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Abstract. It has been shown that if T is a complex matrix, then

ω(T ) =
1

n
sup {|Tr X|; X ∈Wn(T )}

=
1

n
sup {‖X‖1; X ∈Wn(T )}

= sup {ω(X); X ∈Wn(T )}

where n is a positive integer, ω(T ) is the numerical radius and Wn(T )
is the n’th matricial range of T .
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1 Introduction and Preliminaries

One of the most well-known concept in study of Hilbert space operators
is the notion of numerical range. Assume that (H , 〈·, ·〉) is a Hilbert
space and B(H ) is the C∗-algebra of all bounded linear operators on
H with the identity operator I. When H has finite dimension n, we
identify B(H ) with the algebra Mn := Mn(C) of all n × n complex
matrices and In denotes the n×n identity matrix. The numerical range
of T ∈ B(H ) is well-known:

W (T ) = {〈Tx, x〉; x ∈H , ‖x‖ = 1}.

This set is an important tool which gives many information about T ,
particularly about its eigenvalues and eigenspaces. The numerical range
has a unique nature in numerical analysis and differential equations. It
has many desirable properties, which probably the most famous of them
is the Toeplitz-Hausdorff result. It asserts that W (T ) is convex for every
T ∈ B(H ), see e.g. [7]. The basic properties of the numerical range of
bounded linear operators on Hilbert spaces can be found in [7].

We summarize some basic properties of the numerical range in the
following theorem.
Theorem A.[7] For T ∈ B(H );

(i) W (αI + βT ) = α+ βW (T ), α, β ∈ C;

(ii) W (U∗TU) = W (T ), for every unitary U ∈ B(H );

(iii) sp(T ) ⊆W (T ), where sp(T ) is the spectrum of T .

A related concept is the numerical radius. The numerical radius of
T ∈ B(H ) is defined by

ω(T ) = sup{|λ|, λ ∈W (T )} = sup{|〈Tx, x〉|; ‖x‖ = 1}.

Some of basic properties of the numerical radius are listed below.
Theorem B. For every T, S ∈ B(H )

(i) ω(T ) = ω(T ∗) and ω(U∗TU) = ω(T ) for every unitary U ∈ B(H );

(ii)
1

2
‖T‖ ≤ ω(T ) ≤ ‖T‖ and ω(T ) = ‖T‖ if T is normal;

(iii) ω(T ⊕ S) = max{ω(T ), ω(S)};
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Recently, some new generalization of the numerical range and and the
numerical radius are introduced in [1, 16].

The numerical radius is also defined for elements of a C∗-algebra.
Recall that a linear functional τ on a C∗-algebra A is positive if τ(a) ≥ 0
for every positive element a ∈ A . Also, a state is a positive linear
functional whose norm is equal to one. If A is a unital C∗-algebra, the
numerical radius of A ∈ A is defined by

ν(A) = sup{|τ(A)|; τ is a state on A }.

The reader is referred to [5, 7, 10, 11, 15] and references therein for more
result concerning the numerical radius and the numerical range.

2 Matricial Range

Let A ,B be unital C∗-algebras and let A+ denotes the cone of positive
elements of A . Recall that a mapping Φ : A → B is called positive,
whenever Φ(A+) ⊆ B+. Moreover, for n ∈ N, Φ is called n-positive if
the mapping Φn : Mn(A ) → Mn(B) defined by Φn([Aij ]) = [Φ(Aij)] is
positive. If Φ : A → B is n-positive for every n ∈ N, then Φ is called
completely positive.

For T ∈ B(H ), assume that CPn(T ) is the set of all unital com-
pletely positive linear mappings from C∗(T ) to Mn:

CPn(T ) = {Φ| Φ : C∗(T )→Mn is unital and completely positive},

in which C∗(T ) is the unital C∗-algebra generated by T . Arveson [2]
defined the n’th matricial range of an operator T ∈ B(H ) by

Wn(T ) = {Φ(T )| Φ ∈ CPn(T )} .

This is a matrix valued extension of the numerical range, say

W 1(T ) = W (T ).

It follows from the definition of Wn(T ) that
Theorem C. If T ∈ B(H ) and n ∈ N, then

(i) Wn(U∗TU) = Wn(T ) for each unitay U ∈ B(H );
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(ii) Wn(αI) = {αIn} and Wn(αT + βI) = αWn(T ) + βIn for all
α, β ∈ C.

Moreover, as a non-commutative Toeplitz-Hausdorff result, it is known
that Wn(T ) is C∗-convex[13]. A set K ⊆ B(H ) is called C∗-convex, if
X1, . . . , Xm ∈ K and A1, . . . , Am ∈ B(H ) with

∑m
j=1A

∗
jAj = I imply

that
∑m

j=1A
∗
jXjAj ∈ K. Indeed, this is a noncommutative generaliza-

tion of linear convexity. It is evident that the C∗-convexity of a set
implies its convexity in the usual sense. But the converse is not true in
general. For more information about C∗-convexity see [9, 12] and the
references therein.

Matricial ranges are closely connected with C∗-convex sets. In fact,
the matrix ranges turn out to be the compact C∗-convex sets. However,
except in some special cases, it is not routine to obtain the matricial
ranges of an operator. The reader is referred to [2, 4, 6, 14] and the
references therein for more information about matricial ranges.

The main purpose of this note is to define an analogues of the numer-
ical radius related to the matricial range. However, we will find relations
between the numerical radius and matricial range of an operator. The
tone of the paper is mostly expository.

3 Matricial Radius

Similar to the connection of numerical radius and numerical range, it is
natural to define the matricial radius of an operator to be the maximum
norm of the elements of its matricial range. However, as pointed out in
[6], unlike the numerical radius, the matricial radius is not interesting.
For every T ∈ B(H ) and n ≥ 2, it holds

max{‖X‖; X ∈Wn(T )} = ‖T‖.

As another candidate for the matricial radius, we consider the next
definition.

Definition 3.1. For every operator T ∈ B(H ) and every positive inte-
ger n, set

νn(T ) = sup{|TrX|; X ∈Wn(T )} = sup{|Tr Φ(T )|; Φ ∈ CPn(T )},
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where Tr(·) denotes the canonical trace. It is easy to see that

(i) ν1(T ) = ν(T );

(ii) νn(T ∗) = νn(T );

(iii) νn(U∗TU) = νn(T ) for every unitary U.

Moreover, it can be shown that

νn(T ) ≤ n‖T‖

and the equality holds if T is normal. Although, νn has some favorite
properties, it is not interesting too.

Example 3.2. Consider

T =

[
0 1
0 0

]
∈M2,

so that ω(T ) = 1
2 and ‖T‖ = 1. Moreover, it is known that [2]

Wn(T ) =

{
B ∈Mn ; ω(B) ≤ 1

2

}
.

Therefore
ν2(T ) = 1 = 2 ω(T ).

We will show that the equality νn(·) = n ω(·) holds in general. We
need some lemmas to continue our work.

Lemma 3.3. [2] Let S and T be Hilbert space operators (perhaps acting
on different spaces) and S is normal. Then the followings are equivalent:
1. Wn(S) ⊆Wn(T )
2. sp(S) is contained in the closed numerical range of T .

The next theorem reveals that νn can not be a proper extension of
the numerical radius.

Theorem 3.4. For every T ∈Mk

ω(T ) =
1

n
νn(T ) (n ∈ N).



6 M. KIAN, M. DEHGHANI AND M. SATTARI

Proof. Assume that Φ : C∗(T ) → Mn is a unital completely positive
linear mapping. The Arveson’s extension theorem (see for example [3,
Theorem 3.1.5]) guarantees the existence of a unital completely positive
linear mapping Φ̃ : Mk → Mn, which is an extension of Φ. Moreover,
the Stinespring theorem (See [3, Theorem 3.1.2]) yields that Φ̃(A) =
V ∗π(A)V in which V : Cn → Ck2n and V ∗V = I and π : Mk → Mk2n

is an ∗-homomorphism so that π(A) = A ⊕ · · · ⊕ A. Now, assume that
{u1, · · · , un} is an orthonormal system of eigenvectors for Φ̃(T ). Then
V uj (j = 1, · · · , n) are unit vectors in Ck2n. Therefore

|Tr Φ(T )| = |Tr Φ̃(T )| =

∣∣∣∣∣∣
n∑

j=1

〈Φ̃(T )uj , uj〉

∣∣∣∣∣∣
=

∣∣∣∣∣∣
n∑

j=1

〈V ∗π(T )V uj , uj〉

∣∣∣∣∣∣
≤

n∑
j=1

|〈π(T )V uj , V uj〉|

≤
n∑

j=1

ω(π(T ))

= n ω(T ⊕ · · · ⊕ T )

= n ω(T ),

where the last inequality follows from (iii) of Theorem B. Taking supre-
mum over all Φ, we conclude that

νn(T ) ≤ n ω(T ). (1)

Furthermore, let T ∈ Mk. Put S = ω(T )I so that S is normal and
Wn(S) = {ω(T )In} by (iii) of Theorem C. Moreover, sp(S) = {ω(T )} ⊆
W (T ). Lemma 3.3 then implies that Wn(S) ⊆ Wn(T ) and so νn(S) ≤
νn(T ). Therefore

n ω(T ) = νn(S) ≤ νn(T ). (2)

The result now follows from (1) and (2). �
The next definition provide another choice for the matricial radius.
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Definition 3.5. For every T ∈ B(H )

ωn(T ) = sup{Tr |Φ(T )|; Φ ∈ CPn(T )} = sup{‖X‖1; X ∈Wn(T )}.

It is easy to see that

(i) ω1(T ) = ν(T );

(ii) ωn(T ∗) = ωn(T );

(iii) ωn(U∗TU) = ωn(T ) for every unitary U.

Moreover, the following desirable property holds for ωn.

Proposition 3.6. For every T ∈ B(H )

ωn(T ) ≤ n‖T‖ (n ∈ N).

If T is normal, then equality holds.

Proof. It is not hard to see that if Φ is completely positive, then

Φ(T )∗Φ(T ) ≤ ‖Φ‖Φ(T ∗T ). (3)

Noting that ‖Φ‖ = ‖Φ(I)‖ = 1 and using the Löwner–Heinz inequality,
(3) implies that

|Φ(T )| ≤ Φ
(
|T |2

)1/2
(4)

for every unital completely positive linear mapping Φ. Moreover,

|T |2 ≤ ‖T‖2I.

Now assume that Φ : C∗(T )→Mn is a unital completely positive linear
mapping. It follows from the last inequality that

Φ
(
|T |2

)1/2 ≤ ‖T‖ In. (5)

From (4) and (5) we get

|Φ(T )| ≤ ‖T‖ In
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and so

Tr |Φ(T )| ≤ n ‖T‖.

This concludes the inequality ωn(T ) ≤ n‖T‖ for every T ∈ B(H ).

Now assume that T is normal. Then the Gelfand mapping Γ :
C∗(T ) → C(sp(T )) is an isometric ∗-isomorphism, where C(sp(T )) is
the C∗-algebra of all continuous functions on sp(T ). Consider two facts:
1. Every positive linear mapping Φ : C(Ω) → A is completely positive
for each arbitrary C∗-algebra A [3];
2. The composition of every two completely positive linear mapping is
completely positive too.

Every positive linear mapping Φ : C∗(T ) → Mn can be written as
Φ = ΨoΓ, where Ψ = ΦoΓ−1 : C(sp(T )) → Mn. Therefore, every
positive linear mapping Φ : C∗(T )→Mn is completely positive.

Now let x ∈H be a unit vector. The linear mapping Φx : C∗(T )→
Mn defined by Φ(Z) = 〈Zx, x〉In is positive and so is completely positive.
Therefore,

ωn(T ) ≥ Tr |Φx(T )| = Tr |〈Tx, x〉In| = n|〈Tx, x〉|,

whence

ωn(T ) ≥ n ω(T ) = n‖T‖.

�
Proposition 3.6 gives an extension of (ii) of Theorem B. Note that

there exists other norms on Mn which can be used in Definition 3.5
rather than ‖ · ‖1. Typical norms on Mn are

‖A‖p = Tr (|A|p)1/p and ‖A‖ = lim
p→∞

‖A‖p (A ∈Mn)

in which ‖A‖ is the operator norm. Except when p = 1, Proposition
3.6 does not hold in general. To see this, consider the unilateral shift
operator defined on a separable Hilbert space by Tej = ej+1 (j ≥ 1). It
is known that [6]

Wn(T ) = {B ∈Mn ; B∗B ≤ In}.
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Therefore,
ωn(T ) = n = n‖T‖.

Considering the p-norm (p 6= 1) in Definition 3.5 concludes

sup{‖X‖p; X ∈Wn(T )} = p
√
n 6= n ‖T‖.

Unfortunately, Definition 3.5 can not be a proper extension of the
numerical radius too.

Theorem 3.7. For every T ∈Mk

ω(T ) =
1

n
ωn(T ) (n ∈ N).

Proof. It is known that (see [8, Theorem 3.7])

‖A‖1 ≤ n ω(A) (A ∈Mn).

Moreover, for T ∈ Mk, it is known that Wm(Wn(T )) ⊆ Wm(T ) for all
m,n ∈ N [6], i.e., if A ∈ Wn(T ), then Wm(A) ⊆ Wm(T ). Therefore,
ω(A) ≤ ω(T ). It follows that

‖X‖1 ≤ n ω(X) ≤ n ω(T ) (X ∈Wn(T )),

whence
ωn(T ) ≤ n ω(T ).

Furthermore, applying an argument as in the last part of the proof of
Theorem 3.4 shows that

n ω(T ) ≤ ωn(T ).

This completes the proof. �

Example 3.8. Assume that

T =

[
0 1
0 0

]
∈M2,

so that ω(T ) = 1
2 and ‖T‖ = 1 and

Wn(T ) =

{
B ∈Mn ; ω(B) ≤ 1

2

}
.
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We have

ωn(T ) = sup{‖X‖1; X ∈Wn(T )} ≤ n sup{ω(X); X ∈Wn(T )}

≤ n

2
= nω(T ). (6)

Moreover, put Y = 1
2In ∈W

n(T ) and then

ωn(T ) = sup{‖X‖1; X ∈Wn(T )} ≥ ‖Y ‖1 =
n

2
= nω(T ),

whence,
ωn(T ) = nω(T ).

Remark 3.9. First, we can not find a suitable extension of the numer-
ical radius based on the matricial range. So, we would like to pose this
question that is there such an extension. Second, we obtain some rela-
tions of the numerical radius of an operator with its matricial range. In
particular,

ω(T ) = =
1

n
sup {|Tr X|; X ∈Wn(T )}

=
1

n
sup {‖X‖1; X ∈Wn(T )}

= sup {ω(X); X ∈Wn(T )} .

The last equality follows from (6).
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