l).$$

For example by Lemma 2.2 for the absolute value function we have

st-
$$\lim_{n \to \infty} |x_n| = |$$
st- $\lim_{n \to \infty} x_n |$, where $\{x_n\}_n \in \mathcal{C}_{st}$. (1)

Recently in ([8]) Kucukaslan et al. have defined an equivalence relation on the set of all sequences of points from a metric space by introducing $x \sim y$ if and only if there is a natural dense subset M of \mathbb{N} such that $x_n = y_n$ for all $n \in M$. So $x \sim y$ if and only if $x_n = y_n$ a.a.n. Note that if $x_n = y_n$ for almost all n and the two sequences are statistically convergent, then st- $\lim_{n\to\infty} x_n =$ st- $\lim_{n\to\infty} y_n$. The converse is not necessarily true. For example;

st-
$$\lim_{n \to \infty} \frac{1}{n}$$
 = st- $\lim_{n \to \infty} 0 = 0$,

but $\frac{1}{n} \neq 0$ for all $n \in \mathbb{N}$.

In the following we want to give an equivalence relation that some how generalizes the equivalence relation introduced by Kucukaslan et al. on C_{st} . We will use this to introduce an inner product known as *J*-inner product on C_{st} and finally we will show that the *J*-metrict space C_{st} is complete, hence it is a Hilbert space.

Definition 2.3. Suppose $x = \{x_n\}_n$ and $y = \{y_n\}_n$ are in C_{st} . Define the relation " \sim " on the set C_{st} as follows

"
$$x \sim y$$
" if and only if st- $\lim_{n \to \infty} x_n =$ st- $\lim_{n \to \infty} y_n$.

Obviously the relation "~" is an equivalence relation on C_{st} . The quotient space C_{st}/\sim (briefly \tilde{C}_{st}) is the collection of all equivalence classes

$$\tilde{x} = [x] := \left\{ \{y_n\}_n \in \mathcal{C}_{st} : \text{ st-} \lim_{n \to \infty} x_n = \text{ st-} \lim_{n \to \infty} y_n \right\}.$$

Note that $\tilde{x} = \tilde{y}$ if and only if st- $\lim_{n \to \infty} x_n = \operatorname{st-} \lim_{n \to \infty} y_n$. Also $\tilde{x} = \tilde{0}$ if and only if st- $\lim_{n \to \infty} x_n = 0$ (i.e $x \in \tilde{0}$).

Define the real valued function φ on $\mathcal{C}_{st} \times \mathcal{C}_{st}$ by

$$\varphi(x,y) = \text{st-} \lim_{n \to \infty} (x_n \, y_n), \tag{2}$$

where $x = \{x_n\}_n \in \mathcal{C}_{st}$ and $y = \{y_n\}_n \in \mathcal{C}_{st}$. Clearly, the function φ is a semi-inner product on the vector space \mathcal{C}_{st} over \mathbb{R} . Note that if $x = \{0\}_n$, then $\varphi(x, x) = 0$. But the converse is not true in general for example $\varphi(x, x) = 0$, where $0 \neq x = \{x_n\}_n = \{\frac{1}{n}\}_n$.

The following lemma shows that the semi inner product φ induces an inner product on $\tilde{\mathcal{C}_{st}}$.

Lemma 2.4. Let \tilde{F} be a function on $\tilde{C_{st}} \times \tilde{C_{st}}$ defined by $\tilde{F}(\tilde{x}, \tilde{y}) = \varphi(x, y)$ where $x = \{x_n\}, y = \{y_n\}$ are in C_{st} and φ is defined by (2). Then \tilde{F} is an inner product on $\tilde{C_{st}}$.

Proof. Let $x = \{x_n\}$ and $y = \{y_n\}$ be in \mathcal{C}_{st} such that $s = \{s_n\} \in \tilde{x}$ and $t = \{t_n\} \in \tilde{y}$. So

st-
$$\lim_{n \to \infty} x_n =$$
st- $\lim_{n \to \infty} s_n$ and st- $\lim_{n \to \infty} y_n =$ st- $\lim_{n \to \infty} t_n$.

Then

$$\varphi(x,y) = \operatorname{st-}\lim_{n \to \infty} x_n y_n = \operatorname{st-}\lim_{n \to \infty} s_n t_n = \varphi(s,t).$$

This shows that \tilde{F} is well defined. Clearly, \tilde{F} is a bi-linear functional on $\tilde{\mathcal{C}}_{st}$ over \mathbb{R} with $\tilde{F}(\tilde{x}, \tilde{x}) \geq 0$ and $F(\tilde{x}, \tilde{x}) = 0$ if and only if $\tilde{x} = \tilde{0}$. Therefore \tilde{F} is an inner product on $\tilde{\mathcal{C}}_{st}$. \Box

From now on, we refer to the bi-linear function φ as the *J*-inner product on C_{st} and use (C_{st}, φ) to denote the *J*-inner product space. Note that $\varphi(x, x) = 0$ if and only if $\tilde{x} = \tilde{0}$. Define $\|.\|_J : \mathcal{C}_{st} \to \mathbb{R}$ by

6

$$||x||_J = \varphi(x, x)^{1/2} = \text{st-}\lim_{n \to \infty} |x_n|$$

where $x = \{x_n\}_n \in C_{st}$ and φ is the *J*-inner product on C_{st} . The pair $(C_{st}, \|.\|_J)$ is called *J*-normed space.

The $\|.\|_J$ enables us to introduce a metric, \tilde{d}_J , on the set \tilde{C}_{st} as $\tilde{d}_J(\tilde{x}, \tilde{y}) = d_J(x, y) = \|x - y\|_J$. In this case $(\tilde{C}_{st}, \tilde{d}_J)$ and (\mathcal{C}_{st}, d_J) have identical metric. So from now on we interchangeably use the metric space (\mathcal{C}_{st}, d_J) . Note that $d_J(x, x) = 0$ if and only if $\tilde{x} = \tilde{0}$.

Remark 2.5. For any $x = \{x_n\}_n$ and $y = \{y_n\}_n$ in the *J*-metric space $(\mathcal{C}_{st}, d_J), d_J(x, y) = 0$ if and only if " $x \sim y$ ".

In fact, if st- $\lim_{n\to\infty} x_n = \ell_1$ and st- $\lim_{n\to\infty} y_n = \ell_2$, for some ℓ_1 and ℓ_2 in \mathbb{R} , then by (1)

$$\begin{aligned} |\ell_1 - \ell_2| &= |\operatorname{st-}\lim_{n \to \infty} (x_n - y_n)| \\ &= st - \lim_{n \to \infty} |x_n - y_n| \\ &= d_J(x, y). \end{aligned}$$

Definition 2.6. Let $\{y^m\}_m$ be a sequence such that for all $m \in \mathbb{N}$, $y^m = \{y_k^m\}_k \in \mathcal{C}_{st}$. A \mathcal{C}_{st} -valued sequence $\{y^m\}_m$ is said to be

(i) J-convergent to $y = \{y_k\}_k \in \mathcal{C}_{st}$ if $\lim_{m \to \infty} d_J(y^m, y) = 0$, i.e.,

$$\lim_{m \to \infty} \left(\operatorname{st-} \lim_{k \to \infty} |y_k^m - y_k| \right) = 0$$

holds. In this case, we write $y^m \xrightarrow{d_J} y$ as $m \to \infty$.

- (ii) J-Cauchy if $\lim_{m,n\to\infty} d_J(y^n, y^m) = 0.$
- (*iii*) The J- metric space C_{st} is complete if every J-Cauchy sequence in C_{st} is a J-convergent sequence to an element of C_{st} .
- (iv) A subset K of the J-metric space C_{st} is called d_J -dense, if for each $x \in C_{st}$ there exists a K- valued sequence $\{y^n\}_n$ such that $\lim_{n\to\infty} d_J(y^n, x) = 0.$

Similar to a metric space, we refer to τ_{d_J} as the topology on \mathcal{C}_{st} that is induced by the generalized metric d_J . Then

$$B(x,r) = \{ y \in C_{st} : d_J(x,y) < r \} \\ = \{ y \in C_{st} : st - \lim_{n \to \infty} |x_n - y_n| < r \}$$

is an open ball with center $x = \{x_n\}$ and radius r > 0.

If $x, y \in \mathcal{C}_{st}$ and " $x \sim y$ ", then B(x, r) = B(y, r) holds for all r > 0.

Proposition 2.7. Let $\{x^k\}_k$ be a \mathcal{C}_{st} -valued sequence with $x^k = \{x_m^k\}_m \in \mathcal{C}_{st}$. Then, for any $y^1 = \{y_m^1\}$ and $y^2 = \{y_m^2\}_m$ in \mathcal{C}_{st} the following statements hold.

(a) If $x^k \stackrel{d_J}{\to} y^1$ as $k \to \infty$ and $y^1 \sim y^2$, then $x^k \stackrel{d_J}{\to} y^2$, as $k \to \infty$. (b) If $x^k \xrightarrow{d_J} y^1$ and $x^k \xrightarrow{d_J} y^2$ as $k \to \infty$, then $y^1 \sim y^2$.

Proof. (a) Let $\ell \in \mathbb{R}$ be the statistical limit of y^1 and y^2 . Let $\varepsilon > 0$.

By Theorem 1.3 there are two natural dense subset K_1 and K_2 of \mathbb{N} such that

$$|y_m^i - \ell| < \frac{\varepsilon}{3}, \ m \in K_i, \ i = 1, 2.$$

$$(3)$$

According to the assumption there exists a positive number N such that st- $\lim_{m\to\infty} |x_m^k - y_m^1| < \frac{\varepsilon}{3}$ for all $k \ge N$. By considering the natural dense subset $K = K_1 \cap K_2$ of \mathbb{N} we have

$$|x_m^k - y_m^2| \le |x_m^k - y_m^1| + |y_m^1 - \ell| + |y_m^2 - \ell|,$$
(4)

for all $k \ge N$ and $m \in K, i = 1, 2, .$ By (3) and (4) st- $\lim_{m \to \infty} |x_m^k - y_m^2| < \varepsilon$ for all $k \ge \mathbb{N}$. So $\lim_{k \to \infty} d_J(x^k, y^2) = 0$. (b) Let $\varepsilon > 0$, $x^k \xrightarrow{d_J} y^1$ and $x^k \xrightarrow{d_J} y^2$ as $k \to \infty$. There are two natural

S
$$N_1$$
 and N_2 such that for all $k \ge N_i$, $i = 1, 2$

$$d_J(x^k, y^i) < \frac{\varepsilon}{2}.$$
 (5)

Let $k \ge \max\{N_1, N_2\}$. By the triangle inequality of d_J and (5) we have

$$0 \le d_J(y^1, y^2) < d_J(y^1, x^k) + d_J(x^k, y^2) < \varepsilon.$$

This completes the proof.

numbers

Theorem 2.8. The space C of real valued convergent sequences is a d_J -dense subspace of C_{st} .

Proof. Let $\varepsilon > 0$ and $x = \{x_k\}_k \in \mathcal{C}_{st}$ be a sequence statistically convergent to $t \in \mathbb{R}$. Then, by Theorem 1.3 there is a natural dense subset K of \mathbb{N} such that

st-
$$\lim_{k \to \infty} x_k = \lim_{\substack{k \to \infty \\ k \in K}} x_k = t$$

holds. From the last equality, there exists a positive number $N_0(\varepsilon) \in \mathbb{N}$ such that

$$|x_k - t| < \varepsilon \tag{6}$$

holds for all k in the natural dense subset $\{k \ge \mathbb{N}_0 : k \in K\}$. Let N_1 be a positive number such that $\frac{1}{k} < \varepsilon$ when $k \ge N_1$ and let N be the $\max\{N_0, N_1\}$. Then the subset $A = \{k \in K : k \ge N\}$ is a natural dense subset of \mathbb{N} .

Now we define the \mathcal{C} -valued sequence $\{y^m\}_m$, where $y^m = \{y^m_k\}_k$ as follows

$$y_k^m = \begin{cases} x_k + \frac{1}{mk} & k \in A, \ m \ge \mathbb{N} \\ t & k \notin A \text{ or } m < \mathbb{N}. \end{cases}$$
(7)

So by (6) and (7) we have

$$|y_k^m - t| = |x_k - t + \frac{1}{mk}| < (1 + \frac{1}{m})\varepsilon$$

for all k, thus

$$\lim_{k \to \infty} |y_k^m - t| = 0,$$

hence $y^m \in \mathcal{C}$ for all m.

On the other hand by definition of y^m , $|y_k^m - x_k| < \frac{1}{m}\varepsilon$ for all k in the natural dense subset A and $m \ge N$. Also

$$d_J(y^m, x) < \frac{1}{m}\varepsilon.$$

So the proof is completed. \Box

We use the following lemma to prove the completeness of (\mathcal{C}_{st}, d_J) .

Lemma 2.9. Let $\{y^m\}_m$ be a C_{st} -valued J-Cauchy sequence and let the real number y_0^m be the statistical limit of y^m , for all $m \in \mathbb{N}$. Then, the real valued sequence $\{y_0^m\}_m$ is a convergence sequence.

Proof. Let $\varepsilon > 0$ and N be a positive number such that

$$d_J(y^m, y^n) < \varepsilon \text{ for all } m > n \ge N.$$
 (8)

According to the assumption for any $m \in \mathbb{N}$ there is a dense subset K_m such that

st-
$$\lim_{k \to \infty} y_k^m = \lim_{\substack{k \to \infty \\ k \in K_m}} y_k^m = y_0^m$$
(9)

where $y^m = \{y_k^m\}_k \in \mathcal{C}_{st}$. Put $K = K_m \cap K_n$ when $m > n \ge N$. Then by (8) and (9) we have

$$|y_0^m - y_0^n| = |\operatorname{st-}\lim_{k \to \infty} (y_k^m - y_k^n)|$$

$$= |\lim_{\substack{k \to \infty \\ k \in K}} (y_k^m - y_k^n)|$$

$$= \lim_{\substack{k \to \infty \\ k \in K}} |y_k^m - y_k^n|$$

$$= d_J(y^m, y^n)$$

$$< \varepsilon.$$
(10)

So (10) implies $\{y_0^m\}_m$ is a real valued Cauchy sequence and then it converges to some $y_0 \in \mathbb{R}$. \Box

Theorem 2.10. The pair (\mathcal{C}_{st}, d_J) is a *J*-complete metric space.

Proof. Suppose $\{y^m\}_m$ is a \mathcal{C}_{st} -valued *J*-Cauchy sequence, when $y^m = \{y_k^m\}_k$. Let ε be an arbitrary positive number. By Lemma 2.9 the following statements hold.

(i) There are a positive number N_0 and a natural dense subset K_0 such that $|y_k^m - y_k^n| < \varepsilon$ hold for all $m > n \ge N_0$ and $k \in K_0$.

(*ii*) There exisits a real number $y_0^m \in \mathbb{R}$ such that st- $\lim_{k\to\infty} y_k^m = y_0^m$ $m = 1, 2, 3, \dots$ Also for each m there is a natural dense subset K'_m of \mathbb{N} and a positive number N_m so that $|y_k^m - y_0^n| < \varepsilon$ hold for $k \in \{k \in K'_m : k \ge N_m\}$.

(*iii*) The real valued sequence $\{y_0^m\}_m$ converges to a real number y_0 . So there is a positve number N'_0 such that $|y_0^m - y_0| < \varepsilon$ holds for all $m \ge N'_0$.

Denote the natural dense subset $K_m := K_0 \cap \{k \in K'_m : k \ge N_m\}$ m=1,2,3,... and $N = max\{N_0, N'_0\}$.

Define a sequence $x = \{x_k\}_k$ by

$$x_k = \begin{cases} y_k^N & k \in \bigcup_{m=N}^{\infty} K_m \\ \\ y_0 & otherwise. \end{cases}$$

We must show that $x \in C_{st}$ and $\lim_{m \to \infty} d_J(y^m, x) = 0$. If $k \in \bigcup_{m=N}^{\infty} K_m$, then $k \in K_m$ for some $m \ge N$ and

$$|x_k - y_0| \le |y_k^N - y_k^m| + |y_k^m - y_0^m| + |y_0^m - y_0| < 3\varepsilon.$$

Therefore st- $\lim_{k\to\infty} x_k = y_0$ m = 1, 2, 3, ... that is $x \in \mathcal{C}_{st}$. Suppose $m \ge N$ and $k \in K_m$ then

$$|y_k^m - x_k| = |y_k^m - y_k^N| < \varepsilon.$$

$$\tag{11}$$

So (11) holds for $k \in \bigcup_{m=N}^{\infty} K_m$. Hence $d_J(y^m, x) < \varepsilon$ for all $m \ge N$ and it completes the proof. \Box

Remark 2.11. According to the introduced inner product on C_{st} and the induced metric d_J on C_{st} , by Theorem 2.10 the space C_{st} is a Hilbert space.

References

 B. Bilalov, T. Nazarova, On statistical convergence in metric spaces, Jour. of Math. Res., 7 (1) (2015), 37–43.

- [2] J. Conner, J. Kline, On statistical limit points and consistency of statistical convergence, J. Math. Anal. Appl., 197 (1996), 392–399.
- [3] O. Duman, M. K. Khan, and C. Orhan, A-Statistical convergence of approximating operators, Math. Inequal. Appl., 6 (2003), 689– 699.
- [4] H. Fast, Sur la convergence statistique, Colloq. Math., 2 (1951), 241–244.
- [5] N. Frantzikinakis and B. Kra, Polynomial averages converge to the product of integrals, Israel J. Math., 148 (2005), 267–276.
- [6] J. A. Fridy, On statistical convergence, Analysis., 5 (1985), 301– 313.
- [7] E. Kaya, M. Kucukaslan, and R. Wagner, On statistical convergence and statistical monotonicity, Anal. Univ. Sci. Budapest, Sect. Comput. 39(2013), 257–270.
- [8] M. Kucukaslan, U. Deger, and O. Dovogoshey, On the statistical convergence of metric valued sequences, Ukranian Math. Jour., 66 (5) (2014), 796–805.
- [9] H. I. Miller, A measure theoritical subsequence characterization of statistical convergence, Trans. Amer. Math. Soc., 347 (1995), 1811– 1819.
- [10] H. Steinhaus, Sur la convergence ordinaire et la convergence asymtotique, Colloq. Math., 2 (1951), 73–74.
- [11] A. Zygmund, Trigonometric Series, Cambridge Univ. Press, Cambridge, 1979.

Yousef Sohooli

Ph. D. Student of Mathematics Department of Mathematics, Shiraz Branch, Islamic Azad University Shiraz, Iran E-mail: ysohooly@yahoo.com

Khadijeh Jahedi

12 Y. SOHOOLI, K. JAHEDI, AND A. ALIKHANI-KOOPAEI

Associate Professor of Mathematics Department of Mathematics, Shiraz Branch, Islamic Azad University Shiraz, Iran E-mail: mjahedi80@yahoo.com

Aliasghar Alikhani-Koopaei

Associate Professor of Mathematics Department of Mathematics, Berks College, Pennsylvania State University, Tulpehocken Road, Reading, PA19610-6009, USA. E-mail: axa12@psu.edu