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Study of Subhomomorphic
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Abstract. Let M and N be two non-zero right R-modules, M is
called subhomomorphic to N in case there exist R−homomorphisms
f : M → N , g : N → M such that gof is non-zero, and M is called
strongly subhomomorphic to N in case there exist homomorphisms f :
M → N , g : N → M such that both fog and gof are non-zero. After
establishing some basic properties of (strongly) subhomomorphic to a
ring, it is shown that for a nonsingular ring R the class of injective right
R-modules are subhomomorphic to R if and only if R is a semisimple
ring.
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1. Introduction

Throughout rings will have unit elements and modules will be right uni-
tary. If M is a module over a ring R, its quasi-injective (injective) hull
will be denoted by M̂R (E(MR)). For R-modules N and M the submod-
ule TrR(M,N) :=

∑
{Imh | h ∈ HomR(M,N)} is called the trace of M

in N , and the submodule RejR(N,M) := ∩{Ker f | f ∈ HomR(N,M)}
is called the reject of M in N . Unexplained terminology and standard
results may be found in [1] or [10].

The notions of prime and semiprime for modules have been studies
by several authors who have used different definitions [2]-[4], [6] and [9]-
[11]. Bican, Jambor, Kepka and Nemec called an R-module M prime
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if K ∗ L :=HomR(M,L)K 6= 0 for any non-zero submodules K,L 6 M

([2]). This definition of prime called ∗-prime by Lomp ([5]). The notion
of primeness had already been extended by Jirasko to semiprimeness for
modules ([4]). A semiprime moduleM (in the sense of Jirasko) is defined
by the property that the condition N ∗ N = 0 implies N = 0, when-
ever N is a submodule in M . As noted in [5] the notion of semiprime
module coincides with that of weakly compressible, a result attributed
to Zelmanowitz ([12]). Recall that MR is called weakly compressible
if HomR(M,N) contains an element f with f |N 6= 0 whenever N is a
non-zero submodule of M . We have the following implications

∗ − prime⇒ weakly compressible⇒ retractable,

where an R-module M is said to be retractable if HomR(M,N) 6= 0 for
all non-zero submodules N of M . The reverse implications have been
investigated by Lomp who proved that a retractable module with prime
endomorphism ring is necessarily ∗-prime, and a retractable module with
semiprime endomorphism ring is weakly compressible. Furthermore, for
a semi-projective module, it is true that being ∗-prime is the same as
being retractable with prime endomorphism ring ([5, Propositions 4.2
and 5.2]).
Wisbauer and Wijayanti called a module MR fully prime if for any non-
zero fully invariant submodule K of M , M is K−cogenerated. They
proved in [9] that M is fully prime if and only if K ∗ L 6= 0 for any
non-zero fully invariant submodules K,L 6 M .
The notion of subhomomorphic modules comes from the aforementioned
studies. We carry out a thorough investigation of this useful notation.
For example by considering the class of simple R-modules which are
subhomomorphic to R, some new characterizations of semisimple rings
are obtained.

2. Subhomomorphic for Ring

Definition 2.1. Let M and N be two non-zero R-modules. M is
called subhomomorphic to N in case there exist R−homomorphisms
f : M → N , g : N →M such that gof is non-zero. M is called strongly
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subhomomorphic to N in case there exist homomorphisms f : M → N ,
g : N →M such that fog and gof are non-zero.

Proposition 2.2. Let M be an ∗-prime R-module. Then for every
non-zero submodules K,L of M , K is subhomomorphic to L.

Proof. Let K,L be non-zero submodules of M . By ∗-primeness we
have TrR(L,K) 6= 0 so that HomR(K,L)TrR(L,K) 6= 0 and hence there
exist R−homomorphisms f : K → L, g : L → K such that gof is
non-zero. �

Lemma 2.3. The following statements for an R-module M are equiva-
lent.

(a) MR is strongly subhomomorphic to RR.
(b) MR is subhomomorphic to RR.
(c) There exist n,m ∈M and a homomorphism f : MR → RR such that
mf(n) 6= 0.

Proof. (a)⇒(b). By definition.
(b)⇒(c). Let f : MR → RR, g : RR → MR such that fog is a non-zero
R−homomorphism so gf(m) 6= 0 for some m ∈ M . Then gf(m) =
g(1f(m)) = g(1)f(m) 6= 0.
(c)⇒(a). If xf(x) 6= 0 for some x ∈M then we can define g : RR →MR

via r 7→ xr then gof(x) 6= 0, fog(1) 6= 0. Otherwise we may suppose
that m 6= n, f(m) 6= f(n), mf(n) 6= 0 and mf(m) = 0. Then we
define R−homomorphism h : RR → MR such that r 7→ (m − n)r then
fh(1) = f(m − n) 6= 0 and hf(m) = h(1)f(m) = (m − n)f(m) =
mf(m)− nf(m) = −nf(m) 6= 0. �

Corollary 2.4. The following statements are equivalent for an R-
module M .

(a) The module M is subhomomorphic to R-module R/ann(M).
(b) HomR(M,R/ann(M)) 6= 0.

Proof. (a)⇒ (b)By definition.
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(b)⇒(a). Let f : M → (R/ann(M)) be a non-zero homomorphism
then there exist x ∈ M such that f(x) 6= 0. If mf(x) = 0 for all
m ∈ M we have f(x) ∈ ann(M) and f(x) must be zero, contradiction,
then mf(x) 6= 0 for some x,m ∈ M and by Lemma 2.3 the proof is
completed. �

Examples 2.5. (a) By Lemma 2.3 if M is a semiprime R-module
in the sense of Zelmanowitz, [ i.e. for each 0 6= m ∈ M there exists
f ∈ Hom(M,R) with mf(m) 6= 0] then M is strongly subhomomorphic
to R.
(b) Let M be a faithful R-module and R be an injective R-module, then
R is strongly subhomomorphic toM I for some set I (R can be embedded
in M I and by injectivity it is a direct summand of R ).
(c) Let R be a semiprime ring. Then every non-zero ideal of R is strongly
subhomomorphic to R (by Lemma 2.3 ).
(d) Let R = Z, M = Z4 and M = Z2. Then M is subhomomorphic to
N , but it is not strongly subhomomorphic to N .
Let M be an R-module. Then R is subhomomorphic to M if and only
if M∗ =Hom(M,R) 6= 0. So that R is subhomomorphic to I for every
right ideal I of R.

Lemma 2.6. Let I, J be non-zero two sided ideals of R. If IJI 6= 0
then I is subhomomorphic to J .

Proof. If IJI 6= 0, there exist x ∈ I, b ∈ J such that xbI 6= 0 then
we can define R−homomorphisms fb : IR → JR and gx : JR → IR via
fb(i) = bi, gx(j) = xj, so that gxfb(I) = gx(bI) = xbI 6= 0, thus I is
subhomomorphic to J . �

Corollary 2.7. If I is an ideal of R with, I2 6= 0 then I is subhomo-
morphic to R.

Proof. Apply Lemma 2.6 for J = R. �

Lemma 2.8. Let I be a right ideal of R. Then R/I is subhomomorphic
to R if and only if there exist x, y ∈ R such that xI = 0 and yx ∈/ I.

Proof. Let R/I be subhomomorphic to R so there exist f : R/I → R
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and ȳ, t̄ ∈ R/I such that ȳf(t̄) = ȳf(1̄)t = ȳxt = (y + I)xt 6= 0 so that
xI = f(1̄)I = f(I) = 0 and yx ∈/ I. Conversely if we define f : R/I → R

and g : R → R/I via f(r + I) = xr, g(r) = yr + I for r ∈ R then
gf(1 + I) = g(x) = yx+ I 6= 0, and the proof is completed. �

Note: Let I be a two sided ideal of R then I is not subhomomorphic
to R if and only if I.Tr(I,R) = 0 if and only if Tr(I,R) ⊆ r.ann(I).

Let I be a proper ideal of R. Then R/I is subhomomorphic to R if and
only if there exists x, y in R such that xI = 0 and yx ∈/ I if and only if
l(I) ⊆/ I.

Proposition 2.9. If I is a non-zero two sided ideal of R and I =
l.ann(I), then I is not subhomomorphic to R and R/I is not subho-
momorphic to R.

Proof. By Lemma 2.8, R/I is subhomomorphic to R if and only if l(I) * I

for proper ideal I of R so this trivial that R/I is not subhomomorphic
to R.
If f : I → R and m,n ∈ I with mf(n) 6= 0 then f(I2) = f(I)I = 0
so f(I) ⊆ I and f(n) ∈ I thus mf(n) ∈ I2 and mf(n) = 0, this is a
contradiction, so that I is not subhomomorphic to R. �

Proposition 2.10. Let I be an ideal of R. If for every right ideal K of
R we have R/I subhomomorphic to R/K, then I is T−nilpotent.

Proof. Let a1, a2, a3, ... be elements in I such that a1a2...an 6= 0 for
all n. Then S = {K 6 RR | a1a2...at ∈/K for all t} is a non-empty
set. By Zorn’s lemma has a maximal element, say B. Because R/I

is subhomomorphic to R/B, then there exists r + B 6= B such that
(r + B)I = 0. Thus rI ⊆ B and a1a2...an ∈ rR + B for some n. Then
a1a2...an = rt + b for some t ∈ R and b ∈ B and hence a1a2...anI ⊆
(rt+ b)I ⊆ B and a1a2....anan+1 ∈ B and this is a contradiction, and I
is T− nilpotent. �

Proposition 2.11. Let R be a commutative ring and N be an R-module.
Then the following statements are equivalent.
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(1) N is semiprime in the sense of Zelmanowitz.
(2) The class of submodules of N are subhomomorphic to R.
(3) The class of cyclic submodules of N are subhomomorphic to R.

Proof. (1)⇒(2). For 0 6= k ∈ K there exists f : N → R such that
kf(k) 6= 0 then the restriction of f to K is in K∗ and kf(k) 6= 0 (by
Lemma 2.3) the proof is completed.
(2)⇒(3). Trivial.
(3)⇒(1). For 0 6= n ∈ N there exist f : Rn → R and g : R → Rn such
that gf(n) 6= 0 then gf(n) = g(1)f(n) = nrf(n) = nf(n)r 6= 0 and
nf(n) 6= 0. Then N is semiprime in the sense of Zelmanowitz. �

Let E(S) be an injective hull of simple R-module S. If E(S) is sub-
homomorphic to R with R−homomorphisms f : E(S) → R and g :
R → E(S) then we can deduce that either S is subhomomorphic to R
or gf ∈ J(End(E(S))).
A ring R is called right (left) hereditary if every right (left) ideal of R is
projective.

Theorem 2.12. Let R be a nonsingular ring. Then the following state-
ments are equivalent.

(1) The class of injective R-modules is subhomomorphic to R.
(2) For any injective R-module E there exists a nonsingular projective
R-module P such that E is subhomomorphic to P .
(3) R is a semisimple ring.

Proof. (1)⇒(2) Let P = R.
(2)⇒(3) Let S be a simple R-module and E(S) be subhomomorphic to
P for some projective R-module P and f : E(S) → P . If f(S) = 0,
then Kerf 6e E(S), and E/Kerf is a singular module embedded in P ,
a contradiction. Then f(S) 6= 0 and hence S is nonsingular. It follows
that S is a projective R-module. The proof is now completed by [10,
20.3(i)].
(3)⇒(1) This is routine. �

Proposition 2.13. Let R be a ring with a unique simple R-module (up
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to isomorphism). Then the class of projective modules is subhomomor-
phic to itself.

Proof. Let P1, P2 be two projective modules. Then by [1, 17.14] there
exist maximal submodulesM1 6 P1 andM2 6 P2. So by our assumption
P1/M1

∼= P2/M2 with isomorphism ψ : P1/M1 → P2/M2. Let π2 :
P2 → P2/M2 and π1 : P1 → P1/M1 be the natural projections then by
projectivity of P1, P2 there exist f1 : P1 → P2 and f2 : P2 → P1 such
that π2f1 = ψπ1 and ψπ1f2 = π2. Now let x ∈ P2 \M2 if f1f2(x) =
f1(f2(x)) = 0 then π2(x) = ψπ1(f2(x)) = 0 this is a contradiction. �

Corollary 2.14. Let R be a ring with Jacobson radical J such that
R/J is a simple Artinian ring. Then the class of projective modules is
subhomomorphic to itself.

Proof. By Proposition 2.13. �
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