Journal of Mathematical Extension Vol. 6, No. 3, (2012), 17-24

Study of Subhomomorphic Property to a Ring

M. Baziar

Yasouj University

Abstract. Let M and N be two non-zero right R-modules, M is called *subhomomorphic* to N in case there exist R-homomorphisms $f: M \to N, g: N \to M$ such that gof is non-zero, and M is called *strongly subhomomorphic* to N in case there exist homomorphisms $f: M \to N, g: N \to M$ such that both fog and gof are non-zero. After establishing some basic properties of (strongly) subhomomorphic to a ring, it is shown that for a nonsingular ring R the class of injective right R-modules are subhomomorphic to R if and only if R is a semisimple ring.

AMS Subject Classification: 16D10; 16D60; 16D80 Keywords and Phrases: *-prime, prime, semiprime, strongly subhomomorphic, subhomomorphic

1. Introduction

Throughout rings will have unit elements and modules will be right unitary. If M is a module over a ring R, its quasi-injective (injective) hull will be denoted by \hat{M}_R (E(M_R)). For R-modules N and M the submodule $\operatorname{Tr}_R(M, N) := \sum { \operatorname{Im} h \mid h \in \operatorname{Hom}_R(M, N) }$ is called the *trace* of Min N, and the submodule $\operatorname{Rej}_R(N, M) := \cap { \operatorname{Ker} f \mid f \in \operatorname{Hom}_R(N, M) }$ is called the *reject* of M in N. Unexplained terminology and standard results may be found in [1] or [10].

The notions of prime and semiprime for modules have been studies by several authors who have used different definitions [2]-[4], [6] and [9]-[11]. Bican, Jambor, Kepka and Nemec called an R-module M prime

Received: September 2011; Accepted: June 2012

if $K * L := \operatorname{Hom}_R(M, L) K \neq 0$ for any non-zero submodules $K, L \leq M$ ([2]). This definition of prime called *-prime by Lomp ([5]). The notion of primeness had already been extended by Jirasko to semiprimeness for modules ([4]). A semiprime module M (in the sense of Jirasko) is defined by the property that the condition N * N = 0 implies N = 0, whenever N is a submodule in M. As noted in [5] the notion of semiprime module coincides with that of weakly compressible, a result attributed to Zelmanowitz ([12]). Recall that M_R is called weakly compressible if $\operatorname{Hom}_R(M, N)$ contains an element f with $f \mid_N \neq 0$ whenever N is a non-zero submodule of M. We have the following implications

$*-prime \Rightarrow weakly \ compressible \Rightarrow retractable,$

where an *R*-module *M* is said to be retractable if $\operatorname{Hom}_R(M, N) \neq 0$ for all non-zero submodules *N* of *M*. The reverse implications have been investigated by Lomp who proved that a retractable module with prime endomorphism ring is necessarily *-prime, and a retractable module with semiprime endomorphism ring is weakly compressible. Furthermore, for a semi-projective module, it is true that being *-prime is the same as being retractable with prime endomorphism ring ([5, Propositions 4.2 and 5.2]).

Wisbauer and Wijayanti called a module M_R fully prime if for any nonzero fully invariant submodule K of M, M is K-cogenerated. They proved in [9] that M is fully prime if and only if $K * L \neq 0$ for any non-zero fully invariant submodules $K, L \leq M$.

The notion of subhomomorphic modules comes from the aforementioned studies. We carry out a thorough investigation of this useful notation. For example by considering the class of simple R-modules which are subhomomorphic to R, some new characterizations of semisimple rings are obtained.

2. Subhomomorphic for Ring

Definition 2.1. Let M and N be two non-zero R-modules. M is called subhomomorphic to N in case there exist R-homomorphisms $f: M \to N, g: N \to M$ such that gof is non-zero. M is called strongly

subhomomorphic to N in case there exist homomorphisms $f: M \to N$, $g: N \to M$ such that fog and gof are non-zero.

Proposition 2.2. Let M be an *-prime R-module. Then for every non-zero submodules K, L of M, K is subhomomorphic to L.

Proof. Let K, L be non-zero submodules of M. By *-primeness we have $\operatorname{Tr}_R(L, K) \neq 0$ so that $\operatorname{Hom}_R(K, L)\operatorname{Tr}_R(L, K) \neq 0$ and hence there exist R-homomorphisms $f : K \to L, g : L \to K$ such that gof is non-zero. \Box

Lemma 2.3. The following statements for an *R*-module *M* are equivalent.

- (a) M_R is strongly subhomomorphic to R_R .
- (b) M_R is subhomomorphic to R_R .

(c) There exist $n, m \in M$ and a homomorphism $f : M_R \to R_R$ such that $mf(n) \neq 0$.

Proof. (a) \Rightarrow (b). By definition.

(b) \Rightarrow (c). Let $f: M_R \to R_R, g: R_R \to M_R$ such that fog is a non-zero R-homomorphism so $gf(m) \neq 0$ for some $m \in M$. Then $gf(m) = g(1f(m)) = g(1)f(m) \neq 0$.

(c) \Rightarrow (a). If $xf(x) \neq 0$ for some $x \in M$ then we can define $g: R_R \to M_R$ via $r \mapsto xr$ then $gof(x) \neq 0$, $fog(1) \neq 0$. Otherwise we may suppose that $m \neq n$, $f(m) \neq f(n)$, $mf(n) \neq 0$ and mf(m) = 0. Then we define R-homomorphism $h: R_R \to M_R$ such that $r \mapsto (m-n)r$ then $fh(1) = f(m-n) \neq 0$ and hf(m) = h(1)f(m) = (m-n)f(m) = $mf(m) - nf(m) = -nf(m) \neq 0$. \Box

Corollary 2.4. The following statements are equivalent for an R-module M.

(a) The module M is subhomomorphic to R-module R/ann(M).
(b) Hom_R(M, R/ann(M)) ≠ 0.

Proof. (a) \Rightarrow (b)By definition.

(b) \Rightarrow (a). Let $f : M \to (R/\operatorname{ann}(M))$ be a non-zero homomorphism then there exist $x \in M$ such that $f(x) \neq 0$. If mf(x) = 0 for all $m \in M$ we have $f(x) \in \operatorname{ann}(M)$ and f(x) must be zero, contradiction, then $mf(x) \neq 0$ for some $x, m \in M$ and by Lemma 2.3 the proof is completed. \Box

Examples 2.5. (a) By Lemma 2.3 if M is a semiprime R-module in the sense of Zelmanowitz, [i.e. for each $0 \neq m \in M$ there exists $f \in \text{Hom}(M, R)$ with $mf(m) \neq 0$] then M is strongly subhomomorphic to R.

(b) Let M be a faithful R-module and R be an injective R-module, then R is strongly subhomomorphic to M^I for some set I (R can be embedded in M^I and by injectivity it is a direct summand of R).

(c) Let R be a semiprime ring. Then every non-zero ideal of R is strongly subhomomorphic to R (by Lemma 2.3).

(d) Let $R = \mathbb{Z}$, $M = \mathbb{Z}_4$ and $M = \mathbb{Z}_2$. Then M is subhomomorphic to N, but it is not strongly subhomomorphic to N.

Let M be an R-module. Then R is subhomomorphic to M if and only if $M^* = \text{Hom}(M, R) \neq 0$. So that R is subhomomorphic to I for every right ideal I of R.

Lemma 2.6. Let I, J be non-zero two sided ideals of R. If $IJI \neq 0$ then I is subhomomorphic to J.

Proof. If $IJI \neq 0$, there exist $x \in I$, $b \in J$ such that $xbI \neq 0$ then we can define R-homomorphisms $f_b: I_R \to J_R$ and $g_x: J_R \to I_R$ via $f_b(i) = bi, g_x(j) = xj$, so that $g_x f_b(I) = g_x(bI) = xbI \neq 0$, thus I is subhomomorphic to J. \Box

Corollary 2.7. If I is an ideal of R with, $I^2 \neq 0$ then I is subhomomorphic to R.

Proof. Apply Lemma 2.6 for J = R.

Lemma 2.8. Let I be a right ideal of R. Then R/I is subhomomorphic to R if and only if there exist $x, y \in R$ such that xI = 0 and $yx \notin I$.

Proof. Let R/I be subhomomorphic to R so there exist $f: R/I \to R$

and $\bar{y}, \bar{t} \in R/I$ such that $\bar{y}f(\bar{t}) = \bar{y}f(\bar{1})t = \bar{y}xt = (y+I)xt \neq 0$ so that $xI = f(\bar{1})I = f(I) = 0$ and $yx \notin I$. Conversely if we define $f: R/I \to R$ and $g: R \to R/I$ via f(r+I) = xr, g(r) = yr + I for $r \in R$ then $gf(1+I) = g(x) = yx + I \neq 0$, and the proof is completed. \Box

Note: Let *I* be a two sided ideal of *R* then *I* is not subhomomorphic to *R* if and only if $I.\operatorname{Tr}(I, R) = 0$ if and only if $\operatorname{Tr}(I, R) \subseteq \operatorname{r.ann}(I)$.

Let I be a proper ideal of R. Then R/I is subhomomorphic to R if and only if there exists x, y in R such that xI = 0 and $yx \notin I$ if and only if $l(I) \not\subseteq I$.

Proposition 2.9. If I is a non-zero two sided ideal of R and I = l.ann(I), then I is not subhomomorphic to R and R/I is not subhomomorphic to R.

Proof. By Lemma 2.8, R/I is subhomomorphic to R if and only if $l(I) \nsubseteq I$ for proper ideal I of R so this trivial that R/I is not subhomomorphic to R.

If $f: I \to R$ and $m, n \in I$ with $mf(n) \neq 0$ then $f(I^2) = f(I)I = 0$ so $f(I) \subseteq I$ and $f(n) \in I$ thus $mf(n) \in I^2$ and mf(n) = 0, this is a contradiction, so that I is not subhomomorphic to R. \Box

Proposition 2.10. Let I be an ideal of R. If for every right ideal K of R we have R/I subhomomorphic to R/K, then I is T-nilpotent.

Proof. Let $a_1, a_2, a_3, ...$ be elements in I such that $a_1a_2...a_n \neq 0$ for all n. Then $S = \{K \leq R_R \mid a_1a_2...a_t \notin K \text{ for all } t\}$ is a non-empty set. By Zorn's lemma has a maximal element, say B. Because R/I is subhomomorphic to R/B, then there exists $r + B \neq B$ such that (r+B)I = 0. Thus $rI \subseteq B$ and $a_1a_2...a_n \in rR + B$ for some n. Then $a_1a_2...a_n = rt + b$ for some $t \in R$ and $b \in B$ and hence $a_1a_2...a_nI \subseteq (rt+b)I \subseteq B$ and $a_1a_2...a_na_{n+1} \in B$ and this is a contradiction, and I is T- nilpotent. \Box

Proposition 2.11. Let R be a commutative ring and N be an R-module. Then the following statements are equivalent.

(1) N is semiprime in the sense of Zelmanowitz.

(2) The class of submodules of N are subhomomorphic to R.

(3) The class of cyclic submodules of N are subhomomorphic to R.

Proof. (1) \Rightarrow (2). For $0 \neq k \in K$ there exists $f : N \to R$ such that $kf(k) \neq 0$ then the restriction of f to K is in K^* and $kf(k) \neq 0$ (by Lemma 2.3) the proof is completed.

 $(2) \Rightarrow (3)$. Trivial.

 $(3) \Rightarrow (1)$. For $0 \neq n \in N$ there exist $f : Rn \to R$ and $g : R \to Rn$ such that $gf(n) \neq 0$ then $gf(n) = g(1)f(n) = nrf(n) = nf(n)r \neq 0$ and $nf(n) \neq 0$. Then N is semiprime in the sense of Zelmanowitz. \Box

Let E(S) be an injective hull of simple *R*-module *S*. If E(S) is subhomomorphic to *R* with *R*-homomorphisms $f : E(S) \to R$ and $g : R \to E(S)$ then we can deduce that either *S* is subhomomorphic to *R* or $gf \in J(End(E(S)))$.

A ring R is called *right (left) hereditary* if every right (left) ideal of R is projective.

Theorem 2.12. Let R be a nonsingular ring. Then the following statements are equivalent.

(1) The class of injective R-modules is subhomomorphic to R.
(2) For any injective R-module E there exists a nonsingular projective R-module P such that E is subhomomorphic to P.

(3) R is a semisimple ring.

Proof. (1) \Rightarrow (2) Let P = R.

 $(2) \Rightarrow (3)$ Let S be a simple R-module and E(S) be subhomomorphic to P for some projective R-module P and $f : E(S) \to P$. If f(S) = 0, then Ker $f \leq_e E(S)$, and E/Ker f is a singular module embedded in P, a contradiction. Then $f(S) \neq 0$ and hence S is nonsingular. It follows that S is a projective R-module. The proof is now completed by [10, 20.3(i)].

 $(3) \Rightarrow (1)$ This is routine. \Box

Proposition 2.13. Let R be a ring with a unique simple R-module (up

22

to isomorphism). Then the class of projective modules is subhomomorphic to itself.

Proof. Let P_1 , P_2 be two projective modules. Then by [1, 17.14] there exist maximal submodules $M_1 \leq P_1$ and $M_2 \leq P_2$. So by our assumption $P_1/M_1 \cong P_2/M_2$ with isomorphism $\psi : P_1/M_1 \to P_2/M_2$. Let $\pi_2 :$ $P_2 \to P_2/M_2$ and $\pi_1 : P_1 \to P_1/M_1$ be the natural projections then by projectivity of P_1 , P_2 there exist $f_1 : P_1 \to P_2$ and $f_2 : P_2 \to P_1$ such that $\pi_2 f_1 = \psi \pi_1$ and $\psi \pi_1 f_2 = \pi_2$. Now let $x \in P_2 \setminus M_2$ if $f_1 f_2(x) =$ $f_1(f_2(x)) = 0$ then $\pi_2(x) = \psi \pi_1(f_2(x)) = 0$ this is a contradiction. \Box

Corollary 2.14. Let R be a ring with Jacobson radical J such that R/J is a simple Artinian ring. Then the class of projective modules is subhomomorphic to itself.

Proof. By Proposition 2.13. \Box

Acknowledgment

The author would like to thank the referees for their careful reading and useful suggestions.

References

- F. W. Anderson and K. R. Fuller, *Rings and Categories of Modules*, Springer-Verlag, New York, 1992.
- [2] L. Bican, P. Jambor, T. Kepka, and P. Nemec, Prime and coprime module, Fundamenta Mathematicae CVII, (1980), 33-45.
- [3] A. Ghorbani, Co-epi-retractable modules and co-pri rings, Comm. Algebra, 38 (10), (2010), 3589-3596.
- [4] A. Haghny and M.,R. Vedadi, Endoprime module, Acta Mathematica Hungaria, 106 (1-2) (2005), 89-99.
- [5] J. Jirásko, Notes on generalized prime and coprime modules I, Comm. Math. Univ. Carolinae, 22 (3) (1981), 467-482.

- [6] C. Lomp, Prime element in partially ordered groupoids applied to modules and hopf algebra action, J. Algebra Appl., 4(1) (2005), 77-98.
- [7] C. Lomp and A. J. Pena, A note on prime modules, *Divulg. Mat.*, 8(1) (2000), 31-34.
- [8] F. Raggi, J. Ríos, H. Rincón, R. Fernández-alonso, and C. Signoret, Prime and irreducible preradicals, J. Algebra Appl., 4(4) (2005), 451-466.
- [9] P. F. Smith, Modules with many homomorphisms, J. Pure Appl. Algebra, 197 (2005), 305-321.
- [10] M. R. Vedadi, L₂-prime and dimensional modules, Int. Electron. J. Algebra, 7 (2010), 4758.
- [11] I. E. Wijayanti, Coprime modules and comodules, Ph.D Thesis, 2006.
- [12] R. Wisbauer, *Foundation of Module and Ring Theory*, Gordon and Breach, Philadelphia, 1991.
- [13] J. Zelmanowitz, Semiprime module with maximum conditions. J. Algebra, 25 (1973), 554-574.
- [14] J. Zelmanowitz, A class of modules with semisimple behavior, In A. Facchini and C. Menini, eds. Abelian Group and Module, (Kluwer Acad. Publ., 1995), p. 491.

Mohammad Baziar

Department of Mathematics Assistant Professor of Mathematics Yasouj University Yasouj, Iran E-mail: mbaziar@mail.yu.ac.ir