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Abstract. The main objective of this paper is to propose a new ana-
lytical method called the inverse fractional Aboodh transform method
for solving fractional differential equations. Fractional derivatives are
taken in the Riemann-Liouville and Caputo-Liouville sense. The main
advantages of this method it that it is direct and concise. Various ex-
amples are given to shows that the proposed method is very efficient
and accurate.
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1 Introduction

In recent years, interest to fractional differential equations has been in-
creasing considerably by many researchers in mathematics and physics
because of its huge application area in various fields such as fluid mechan-
ics, viscoelasticity, control theory, oil industries, relaxation processes,
mathematical biology and other fields [2, 10, 11, 12, 14]. Therefore, a
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great deal of literature has been provided to create solutions for frac-
tional differential equations as several powerful methods have been pro-
posed to obtain approximate and exact solutions to fractional differential
equations such as: Adomian decomposition method [8], variational iter-
ation method [22], fractional difference method [23], differential trans-
form method [3], homotopy analysis method [9], homotopy perturbation
method [22], fractional reduced differential transform method (FRDTM)
[13], fractional residual power series method (FRPSM) [15].

The integral transform method is an important mathematical tech-
nique. With the help of this technique, fractional differential equations
which have difficult solution procedure can be converted into well-known
algebraic equations which can be easily solved. There are many integral
transforms for solving these type of problems are expressed in the lit-
erature such as the Laplace transform [19], the Fourier Transform [20],
the Mellin transform [7].

In this paper we propose a new analytical method called the inverse
fractional Aboodh transform method for solving fractional differential
equations. To ensure the accuracy and effectiveness of the proposed
method it will be applied to obtain exact solution of Bagley-Torvik equa-
tion with Caputo-Liouville fractional derivative of the form

y′′(t) +C D3/2y(t) + y(t) = f(t),

subject to the initial conditions

y(0) = y0, y
′(0) = y1.

Here y(t) is the solution of the equation and f(t) is a continuous
function.

The Bagley-Torvik equation is a prototype fractional differential
equation that was proposed by Bagley and Torvik as an application of
fractional calculus to the theory of viscoelasticity [4, 5, 25]. This equa-
tion plays an important role in a large number of applied science and
engineering problems. More specifically, any linearly damping fractional
oscillator with a damping term has a 3/2−order fractional derivative can
be represented by the Bagley-Torvik equation. Particularly, the equa-
tion with 1/2−order derivative or 3/2−order derivative can predict the
models with materials where damping depends on frequency. It can also
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describe motion of real physical systems, the modeling of the motion of
a rigid plate immersed in a viscous fluid and a gas in a fluid respectively.

The rest of this paper is arranged as follows. In Section 2, we give
some definitions and properties of fractional calculus theory. In Sec-
tion 3, we present the mains results related to the inverse fractional
Aboodh transform method. In Section 4, we explain the methodology
of the proposed method through some examples of fractional differential
equations. Section 5, is for discussion and conclusion of this paper.

2 Preliminaries

In this section, we give some basic definitions and properties of the
fractional calculus theory which can be found in [16, 21, 23].

Definition 2.1. The Gamma function is defined as

Γ(α) =

∞∫
0

tα−1e−tdt,

where Re(α) > 0.

Definition 2.2. The Riemann-Liouville fractional integral operator of
order α > 0 for a function y : R+ → R, denoted by Iα is defined as

Iαy(t) =
1

Γ(α)

t∫
0

(t− ξ)α−1 y(ξ)dξ , t > 0. (1)

For α = 0, we set Iα := I, the identity operator.

Definition 2.3. The Riemann-Liouville fractional derivative operator
of order α > 0, n − 1 < α ≤ n, n ∈ N, for a function y : R+ → R,
denoted by RDα is defined as

RDαy(t) = DnIn−αy(t)

=
1

Γ(n− α)

dn

dtn

t∫
0

(t− ξ)n−α−1y(ξ)dξ, t > 0. (2)
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Definition 2.4. The Caputo-Liouville fractional derivative operator of
order α > 0, n− 1 < α ≤ n, n ∈ N, denoted by CDα is defined as

CDαy(t) = In−αDny(t)

=
1

Γ(n− α)

t∫
0

(t− ξ)n−α−1y(n)(ξ)dξ, t > 0. (3)

Definition 2.5. The Mittag-Leffler function is defined as follows

Eα (z) =
∞∑
n=0

zn

Γ(nα+ 1)
, α ∈ C, Re(α) > 0. (4)

A further generalization of (4) is given in the form

Eα,β (z) =
∞∑
n=0

zn

Γ(nα+ β)
, α, β ∈ C, Re(α) > 0, Re(β) > 0.

For α = 1, Eα (z) reduces to ez.

3 Theories of the inverse fractional Aboodh
transform method

In this section, we proves six theorems related to the inverse fractional
Aboodh transform method.

3.1 Aboodh transform

Recently, Aboodh in [1] introduced a new integral transform, called
Aboodh transform, which is applied to solve an ordinary and partial
differential equations.

Definition 3.1. The Aboodh transform is defined over the set of func-
tions

A =
{
y(t) | ∃M,k1, k2 > 0, |y(t)| < Mekj |t|, if t ∈ (−1)j × [0,∞)

}
,
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by the following integral

A [y(t)] = K(v) =
1

v

∞∫
0

y(t)e−vtdt, t ≥ 0, k1 < v < k2,

where v is the factor of the variable t.

Some basic properties of the Aboodh transform are given as follows:
Property 1: The Aboodh transform is a linear operator. That is,

if λ and µ are non-zero constants, then

A [λy(t)± µz(t)] = λA [y(t)]± µA [z(t)] .

Property 2: If y(n)(t) is the n−th derivative of the function y(t)
∈ A with respect to ”t” then its Aboodh transform is given by

A
[
y(n)(t)

]
= vnK(v)−

n−1∑
k=0

y(k)(0)

v2−n+k
.

Property 3: (Convolution property) Suppose K(v) and G(v) are
the Aboodh transforms of y(t) and z(t), respectively, both defined in
the set A. Then the Aboodh transform of their convolution is given by

A [(y ∗ z) (t)] = vK(v)G(v),

where the convolution of two functions is defined by

(y ∗ z) (t) =

t∫
0

y(ξ)z(t− ξ)dξ =

t∫
0

y(t− ξ)z(ξ)dξ.

Property 4: Some special Aboodh transforms

A(1) =
1

v2
,

A(t) =
1

v3
,

A(tn) =
n!

vn+2
, n = 0, 1, 2, ...

Property 5: The Aboodh transform of tα is given by

A [tα] =
Γ (α+ 1)

vα+2
, α ≥ 0.
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3.2 Inverse Aboodh transform

Now, we give the proof of Theorems 3.2, 3.3 and 3.4. which are useful
for finding the inverse Aboodh transform function

y(t) = A−1 [K(v)] .

Theorem 3.2. If α, β > 0, a ∈ R, and |a| < vα, then we have the
inverse Aboodh transform formula

A−1
[
vα−β−1

vα + a

]
= tβ−1Eα,β(−atα). (5)

Proof. First, we take the Aboodh transform of the right-hand side of
Eq. (5) to get

A
[
tβ−1Eα,β(−atα)

]
=

1

v

∞∫
0

e−vttβ−1Eα,β(−atα)dt

=
1

v

∞∫
0

e−vttβ−1
∞∑
k=0

(−atα)k

Γ(kα+ β)
dt

=

∞∑
k=0

1

v

(−a)k

Γ(kα+ β)

∞∫
0

e−vttαk+β−1dt. (6)

Now, by integration by parts we have

∞∫
0

e−vttαk+β−1dt =
1

vαk+β
Γ(kα+ β). (7)
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By substituting Eq. (7) into Eq. (6) we get

A
[
tβ−1Eα,β(−atα)

]
=

∞∑
k=0

1

v

(−a)k

Γ(kα+ β)

1

vαk+β
Γ(kα+ β)

=

∞∑
k=0

1

vαk+β+1
(−a)k

=
1

vβ+1

∞∑
n=0

(− a

vα
)k

=
1

vβ+1

vα

vα + a
,

∣∣∣ a
vα

∣∣∣ < 1. (8)

Then, the inverse Aboodh transform of Eq. (8) is given by

A−1
[
vα−β−1

vα + a

]
= tβ−1Eα,β(−atα).

The proof is complete. �

Theorem 3.3. If α ≥ β > 0, a ∈ R, and |a| < vα−β, then

A−1
[

v−1

(vα + avβ)
n+1

]
= tα(n+1)−1

∞∑
k=0

(−a)k
(
n+k
k

)
Γ(k (α− β) + (n+ 1)α)

tk(α−β).

(9)

Proof. Similarly to the proof of the Theorem 3.2, we take the Aboodh
transform of the right-hand side of Eq. (9), and by integration by parts,
we get

A

[
tα(n+1)−1

∞∑
k=0

(−a)k
(
n+k
k

)
Γ(k (α− β) + (n+ 1)α)

tk(α−β)

]

=
1

vα(n+1)+1

∞∑
k=0

(
−a
vα−β

)k (n+ k

k

)
.

Using the series expansion of (1 + t)−(n+1), of the form

1

(1 + t)n+1
=
∞∑
k=0

(
n+ k

k

)
(−t)k, (10)
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we have

A

[
tα(n+1)−1

∞∑
k=0

(−a)k
(
n+k
k

)
Γ(k (α− β) + (n+ 1)α)

tk(α−β)

]

=
1

v (vα + avβ)
n+1 ,

∣∣∣ a

vα−β

∣∣∣ < 1. (11)

Then, the inverse Aboodh transform of Eq. (11) is given by

A−1
[

v−1

(vα + avβ)
n+1

]
= tα(n+1)−1

∞∑
k=0

(−a)k
(
n+k
k

)
Γ(k (α− β) + (n+ 1)α)

tk(α−β).

The proof is complete. �

Theorem 3.4. If α ≥ β, α > γ, a ∈ R, |a| < vα−β, and |b| < vα + avβ,
then

A−1
[

vγ−1

vα + avβ + b

]
= tα−γ−1

∞∑
n=0

∞∑
k=0

(−b)n(−a)k
(
n+k
k

)
Γ(k (α− β) + (n+ 1)α− γ)

tk(α−β)+nα. (12)

Proof. We take the Aboodh transform of the right-hand side of Eq.
(12), by integration by parts and using the series expansion (10), we get

A

[
tα−γ−1

∞∑
n=0

∞∑
k=0

(−b)n(−a)k
(
n+k
k

)
Γ(k (α− β) + (n+ 1)α− γ)

tk(α−β)+nα

]

=
∞∑
n=0

(−b)n

v1−γ
1

(vα + avβ)
n+1 ,

∣∣∣ a

vα−β

∣∣∣ < 1

=
vγ−1

vα + avβ

∞∑
n=0

(
−b

vα + avβ

)n
=

vγ−1

vα + avβ + b
,

∣∣∣∣ b

vα + avβ

∣∣∣∣ < 1. (13)
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Then, the inverse Aboodh transform of Eq. (13) is given by

A−1
[

vγ−1

vα + avβ + b

]
= tα−γ−1

∞∑
n=0

∞∑
k=0

(−b)n(−a)k
(
n+k
k

)
Γ(k (α− β) + (n+ 1)α− γ)

tk(α−β)+nα.

The proof is complete. �

3.3 Aboodh transform for fractional derivatives

Theorem 3.5. If K(v) is the Aboodh transform of y(t), then the Aboodh
transform of the Riemann-Liouville fractional integral for the function
y(t) of order α, is given by

A [Iαy(t)] =
1

vα
K(v).

Proof. The Riemann-Liouville fractional integral for the function y(t),
as in (1) , can be expressed as the convolution

Iαy(t) =
1

Γ(α)
tα−1 ∗ y(t). (14)

Applying the Aboodh transform in the Eq. (14) and using the prop-
erties 3 and 5, we have

A [Iαy(t)] = A
[

1

Γ(α)
tα−1 ∗ y(t)

]
= vA

[
tα−1

Γ(α)

]
A [y(t)]

= v
1

vα+1
K(v) =

1

vα
K(v).

The proof is complete. �

Theorem 3.6. Let n ∈ N∗ and α > 0 be such that n − 1 < α ≤ n
and K(v) be the Aboodh transform of the function y(t), then the Aboodh
transform denoted by KR

α (v) of the Riemann-Liouville fractional deriva-
tive of y(t) of order α, is given by

A
[
RDαy(t)

]
= KR

α (v) = vαK(v)−
n−1∑
k=0

1

v1−k

[
RDα−k−1y(t)

]
t=0

.



10 A. KHALOUTA, A. KADEM

Proof. Since

RDαy(t) = DnIn−αy(t) =
dn

dtn
In−αy(t).

Let
g(t) = In−αy(t), (15)

then
RDαy(t) =

dn

dtn
g(t) = g(n)(t).

Applying the Aboodh transform on both sides of (15) using the The-
orem 3.5, we get

G(v) = A [g(t)] = A
[
In−αy(t)

]
=

1

vn−α
K(v). (16)

Also, we have from the Property 2

A
[
RDαf(t)

]
= A

[
dn

dtn
g(t)

]
= vnG(v)−

n−1∑
k=0

[
g(k)(t)

]
t=0

v2−n+k

= vnG(v)−
n−1∑
k=0

1

v1−k

[
g(n−k−1)(t)

]
t=0

. (17)

From the Definition of the Riemann-Liouville fractional derivative as
in (2), we obtain[

g(n−k−1)(t)
]
t=0

=

[
dn−k−1

dtn−k−1
g(t)

]
t=0

=
[
Dn−k−1In−αy(t)

]
t=0

=
[
RDα−k−1y(t)

]
t=0

. (18)

Hence, by using Eqs. (18) and (16) in (17), we get

A
[
RDαy(t)

]
= KR

α (v) = vαK(v)−
n−1∑
k=0

1

v1−k

[
RDα−k−1y(t)

]
t=0

.

The proof is complete. �
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Theorem 3.7. Let n ∈ N∗ and α > 0 be such that n − 1 < α ≤ n
and K(v) be the Aboodh transform of the function y(t), then the Aboodh
transform denoted by Kα(v) of the Caputo-Liouville fractional derivative
of yt) of order α, is given by

A
[
CDαf(t)

]
= Kα(v) = vαK(v)−

n−1∑
k=0

[
Dky(t)

]
t=0

v2−α+k
.

Proof. Let
g(t) = y(n)(t),

then by the Definition of the Caputo-Liouville fractional derivative as in
(3), we obtain

CDαf(t) =
1

Γ(n− α)

t∫
0

(t− ξ)n−α−1y(n)(ξ)dξ

=
1

Γ(n− α)

t∫
0

(t− ξ)n−α−1g(ξ)dξ = In−αg(t). (19)

Applying the Aboodh transform on both sides of (19) using the The-
orem 3.5, we get

A
[
CDαy(t)

]
= A

[
In−αg(t)

]
=

1

vn−α
G(v). (20)

Also, we have from the Property 2

A [g(t)] = A
[
y(n)(t)

]
,

G(v) = vnK(v)−
n−1∑
k=0

[
y(k)(t)

]
t=0

v2−n+k
.

Hence, (20) becomes

A
[
CDαy(t)

]
=

1

vn−α

(
vnK(v)−

n−1∑
k=0

[
y(k)(t)

]
t=0

v2−n+k

)

= vαK(v)−
n−1∑
k=0

[
Dky(t)

]
t=0

v2−α+k
= Kα(v).

The proof is complete. �
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4 Examples

In this section, six numerical examples are presented to illustrate the
accuracy and effectiveness of the proposed method.

Example 4.1. Consider the following linear fractional initial value prob-
lem [18]

RD1/2y(t) + y(t) = 0, (21)

subject to the initial condition[
RD−1/2y(t)

]
t=0

= 2, (22)

where RD1/2 is the Riemann-Liouville fractional derivative operator of
order 1/2.

Applying the Aboodh transform on both sides of Eq. (21) and using
the Theorem 3.6, we get

v1/2K(v) +
n−1∑
k=0

1

v1−k

[
RD1/2−k−1f(t)

]
t=0

+K(v) = 0. (23)

Substituting Eq. (22) into Eq. (23), we get(
v1/2 + 1

)
K(v)− 2

v
= 0.

So

K(v) = A [y(t)] =
2v−1

v1/2 + 1
.

Using the Theorem 3.2, the exact solution of this problem can be
obtained as

y(t) = 2t−1/2E 1
2
, 1
2
(−t1/2).

Example 4.2. Consider the initial value problem for a non-homogeneous
fractional differential equation [18]

RDαy(t)− λy(t) = h(t), t > 0, n− 1 < α ≤ n, (24)

subject to the initial conditions[
RDα−k−1y(t)

]
t=0

= bk, k = 0, 1, 2, ..., (25)
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where λ and bk are constants and fractional derivative RDα is the Riemann-
Liouville fractional derivative operator of order α, n− 1 < α ≤ n.

Applying the Aboodh transform on both sides of Eq. (24) and using
the Theorem 3.6, we get

vαK(v)−
n−1∑
k=0

1

v1−k

[
Dα−k−1f(t)

]
t=0
− λK(v) = H(v). (26)

Substituting Eq. (25) into Eq. (26), we get

(vα − λ)K(v)−
n−1∑
k=0

1

v1−k
bk = H(v).

So

K(v) = A [y(t)] =
1

vα − λ
H(v) +

n−1∑
k=0

vk−1

vα − λ
bk.

Using the Theorem 3.2, and the Convolution property, we get

y(t) =
[
tα−1Eα,α(λtα) ∗ h(t)

]
+
n−1∑
k=0

bkt
α−k−1Eα,α−k(λt

α)

=

∞∫
0

(t− ξ)α−1Eα,α(λ (t− ξ)α)h(ξ)dξ +
n−1∑
k=0

bkt
α−k−1Eα,α−k(λt

α).

This is the exact solution of this problem.

Example 4.3. Consider the initial value problem of non-homogeneous
Bagley-Torvik equation [6]

y′′(t) +C D3/2y(t) + y(t) = 1 + t, (27)

subject to the initial conditions

y(0) = y′(0) = 1, (28)

where CD3/2 is the Caputo-Liouville fractional derivative operator of
order 3/2.
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Applying the Aboodh transform on both sides of Eq. (27), and using
Theorem 3.7, we get

v2K(v)− y(0)− 1

v
y′(0) + v3/2K(v)− 1

v1/2
y(0)− 1

v3/2
y′(0)

+ K(v) =
1

v2
+

1

v3
. (29)

Substituting Eq. (28) into Eq. (29), we get

K(v)
[
v2 + v3/2 + 1

]
=

1

v2
+

1

v3
+ 1 +

1

v
+

1

v1/2
+

1

v3/2
. (30)

Then Eq. (30) becomes

K(v)
[
v2 + v3/2 + 1

]
=

(
1

v2
+

1

v3

)(
v2 + v3/2 + 1

)
.

So

K(v) = A [y(t)] =
1

v2
+

1

v3
. (31)

Taking the inverse Aboodh transform of Eq. (31), we have

y(t) = 1 + t.

This is the exact solution of this problem.

Example 4.4. Consider the following linear fractional initial value prob-
lem [9, 17, 24]

CDαy(t) + y(t) = 0, (32)

subject to the initial conditions

y(0) = 1, y′(0) = 0, (33)

where CDα is the Caputo-Liouville fractional derivative operator of order
α, 0 < α ≤ 2.

The second initial condition in (33) is for α > 1 only. In two cases
of α, A

[
CDαy(t)

]
is obtained as

1- For α < 1

A
[
CDαy(t)

]
=
v2K(v)− 1

v2−α
= vαK(v)− vα−2.
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2- For α > 1

A
[
CDαy(t)

]
=
vK(v)− v−1

v1−α
= vαK(v)− vα−2.

Which are the same.

Applying the Aboodh transform to both sides of Eq. (32) and using
the Theorem 3.7, we get

vαK(v)− vα−2 +K(v) = 0.

So

K(v) = A [y(t)] =
vα−2

vα + 1
.

Using the Theorem 3.2, the exact solution of this problem can be
obtained as

y(t) = Eα(−tα).

Example 4.5. Consider the following linear fractional initial value prob-
lem [22]

CDαy(t) = y(t) + 1, (34)

subject to the initial condition

y(0) = 0, (35)

where CDα is the Caputo-Liouville fractional derivative operator of order
α, 0 < α ≤ 1.

Applying the Aboodh transform to both sides of Eq. (34) and using
the Theorem 3.7 with the initial condition (35), we get

vαK(v) = K(v) +
1

v2
.

So

K(v) = A [y(t)] =
v−2

vα − 1
.

Using the Theorem 3.2, the exact solution of this problem can be
obtained as

y(t) = tαEα,α+1(t
α).
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Example 4.6. Consider the composite fractional oscillation equation
[22]

y′′(t)− aCDαy(t)− by(t) = 8, (36)

subject to the initial conditions

y(0) = y′(0) = 0, (37)

where CDα is the Caputo-Liouville fractional derivative operator of order
α, 1 < α ≤ 2.

Applying the Aboodh transform to both sides of Eq. (36) and using
the Theorem 3.7 with the initial conditions (37), we get

v2K(v)− avαK(v)− bK(v) =
8

v2
.

So

K(v) = A [y(t)] =
8v−2

v2 − avα − b
.

Using the Theorem 3.4, the exact solution of this problem can be
obtained as

y(t) = 8t2
∞∑
n=0

∞∑
k=0

bnak
(
n+k
k

)
Γ (k (2− α) + 2(n+ 1) + 1))

tk(2−α)+2n.

5 Conclusion

In this paper, a new technique called the inverse fractional Aboodh
transform method have been successfully applied to homogenous and
non-homogenous linear fractional differential equations. We proved six
theorems related to this method. The solutions obtained by our tech-
nique were in excellent agreement with those obtained via previous works
and also conformed with the exact solution to confirm the effectiveness
and accuracy of this technique. It is concluded that this technique is very
powerful mathematical tool for solving different kinds linear fractional
differential equations.
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