On Square Roots and Quasi-Square Roots of Elements in 2-Normed Algebras

A. Zohri
Payame Noor University

Abstract

The concept of 2-normed spaces and 2-Banach spaces are considered as a generalization of normed and Banach spaces. In the present paper, we have studied the existence of square roots and quasi square roots of some elements of a 2-Banach algebra. Moreover, the relation between $n^{\text {th }}$ roots and quasi $n^{\text {th }}$ roots of elements in 2-Banach algebras are considered.

AMS Subject Classification:Primary 64A Secondary 64H
Keywords and Phrases: 2-normed algebra, 2-normed space, 2-Banach algebra, square root, quasi square root.

1 Introduction

Study of square roots and quasi square roots of elements of topological algebras has started in 1966 by Gardner's and Ford's papers in Banach and Banach *- algebras ([6] and [4]).

Sterbova has studied the subject with considering the quasi square roots in locally multiplicatively convex topological algebras ([12] and [13]). After then the author generalized the existence of $n^{\text {th }}$ roots of elements of topological algebra to a more general and non normable topological algebras [3].

[^0]An extensive study about Ford's lemma (related to this subject) has been done by Abel in 2011 [1].

In this article, we will study the subject for 2-normed algebras.
The notion of 2 -metric spaces and 2 -normed spaces was introduced by Gahler in 1960. This subject as a generalization of metric spaces and normed spaces was studied by many authors such as A. White, Gunawan and Mashadi. They are obtained various results about 2normed algebras[1] [2][8]. By [10] there exist 2-normed algebras (with or without unity) which are not normable, so the study of this kinds of algebras may be considered as generalization of normed algebras.

Considering the concept of 2-normed algebras; Noor Mohammad and siddiqi, Lal, have shown that the class of 2-normed algebras with unity as defined in [8] is either void or contains only trivial algebras [8].

Also sum aspects of 2-normed and 2-Banach algebras are studied in [15], [14], [7]. A new definition of 2-normed algebras and an example satisfying this definition is given in [10], which in a subsequent work they were trying to show that there exists 2-normable algebra(with or without unity) which are normable.

Gahler in his first paper [5] mentioned the real motivation for studying 2-norm structure, and also he asked that if there is a physical situation or an abstract concept where norm topology does not work but 2-norm topology does work?

The theory of 2-normed spaces and their structure and difference of this structure with the normed spaces one is considered in [2].

An embedding of a generalized 2-normed space into the space of all bounded linear mappings on the set of all bounded 2-linear mappings are investigated in [9].

In this article we have studied the $n^{\text {th }}$ roots and quasi $n^{\text {th }}$ roots of elements of 2-normed algebras. The similar theorems which are proved for Banach algebras and for LMC algebras, are generalized for fundamental topological algebras, by the author [3].

2 Definitions and preliminary remarks

In this section, we give the basic definitions and properties of 2-normed spaces and algebras.

Definition 2.1. [10] Let E be a linear space of dimension greater than one over the field \mathbb{K} where \mathbb{K} is the field of real or complex numbers. The real valued function $\|.,$.$\| on E \times E$ is said to be a 2 -norm if it satisfies the following axioms:
(i) $\|x, y\|=0$, if and only if x and y are linearly dependent in E;
(ii) $\|x, y\|=\|y, x\|$ for all $x, y \in E$;
(iii) $\|\alpha x, y\|=|\alpha|\|x, y\|$ for all $\alpha \in \mathbb{K}$ and for all $x, y \in E$;
(iv) $\|x+y, z\| \leq\|x, z\|+\|y, z\|$ for all $x, y, z \in E$.

The pair $(E,\|.,\|$.$) is said to be a 2$-normed linear space over the field \mathbb{K}.

Definition 2.2. [10] Let E be a real algebra of $\operatorname{dim} \geq 2$ with the 2 -norm $\|.,\| .$.$E is said to be a 2$-normed algebra if there is some $k>0$ such that $\|x y, z\| \leq k\|x, z\|\|y, z\|$ for all $x, y, z \in E$.

There are several examples in the literature of this subject such as [10] and [11]. Also there are many definitions for 2-normed algebras which some of them are not usefull [10]. The following interesting definition is given in [10].

Definition 2.3. . Let E be a subalgebra of dimension ≥ 2 of an algebra B, and $\|$., $\|$ be a 2-norm in B and $a_{1}, a_{2} \in B$ be linearly independent, non-invertible and be such that

$$
\forall x, y \in E,\left\|x y, a_{i}\right\| \leq\left\|x, a_{i}\right\|\left\|y, a_{i}\right\|, i=1,2 .
$$

Then E is called a 2-normed algebra with respect to a_{1}, a_{2}.
Definition 2.4. Let E be an algebra and $x, y \in E$. Then the quasi product of x, y is defined as $x \circ y=x+y-x y$, and we denote

$$
x \circ x \circ \cdots \circ x=x^{\circ n} .
$$

Definition 2.5. Let x be an element of a 2-normed algebra E. The element $y \in E$ is said to be quasi-inverse of x if

$$
y \circ x=0, x \circ y=0
$$

An element that has a quasi-inverses said to be quasi-invertible (or quasiregular), all other elements are said to be quasi-singular.

Remark 2.6. The quasi-inverse of a quasi-invertible element x in a topological algebra is denoted by x^{0}, and the set of all quasi-invertible elements of E by $q-\operatorname{Inv}(E)$, and the set of all quasi-singular elements of E by $q-\operatorname{Sing}(E)$.

Definition 2.7. Let x be an element of a 2-normed algebra E. The element $y \in E$ is said to be quasi square root of x if

$$
y \circ y=x
$$

By above definition and definition of quasi product it is eassily seen that y is a quasi square root of x if and only if $x=2 y-y^{2}$.

Definition 2.8. We say that a 2-Banach algebra E has an identity element e if for every $a \in E$, e. $a=a . e=a$ and $\|a, e\| \neq 0$.

3 New Results

Let E be a 2-Banach algebra with unit element e, in this section we give a condition that any $x \in E$ have a square root and in general $n^{\text {th }}$ root. Also conditions for existence of quasi square roots and quasi $n^{t h}$ roots will be given.

Theorem 3.1. Let E be a 2-Banach algebra. If $\|e-x, z\|<1$ for all $z \in E$, then x has an square root in E.

Proof. Let $\|e-x, z\|<\eta<1$ now suppose that

$$
y_{m}=\sum_{k=0}^{m}\binom{\frac{1}{2}}{k}(x-e)^{k} e^{m-k}
$$

We have

$$
\begin{gathered}
\left\|(x-e)^{k}, z\right\| \leq\left\|(x-e)^{k-1}, z\right\|\|e-x, z\| \\
\leq \ldots \leq\|(x-e), z\|^{k}<\eta^{n}
\end{gathered}
$$

which tends to zero when k tends infinity. Also since

$$
\sum_{k=0}^{m}\binom{\frac{1}{2}}{k} \eta^{n}<\sum_{k=0}^{m}\binom{\frac{1}{2}}{k}=\sqrt{2}-1
$$

implies that $\sum_{k=0}^{m}\binom{\frac{1}{2}}{k}(x-e)^{k} e^{m-k}$ is a convergent series. As we know

$$
\lim _{m \rightarrow \infty} \sum_{k=0}^{m}\binom{\frac{1}{2}}{k}(x-e)^{k} e^{m-k}=x^{\frac{1}{2}} .
$$

then x has an square root in E.
By replacing $\frac{1}{n}$ instead of $\frac{1}{2}$ in the previous theorem we conclude that x has $\mathrm{n}^{\text {th }}$ root.
Corollary 3.2. Let A be a 2 -Banach algebra. If $\|e-x, z\|<1$ for all $z \in E$ then x has an $n^{\text {th }}$ root in E.

Proof. In this case we will have

$$
\lim _{m \rightarrow \infty} \sum_{k=0}^{m}\binom{\frac{1}{n}}{k}(x-e)^{k} e^{m-k}=x^{\frac{1}{n}}
$$

since E is Banach, it is clear that $x^{\frac{1}{n}} \in E$.
The important results on inverses regarding to the above theorem proved an interesting data for algebras without a unit element. It is worth noting that this notion have been extended to such algebras in ordinary case in two ways:
(1) by the adjunction of a unit element,
(2) by using the concept of quasi-inverse.

In next theorem we would like to consider the subject in 2-normed algebras by using the concept of quasi-inverse.

Theorem 3.3. Let A be a 2-Banach algebra. If $\|x, z\|<1$ for all $z \in E$, then there is a $y \in E$ such that $2 y-y^{2}=x$.
Proof. Let

$$
y_{m}=\sum_{k=0}^{m}\binom{\frac{1}{2}}{k}(x)^{k},
$$

similar to above theorem, the series $\sum_{k=0}^{m}\binom{\frac{1}{2}}{k}(-1)^{k}\|x, z\|^{k}$ is absolutely convergent for every $z \in E$. Now since the sum $u(t)$ of the series

$$
u(t)=-\sum_{k=1}^{\infty}\binom{\frac{1}{2}}{k}(-t)^{k},
$$

satisfies the equation $2 u(t)-[u(t)]^{2}=t$ in which by replacing t by x we get the conclusion. That is with above condition x has quasi square root.

3.1 Quasi invetibility.

In this section we consider quasi-invertibility of elements of 2-Banach algebras.

Theorem 3.4. Let E be a $2-$ Banach algebra. If $\|x, z\|<1$ for all $z \in E$, then x is quasi invertible and

$$
x^{0}=-\sum_{n=1}^{\infty} y^{n} .
$$

Proof. Let t be positive real number and $\|x, z\|<t<1$. Then we have $\left\|(x, z)^{n}\right\|<t^{n}<1$. So the series $\sum_{n=1}^{\infty}\left\|(x, z)^{n}\right\|$ is convergent.

Since E is Banach then it converges to an element of E such as y. Let $s_{n}=1+a+\cdots+a_{n-1}$. Tehen $s_{n} \rightarrow s$ and $\|x, z\| \Rightarrow 0$ as $n \rightarrow \infty$, and we have

$$
(1-y) s_{n}=s_{n}(1-y)=1-y_{n} .
$$

Therefore, by continuity of multiplication, we have, $(1-y) s=s(1-y)=$ 1.

Theorem 3.5. If E has a unit element e, then an element x of E has the quasi-inverse y if and only if $e-x$ has the inverse $e-y$.

Proof. It is obviously seen that we have $(e-x)(e-y)=e-(x \circ y)$.
Then $(x \circ y)=0$ if and only if $(e-x)(e-y)=e$.
Similar to above theorem we can state it for $n^{\text {th }}$ and quasi $n^{\text {th }}$ roots.
Theorem 3.6. Let E be a 2-Banach algebra with unit element e. Then z is quasi $n^{\text {th }}$ root of y if and only if $e-z$ is $n^{\text {th }}$ root of $e-y$

Proof. For $n=2$ we have $z^{02}=z \circ z=2 z-z^{2}=y$ if and only if $(e-z)^{2}=e-y$.

Now we have to prove the theorem by induction. Let $z^{\circ n}=e-(e-z)^{n}$ we have to prove that $z^{\circ(n+1)}=e-(e-z)^{n+1}$, to do it, we have

$$
\begin{aligned}
z^{\circ(n+1)} & =z \circ z^{\circ n}=z \circ\left(e-(e-z)^{n}\right) \\
& \left.=z+\left(e-(e-z)^{n}\right)-z\left(e-(e-z)^{n}\right)=e-(e-z)^{n}(e-z)\right) \\
& =e-(e-z)^{n+1} .
\end{aligned}
$$

That is $y=z^{\circ n}=e-(e-z)^{n}$ if and only if $(e-z)^{n}=e-y$.

4 Conclusion

In this article we considered the notion of square roots and quasi square roots also $n^{\text {th }}$ roots and quasi $n^{\text {th }}$ roots of elements of a 2 -normed algebra. We proved that every x with condition $\|e-x, z\|<1$ for all $x \in E$ has a square root and an $n^{\text {th }}$ root in E. Also every element x of E has the quasi-inverse y if and only if $e-x$ has the inverse $e-y$.

Acknowledgements

I would like to thank the referees for carefully reading the manuscript, and usefull comments.

References

[1] M. Abel, M. Abel, Ford lemma for topological *-algebras, Proceedings of the Estonian Academy of Sciences,Estonian Academy publishers, 60 (2011) 69-80
[2] M. Açıkgoz, A review on 2-normed structures, Int. Journal of Math. Analysis, 1 (4) (2007), 187-191.
[3] E. Ansari Piri, A. Zohri, The $n^{\text {th }}$ root and quasi square roots in fundamental topological algebra, Far east journal of mathematical science, 28(3) (2008), 695-699.
[4] J. W. Ford, A square root lemma for Banach *-algenbras, Journal of the London Mathematical Society, 42 (1967), 521-522.
[5] S. Gahler, 2-normed spaces, Math. Nachr., 4 (1996) 1-43.
[6] T. Gardner, Square roots in Banach algebras, proceedings of the american Mathematical Society, 17(1) (1966), 132-134.
[7] M. Gurdal, A. Sahiner, I. Acik, Approximation theory in 2- Banach spaces, Nonlinear Analysis, 71 (2009), 1654-1661.
[8] N. Mohammad, A. H. Siddiqi, On 2-Banach algebras, Aligarh Bull. Math., 12 (89) (1987), 51-60.
[9] P. V. Reeja, K. T. Ravindran, On 2-reflexivity in generalized 2-normed space, International Journal of Applied Mathematical Analysis and Applications, 6 (1-2) (2011), 141-146.
[10] N. Sirvastava, S. Bhattacharya and S. N. Lal, 2-Normed Algebras-I, Publication de L'institut Mathematique, 88 (102) (2010), 111-121.
[11] N. Sirvastava, S. Bhattacharya, and S. N. Lal, 2-Normed AlgebrasII, Publication de L'institut Mathematique, 90 (104) (2011), 135143.
[12] D. Štěrbová, Square roots with an unbounded spectrum, Acta Univ. Pal. Olom., 79 (1984), 103-106.
[13] D. Štěrbová, Square roots and quasi-square roots in locally multiplicatively convex algebras, Acta Univ. Pal. Olom., 65(1980), 103110.
[14] R. Tapdigoglu, U. Kosem, Some results on 2-Banach algebras, Electronic journal of Mathematical Analysis and Applications, 4(1) (2016), 11-14.
[15] A. White, 2-Banach spaces, Math. Nachr., 42 (1969), 43-60.
Ali Zohri
Department of Mathematics,
Assistant Professor of Mathematics
Payame Noor University
Tehran, Iran E-mail: zohri_a@pnu.ac.ir

[^0]: Received: February 2020; Accepted: June 2020

