Study of Subhomomorphic Property to a Ring

M. Baziar
Yasouj University

Abstract

Let M and N be two non-zero right R-modules, M is called subhomomorphic to N in case there exist R-homomorphisms $f: M \rightarrow N, g: N \rightarrow M$ such that gof is non-zero, and M is called strongly subhomomorphic to N in case there exist homomorphisms f : $M \rightarrow N, g: N \rightarrow M$ such that both fog and gof are non-zero. After establishing some basic properties of (strongly) subhomomorphic to a ring, it is shown that for a nonsingular ring R the class of injective right R-modules are subhomomorphic to R if and only if R is a semisimple ring.

AMS Subject Classification: 16D10; 16D60; 16D80
Keywords and Phrases: *-prime, prime, semiprime, strongly subhomomorphic, subhomomorphic

1. Introduction

Throughout rings will have unit elements and modules will be right unitary. If M is a module over a ring R, its quasi-injective (injective) hull will be denoted by $\hat{M}_{R}\left(\mathrm{E}\left(M_{R}\right)\right)$. For R-modules N and M the submodule $\operatorname{Tr}_{R}(M, N):=\sum\left\{\operatorname{Im} h \mid h \in \operatorname{Hom}_{R}(M, N)\right\}$ is called the trace of M in N, and the submodule $\operatorname{Rej}_{R}(N, M):=\cap\left\{\operatorname{Ker} f \mid f \in \operatorname{Hom}_{R}(N, M)\right\}$ is called the reject of M in N. Unexplained terminology and standard results may be found in [1] or [10].

The notions of prime and semiprime for modules have been studies by several authors who have used different definitions [2]-[4], [6] and [9][11]. Bican, Jambor, Kepka and Nemec called an R-module M prime

[^0]if $K * L:=\operatorname{Hom}_{R}(M, L) K \neq 0$ for any non-zero submodules $K, L \leqslant M$ ([2]). This definition of prime called $*$-prime by Lomp ([5]). The notion of primeness had already been extended by Jirasko to semiprimeness for modules ([4]). A semiprime module M (in the sense of Jirasko) is defined by the property that the condition $N * N=0$ implies $N=0$, whenever N is a submodule in M. As noted in [5] the notion of semiprime module coincides with that of weakly compressible, a result attributed to Zelmanowitz ([12]). Recall that M_{R} is called weakly compressible if $\operatorname{Hom}_{R}(M, N)$ contains an element f with $\left.f\right|_{N} \neq 0$ whenever N is a non-zero submodule of M. We have the following implications
$$
*-\text { prime } \Rightarrow \text { weakly compressible } \Rightarrow \text { retractable },
$$
where an R-module M is said to be retractable if $\operatorname{Hom}_{R}(M, N) \neq 0$ for all non-zero submodules N of M. The reverse implications have been investigated by Lomp who proved that a retractable module with prime endomorphism ring is necessarily $*$-prime, and a retractable module with semiprime endomorphism ring is weakly compressible. Furthermore, for a semi-projective module, it is true that being $*$-prime is the same as being retractable with prime endomorphism ring ([5, Propositions 4.2 and 5.2]).
Wisbauer and Wijayanti called a module M_{R} fully prime if for any nonzero fully invariant submodule K of M, M is K-cogenerated. They proved in [9] that M is fully prime if and only if $K * L \neq 0$ for any non-zero fully invariant submodules $K, L \leqslant M$.
The notion of subhomomorphic modules comes from the aforementioned studies. We carry out a thorough investigation of this useful notation. For example by considering the class of simple R-modules which are subhomomorphic to R, some new characterizations of semisimple rings are obtained.

2. Subhomomorphic for Ring

Definition 2.1. Let M and N be two non-zero R-modules. M is called subhomomorphic to N in case there exist R-homomorphisms $f: M \rightarrow N, g: N \rightarrow M$ such that gof is non-zero. M is called strongly
subhomomorphic to N in case there exist homomorphisms $f: M \rightarrow N$, $g: N \rightarrow M$ such that fog and gof are non-zero.

Proposition 2.2. Let M be an *-prime R-module. Then for every non-zero submodules K, L of M, K is subhomomorphic to L.

Proof. Let K, L be non-zero submodules of M. By $*$-primeness we have $\operatorname{Tr}_{R}(L, K) \neq 0$ so that $\operatorname{Hom}_{R}(K, L) \operatorname{Tr}_{R}(L, K) \neq 0$ and hence there exist R-homomorphisms $f: K \rightarrow L, g: L \rightarrow K$ such that gof is non-zero.

Lemma 2.3. The following statements for an R-module M are equivalent.
(a) M_{R} is strongly subhomomorphic to R_{R}.
(b) M_{R} is subhomomorphic to R_{R}.
(c) There exist $n, m \in M$ and a homomorphism $f: M_{R} \rightarrow R_{R}$ such that $m f(n) \neq 0$.

Proof. $(\mathrm{a}) \Rightarrow(\mathrm{b})$. By definition.
(b) \Rightarrow (c). Let $f: M_{R} \rightarrow R_{R}, g: R_{R} \rightarrow M_{R}$ such that $f o g$ is a non-zero R-homomorphism so $g f(m) \neq 0$ for some $m \in M$. Then $g f(m)=$ $g(1 f(m))=g(1) f(m) \neq 0$.
(c) \Rightarrow (a). If $x f(x) \neq 0$ for some $x \in M$ then we can define $g: R_{R} \rightarrow M_{R}$ via $r \mapsto x r$ then $\operatorname{gof}(x) \neq 0, f o g(1) \neq 0$. Otherwise we may suppose that $m \neq n, f(m) \neq f(n), m f(n) \neq 0$ and $m f(m)=0$. Then we define R-homomorphism $h: R_{R} \rightarrow M_{R}$ such that $r \mapsto(m-n) r$ then $f h(1)=f(m-n) \neq 0$ and $h f(m)=h(1) f(m)=(m-n) f(m)=$ $m f(m)-n f(m)=-n f(m) \neq 0$.

Corollary 2.4. The following statements are equivalent for an R module M.
(a) The module M is subhomomorphic to R-module $R / \operatorname{ann}(M)$.
(b) $H o m_{R}(M, R / \operatorname{ann}(M)) \neq 0$.

Proof. (a) \Rightarrow (b)By definition.
$(\mathrm{b}) \Rightarrow(\mathrm{a})$. Let $f: M \rightarrow(R / \operatorname{ann}(M))$ be a non-zero homomorphism then there exist $x \in M$ such that $f(x) \neq 0$. If $m f(x)=0$ for all $m \in M$ we have $f(x) \in \operatorname{ann}(M)$ and $f(x)$ must be zero, contradiction, then $m f(x) \neq 0$ for some $x, m \in M$ and by Lemma 2.3 the proof is completed.

Examples 2.5. (a) By Lemma 2.3 if M is a semiprime R-module in the sense of Zelmanowitz, [i.e. for each $0 \neq m \in M$ there exists $f \in \operatorname{Hom}(M, R)$ with $m f(m) \neq 0]$ then M is strongly subhomomorphic to R.
(b) Let M be a faithful R-module and R be an injective R-module, then R is strongly subhomomorphic to M^{I} for some set I (R can be embedded in M^{I} and by injectivity it is a direct summand of R).
(c) Let R be a semiprime ring. Then every non-zero ideal of R is strongly subhomomorphic to R (by Lemma 2.3).
(d) Let $R=\mathbb{Z}, M=\mathbb{Z}_{4}$ and $M=\mathbb{Z}_{2}$. Then M is subhomomorphic to N, but it is not strongly subhomomorphic to N.
Let M be an R-module. Then R is subhomomorphic to M if and only if $M^{*}=\operatorname{Hom}(M, R) \neq 0$. So that R is subhomomorphic to I for every right ideal I of R.

Lemma 2.6. Let I, J be non-zero two sided ideals of R. If $I J I \neq 0$ then I is subhomomorphic to J.

Proof. If $I J I \neq 0$, there exist $x \in I, b \in J$ such that $x b I \neq 0$ then we can define R-homomorphisms $f_{b}: I_{R} \rightarrow J_{R}$ and $g_{x}: J_{R} \rightarrow I_{R}$ via $f_{b}(i)=b i, g_{x}(j)=x j$, so that $g_{x} f_{b}(I)=g_{x}(b I)=x b I \neq 0$, thus I is subhomomorphic to J.

Corollary 2.7. If I is an ideal of R with, $I^{2} \neq 0$ then I is subhomomorphic to R.

Proof. Apply Lemma 2.6 for $J=R$.
Lemma 2.8. Let I be a right ideal of R. Then R / I is subhomomorphic to R if and only if there exist $x, y \in R$ such that $x I=0$ and $y x \notin I$.

Proof. Let R / I be subhomomorphic to R so there exist $f: R / I \rightarrow R$
and $\bar{y}, \bar{t} \in R / I$ such that $\bar{y} f(\bar{t})=\bar{y} f(\overline{1}) t=\bar{y} x t=(y+I) x t \neq 0$ so that $x I=f(\overline{1}) I=f(I)=0$ and $y x \notin I$. Conversely if we define $f: R / I \rightarrow R$ and $g: R \rightarrow R / I$ via $f(r+I)=x r, g(r)=y r+I$ for $r \in R$ then $g f(1+I)=g(x)=y x+I \neq 0$, and the proof is completed.

Note: Let I be a two sided ideal of R then I is not subhomomorphic to R if and only if $I \cdot \operatorname{Tr}(I, R)=0$ if and only if $\operatorname{Tr}(I, R) \subseteq \operatorname{r} \cdot \operatorname{ann}(I)$.
Let I be a proper ideal of R. Then R / I is subhomomorphic to R if and only if there exists x, y in R such that $x I=0$ and $y x \notin I$ if and only if $l(I) \nsubseteq I$.

Proposition 2.9. If I is a non-zero two sided ideal of R and $I=$ l.ann (I), then I is not subhomomorphic to R and R / I is not subhomomorphic to R.

Proof. By Lemma $2.8, R / I$ is subhomomorphic to R if and only if $l(I) \nsubseteq I$ for proper ideal I of R so this trivial that R / I is not subhomomorphic to R.
If $f: I \rightarrow R$ and $m, n \in I$ with $m f(n) \neq 0$ then $f\left(I^{2}\right)=f(I) I=0$ so $f(I) \subseteq I$ and $f(n) \in I$ thus $m f(n) \in I^{2}$ and $m f(n)=0$, this is a contradiction, so that I is not subhomomorphic to R.

Proposition 2.10. Let I be an ideal of R. If for every right ideal K of R we have R / I subhomomorphic to R / K, then I is T-nilpotent.

Proof. Let $a_{1}, a_{2}, a_{3}, \ldots$ be elements in I such that $a_{1} a_{2} \ldots a_{n} \neq 0$ for all n. Then $S=\left\{K \leqslant R_{R} \mid a_{1} a_{2} \ldots a_{t} \notin K\right.$ for all t$\}$ is a non-empty set. By Zorn's lemma has a maximal element, say B. Because R / I is subhomomorphic to R / B, then there exists $r+B \neq B$ such that $(r+B) I=0$. Thus $r I \subseteq B$ and $a_{1} a_{2} \ldots a_{n} \in r R+B$ for some n. Then $a_{1} a_{2} \ldots a_{n}=r t+b$ for some $t \in R$ and $b \in B$ and hence $a_{1} a_{2} \ldots a_{n} I \subseteq$ $(r t+b) I \subseteq B$ and $a_{1} a_{2} \ldots a_{n} a_{n+1} \in B$ and this is a contradiction, and I is T - nilpotent.

Proposition 2.11. Let R be a commutative ring and N be an R-module. Then the following statements are equivalent.
(1) N is semiprime in the sense of Zelmanowitz.
(2) The class of submodules of N are subhomomorphic to R.
(3) The class of cyclic submodules of N are subhomomorphic to R.

Proof. $(1) \Rightarrow(2)$. For $0 \neq k \in K$ there exists $f: N \rightarrow R$ such that $k f(k) \neq 0$ then the restriction of f to K is in K^{*} and $k f(k) \neq 0$ (by Lemma 2.3) the proof is completed.
$(2) \Rightarrow(3)$. Trivial.
$(3) \Rightarrow(1)$. For $0 \neq n \in N$ there exist $f: R n \rightarrow R$ and $g: R \rightarrow R n$ such that $g f(n) \neq 0$ then $g f(n)=g(1) f(n)=n r f(n)=n f(n) r \neq 0$ and $n f(n) \neq 0$. Then N is semiprime in the sense of Zelmanowitz.

Let $E(S)$ be an injective hull of simple R-module S. If $E(S)$ is subhomomorphic to R with R-homomorphisms $f: E(S) \rightarrow R$ and g : $R \rightarrow E(S)$ then we can deduce that either S is subhomomorphic to R or $g f \in J(E n d(E(S)))$.
A ring R is called right (left) hereditary if every right (left) ideal of R is projective.

Theorem 2.12. Let R be a nonsingular ring. Then the following statements are equivalent.
(1) The class of injective R-modules is subhomomorphic to R.
(2) For any injective R-module E there exists a nonsingular projective R-module P such that E is subhomomorphic to P.
(3) R is a semisimple ring.

Proof. $(1) \Rightarrow(2)$ Let $P=R$.
$(2) \Rightarrow(3)$ Let S be a simple R-module and $E(S)$ be subhomomorphic to P for some projective R-module P and $f: E(S) \rightarrow P$. If $f(S)=0$, then $\operatorname{Ker} f \leqslant_{e} E(S)$, and $E / \operatorname{Ker} f$ is a singular module embedded in P, a contradiction. Then $f(S) \neq 0$ and hence S is nonsingular. It follows that S is a projective R-module. The proof is now completed by [10, 20.3(i)].
$(3) \Rightarrow(1)$ This is routine.
Proposition 2.13. Let R be a ring with a unique simple R-module (up
to isomorphism). Then the class of projective modules is subhomomorphic to itself.

Proof. Let P_{1}, P_{2} be two projective modules. Then by $[1,17.14]$ there exist maximal submodules $M_{1} \leqslant P_{1}$ and $M_{2} \leqslant P_{2}$. So by our assumption $P_{1} / M_{1} \cong P_{2} / M_{2}$ with isomorphism $\psi: P_{1} / M_{1} \rightarrow P_{2} / M_{2}$. Let $\pi_{2}:$ $P_{2} \rightarrow P_{2} / M_{2}$ and $\pi_{1}: P_{1} \rightarrow P_{1} / M_{1}$ be the natural projections then by projectivity of P_{1}, P_{2} there exist $f_{1}: P_{1} \rightarrow P_{2}$ and $f_{2}: P_{2} \rightarrow P_{1}$ such that $\pi_{2} f_{1}=\psi \pi_{1}$ and $\psi \pi_{1} f_{2}=\pi_{2}$. Now let $x \in P_{2} \backslash M_{2}$ if $f_{1} f_{2}(x)=$ $f_{1}\left(f_{2}(x)\right)=0$ then $\pi_{2}(x)=\psi \pi_{1}\left(f_{2}(x)\right)=0$ this is a contradiction.

Corollary 2.14. Let R be a ring with Jacobson radical J such that R / J is a simple Artinian ring. Then the class of projective modules is subhomomorphic to itself.

Proof. By Proposition 2.13.

Acknowledgment

The author would like to thank the referees for their careful reading and useful suggestions.

References

[1] F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Springer-Verlag, New York, 1992.
[2] L. Bican, P. Jambor, T. Kepka, and P. Nemec, Prime and coprime module, Fundamenta Mathematicae CVII, (1980), 33-45.
[3] A. Ghorbani, Co-epi-retractable modules and co-pri rings, Comm. Algebra, 38 (10), (2010), 3589-3596.
[4] A. Haghny and M.,R. Vedadi, Endoprime module, Acta Mathematica Hungaria, 106 (1-2) (2005), 89-99.
[5] J. Jirásko, Notes on generalized prime and coprime modules I, Comm. Math. Univ. Carolinae, 22 (3) (1981), 467-482.
[6] C. Lomp, Prime element in partially ordered groupoids applied to modules and hopf algebra action, J. Algebra Appl., 4(1) (2005), 77-98.
[7] C. Lomp and A. J. Pena, A note on prime modules, Divulg. Mat., 8(1) (2000), 31-34.
[8] F. Raggi, J. Ríos, H. Rincón, R. Fernández-alonso, and C. Signoret, Prime and irreducible preradicals, J. Algebra Appl., 4(4) (2005), 451-466.
[9] P. F. Smith, Modules with many homomorphisms, J. Pure Appl. Algebra, 197 (2005), 305-321.
[10] M. R. Vedadi, \mathcal{L}_{2}-prime and dimensional modules, Int. Electron. J. Algebra, 7 (2010), 4758.
[11] I. E. Wijayanti, Coprime modules and comodules, Ph.D Thesis, 2006.
[12] R. Wisbauer, Foundation of Module and Ring Theory, Gordon and Breach, Philadelphia, 1991.
[13] J. Zelmanowitz, Semiprime module with maximum conditions. J. Algebra, 25 (1973), 554-574.
[14] J. Zelmanowitz, A class of modules with semisimple behavior, In A. Facchini and C. Menini, eds. Abelian Group and Module, (Kluwer Acad. Publ., 1995), p. 491.

Mohammad Baziar

Department of Mathematics
Assistant Professor of Mathematics
Yasouj University
Yasouj, Iran
E-mail: mbaziar@mail.yu.ac.ir

[^0]: Received: September 2011; Accepted: June 2012

