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Abstract. The theory of algebraic frames for a Hilbert space H is
a generalization of the theory of frames and generalized frames. The
paper applies the theory of unbounded operators to define the dual of
algebraic frames with densely defined unbounded analysis operators. It
is shown that every algebraic frame has an algebraic dual frame, and if
an algebraic frame has a nonzero redundancy, then it is not Riesz-type.
An example of an algebraic frame with finite redundancy is constructed
which is not a Riesz-type algebraic frame. Finally, for a lower bounded
analytic frame, the discreteness of its indexing measure space and the
uniqueness of its algebraic dual are studied and shown to be interrelated.
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1 Introduction and preliminaries

In this paper, we will study the algebraic frame theory established in
[7, 8]. In fact, we are interested in some applications of unbounded
operators to algebraic frames and their duals. Let us first recall few
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basic notions needed in the sequel. Throughout the paper, H denotes a
Hilbert space. Let X be a linear subspace of H with algebraic dual X ′.

Recall that every Hilbert space H with the underlying field F(=
R or C) is isometrically isomorphic with HF := `2F(Λ) for some index
set Λ. The space HF is called a coordinatization of H and, if F = R,
HC is called a complexification of H. Identifying H and HF, the set
{eα : α ∈ Λ} ⊂ HF defined by eα(β) = δαβ (the Kroneker delta) will
be an orthonormal basis of H. In case H is separable, the index set Λ
can be identified as N or as a finite initial segment {1, 2, 3, · · · , n}. If
x ∈ HF, ||x||2 =

∑
α∈Λx

|x(α)|2 (independent of the order on α).
We will now summarise some basic definitions from algebraic frame

theory. For further details and properties about algebraic frames, gen-
eralized frames and unbounded closed operators we refer to [2, 4, 6, 7,
9, 10, 11]. In this paper, to avoid confusion of the notations for ”closure
of a set” as in Z̄ = Z ∪ Z ′ and the “conjugate of a complex number”
as in z̄ = Re(z) − iIm(z), the latter will be denoted by z∗. Also, ⊕
represents the orthogonal direct sum of Hilbert spaces or operators on
Hilbert spaces. The notations D(f) and R(f) will denote the domain
and the range of a function f , respectively; also, the notations K(T ) and
G(T ) will denote the null space and the graph of a linear operator T ,
respectively.

Definition 1.1. A preframe on a Hilbert space H is a 4-tuple (Θ, µ,X,H)
in which Θ = (θz)z∈Z ⊆ X ′ is a family of (not necessarily bounded) lin-
ear functionals indexed by a (positive) measure space (Z,M, µ), where X
is a linear subspace of H and the functions z 7→ θzh are µ-measurable for
all h ∈ X. The linear operator tΘ : X → CZ defined by (tΘh)(z) = θzh
is called the analysis operator of Θ. We say that (Θ, µ,X,H) is a pseudo
frame in H if X̄ = H and its induced operator tΘ maps X into L2(µ);
i.e.,

∫
Z |θz(h)|2dµ(z) < ∞, ∀h ∈ X. The measure space Z and the

space X are called the index measure space and the signal space of Θ,
respectively. The space X, will be also denoted by the notation D(Θ).

Definition 1.2. A pseudo frame Θ = (θz)z∈Z is called an algebraic
frame if its analysis operator tΘ has an injective closure TΘ. The family
Θ is an analytic frame, if it is an algebraic frame for which every linear
functional θz is bounded. For an algebraic frame Θ, its frame operator
SΘ : D(SΘ) ⊆ H → H is defined to be the operator SΘ := T ∗ΘTΘ.
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Lemma 1.3. If Θ is an algebraic frame, we can assume without loss of
generality that TΘ = tΘ.

Proof. The proof follows from the argument given in the Introduction
of the paper by Giv-Radjabalipour [7], showing one can assume without
loss of generality that D(Θ) = D(TΘ). �

Notes. A generalized (or continuous) frame in H indexed by mea-
sure space (Z,M, µ) is a family of vectors {fz}z∈Z such that for all
f ∈ H, the function z → 〈f, fz〉 is measurable and, there exist constants
A,B > 0 such that A||f ||2 6

∫
Z |〈f, fz〉|

2dµ(z) ≤ B||f ||2 [4].
We will study a class of unbounded operators a special case of which

is used in the theory of algebraic frames. For reader’s convenience, we
conclude the section by certain facts from [3] which will be necessary for
the proof of our main results in the next section.

Theorem 1.4. ([3]) Assume W ∈ B(H) is such that 0 ≤ W ≤ I
and that W and (I −W ) are injective. Choose α ∈ [0, 1]. Then (I −
W )αW−α = W−α(I −W )α and the operator S := (I −W )αW−α is a
selfadjoint operator with D(S) = R(Wα). Moreover, R(S) = R(I−W )α

and that, if (I −W )αx = Wαy for some x, y ∈ H, then x = Wαz for
some z ∈ H.

Definition 1.5. ([3]) Define the von Neumann generator WT of a linear
transformation T : D(T ) ⊂ H → K by WT := PQTP

∗, where QT :
H ⊕ K → H ⊕ K is the orthogonal projection onto (the closed linear
space) G(T ) and P : H ⊕ K → H is the ( bounded linear) operator
sending x⊕ y to x. The adjoint P ∗ : H → H ⊕K of P sends x ∈ H to
x⊕ 0 ∈ H ⊕K. If there arises no ambiguity, we may drop the subscript
T in WT .

Theorem 1.6. ([3]) Let T : D(T ) ⊂ H → K be a densely defined closed
linear transformation and let W = WT be its von Neumann generator.
The following assertions are true.

(i) ker(W ) = D(T )⊥ = {0}, and, 0 ≤W ≤ I.

(ii) T = V (I −W )1/2W−1/2 : R(W 1/2) ⊂ H → K , where V : H →
K is a partial isometry such that V ∗V = I and V V ∗ is the
orthogonal projection onto V H.
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(iii) T ∗T = (T ∗T )∗ = (I −W )W−1, D(T ∗T ) = R(W ) and R(T ∗T ) =
R(I −W ). In particular, T ∗T is also densely defined.

2 Main results

In this section, we will define the dual of an algebraic frame and show
that special cases of the algebraic frames have algebraic duals. The
section generalizes and improves duality results known for generalized
frames.

Definition 2.1. An algebraic frame Γ = (γz)z∈Z with the signal space
Y ⊂ H and analysis operator TΓ is called an algebraic dual frame for
the algebraic frame Θ = (θz)z∈Z with signal space X ⊂ H and analysis
operator TΘ if, for every x ∈ X and y ∈ Y ,

〈x, y〉 = 〈TΘx, TΓy〉.

In this case, (Θ,Γ) is called an algebraic dual pair in H. We call Θ a
Riesz-type algebraic frame if it has a unique algebraic dual.

Note that Riesz bases are discrete frames with unique duals. We are
following Gabardo and Han [6] who first identified Riesz-type frames as
the collection of all generalized frames having unique duals. Our main
results are to explore conditions implying algebraic frames to become
Riesz-type algebraic frames.

Our first main theorem studies the existence of dual algebraic frames.

Theorem 2.2. Every algebraic frame has an algebraic dual frame.

Proof. Let Θ = (θz)z∈Z be an algebraic frame indexed by the measure
space (Z,M, µ). Assume W = WTΘ is the von Neumann generator of
the analysis operator TΘ with signal space X = D(TΘ). In view of
Parts (i)-(ii) of Theorem 1.6, ker(W ) = ker(W 1/2) = {0}, TΘ = V (I −
W )1/2W−1/2, and X = R(W 1/2). Also, ker((I−W )1/2) = ker(I−W ) =
ker(TΘ) = {0}. Define

TΘ′ := V (I −W )−1/2W 1/2 with D(TΘ′) = R((I −W )1/2).

Clearly, TΘ′ is well defined. We claim TΘ′ is the analysis operator of
a dual algebraic frame of (θz)z∈Z . Since TΘ is injective, so is I − W
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and, hence, (I − W )α has a dense range for all α > 0. Thus TΘ′ is
densely defined. To show TΘ′ is injective, assume 0 = TΘ′x = V (I −
W )−1/2W 1/2(I −W )1/2ξ = VW 1/2ξ for some x = (I −W )1/2ξ. Then
W 1/2ξ = 0 and, hence, ξ = 0 or, equivalently, x = 0.

Next, we show that TΘ′ is closed. Let x ∈ H be the limit of
some sequence xn = (I − W )1/2ξn ∈ D(TΘ′), and that y is the limit
of the sequence TΘ′xn. We claim x ∈ D(TΘ′) and TΘ′x = y. Since
y = limn VW

1/2ξn, it follows that y ∈ V H = V H and (I −W )1/2V ∗y =
limnW

1/2xn = W 1/2x. By Part (i) of Theorem 1.4, x = (I −W )1/2ξ ∈
D(TΘ′) and V ∗y = W 1/2ξ. Then TΘ′x = V (I − W )−1/2W 1/2(I −
W )1/2ξ = V V ∗y = y and, thus, TΘ′ is closed.

Now, we show that the preframe θ′z(y) := (TΘ′y)(z) ∀ y ∈ R((I −
W )1/2 is a pseudo frame. This easily follows from the fact that, if
y = (I −W )1/2η, then TΘ′y = VW 1/2η ∈ V H ⊂ L2(µ).

Finally, the duality of TΘ and TΘ′ follows from the following obser-
vation. For every x = W 1/2ξ ∈ D(TΘ) and every y = (I −W )1/2η ∈
D(TΘ′),

〈TΘ′y, TΘx〉 = 〈VW 1/2η, V (I −W )1/2ξ〉 = 〈W 1/2η, (I −W )1/2ξ〉
= 〈(I −W )1/2η ,W 1/2ξ〉 = 〈y, x〉 .

Therefore, (Θ′,Θ) is an algebraic dual pair in H. �

Definition 2.3. The algebraic frame Θ′ = (θ′z)z∈Z defined by θ′z(y) =
(TΘ′y)(z) with signal space Y = R((I−W )1/2) and the analysis operator
TΘ′ = V (I −W )−1/2W 1/2 is called the standard algebraic dual of Θ.

Proposition 2.4. If Θ = (θz)z∈Z is an algebraic frame and if D(TΘ) =
D(SΘ), then TΘ is a bounded operator.

Proof. By theorem 1.6, R(W 1/2) = D(TΘ) = D(SΘ) = R(W ). Thus,
for every x ∈ H there exists y ∈ H such that W 1/2x = Wy. Therefore,
x = W 1/2y and, so, H = R(W 1/2). This implies that W 1/2 and W−1/2

are bounded operators and, so, TΘ = V (I −W )1/2W−1/2 : H → L2(µ)
is a bounded operator. �

Definition 2.5. Let Θ be an algebraic frame in H. Define its redun-
dancy as

red(Θ) := codim(R(TΘ)) = dim(ker(T ∗Θ)).
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Theorem 2.6. Suppose Θ = (θz)z∈Z is an algebraic frame with signal
space X = D(TΘ) and let Θ′ = (θ′z)z∈Z be its standard algebraic dual.
Assume Γ = (γz)z∈Z is a pseudo frame whose analysis operator tΓ is
a closable operator with D(tΓ) = D(Θ′) and R(TΘ) ⊥ R(tΓ). Then the
family ∆ := Θ′+Γ is an algebraic dual frame for Θ in H. In particular,
if red(Θ) 6= 0, then Θ is not a Riesz type algebraic frame.

Proof. Assume xn = (I − W )1/2ξn ∈ D(TΘ′) converges to x ∈ H
and yn = TΘ′xn ⊕ tΓxn converges to y = y1 ⊕ y2, where y1 ∈ R(TΘ′)
and y2 ∈ R(tΓ). Since TΘ′ is a closed operator, then x ∈ D(Θ′) and
y1 = TΘ′x. Also, y2 = t̄Γx and, since, x ∈ D(tΓ), y2 = tΓx. Hence,
y1 ⊕ y2 = (TΘ′ + tΓ)x and, thus, TΘ′ + tΓ is a closed operator with
domain R((I−W )1/2). To show its injectivity, suppose (TΘ′+ tΓ)x = 0.
It follows that TΘ′x = 0 and, thus, x = 0. Therefore, TΘ′+tΓ is injective
and, hence, ∆ = Θ′+Γ is an algebraic frame in H. Moreover, for x ∈ X
and y ∈ D(TΘ′),

〈TΘx, T∆y〉 = 〈TΘx, TΘ′y〉+ 〈TΘx, tΓy〉 = 〈TΘx, TΘ′y〉 = 〈x, y〉.

This shows that (Θ,∆) is an algebraic dual pair in H.

To prove the last conclusion, assume N : R((I −W )1/2)→ R(TΘ)⊥

is any (nonzero) isometry or coisometry between H and R(TΘ)⊥. Define
Γ = (γz)z∈Z by γz(x) = (Nx)(z) for all x ∈ R((I −W )1/2) and observe
that the algebraic frame ∆ specified by T∆ := TΘ′ + tΓ is an algebraic
dual of TΘ different from TΘ′ . �

Remark 2.7. (1) In view of [6], if Θ is a generalized frame, then TΘS
−1
Θ

is the analysis operator of its dual frame. In the following, we show that
TΘS

−1
Θ ⊂ TΘ′ which turns into an equality for the generalized frames.

(2) In view of Theorem 2.6, to have a Riesz type algebraic frame it is
necessary to have red(TΘ) = 0 or, equivalently, to have R(TΘ) = L2(µ).
In the following theorem we show that Θ is a Riesz type algebraic frame
if R(TΘ) = L2(µ). We answer the case L2(µ) = R(TΘ) in Part (γ) of
the following theorem and leave the case L2(µ) = R(TΘ) 6= R(TΘ) as
an open question.

Theorem 2.8. Let Θ be an algebraic frame. Then the following asser-
tions are true.
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(α) TΘS
−1
Θ ⊂ TΘ′.

(β) (R(TΘ))⊥ is the linear span VΘ of all vectors (TΓ − TK)x as x
runs in D(TΓ) ∩D(TK) when Γ and K run in the collection of all
algebraic duals of Θ.

(γ) If Θ has zero redundancy and if Γ is any algebraic dual of Θ, then
TΓ ⊂ (T ∗Θ)−1 = TΘ′. In particular, if R(TΘ) = L2(µ), then Θ is a
Riesz type algebraic frame.

Proof. Part(α): By Part (iii) of Theorem 1.6, SΘ = T ∗ΘTΘ = (I −
W )W−1 with D(SΘ) = R(W ). We claim that TΘS

−1
Θ ⊂ TΘ′ . Since TΘ is

injective, I−W is injective and has a dense range. So, SΘ is injective and
S−1

Θ = W (I−W )−1 with D(S−1
Θ ) = R(I−W ). Let x ∈ D(TΘS

−1
Θ ). Then

x = (I −W )ξ ∈ D(S−1
Θ ) and W (I −W )−1(I −W )ξ = W 1/2(W 1/2ξ) ∈

D(TΘ) for some ξ ∈ H. Also, x = (I −W )1/2[(I −W )1/2ξ] ∈ D(TΘ′)
and, hence, D(TΘS

−1
Θ ) ⊂ D(TΘ′). Therefore,

TΘS
−1
Θ x = V (I −W )1/2W−1/2W (I −W )−1(I −W )ξ

= V (I −W )1/2W 1/2ξ = V (I −W )−1/2(I −W )W 1/2ξ

= V (I −W )−1/2W 1/2(I −W )ξ = TΘ′x.

This shows that TΘS
−1
Θ ⊂ TΘ′ .

Part (β): Let y ∈ VΘ. There exist algebraic duals G and Γ such that
for some x ∈ H, y = (TG−TΓ)x. Thus, for every ξ ∈ D(TΘ), 〈y, TΘξ〉 =
〈(TG−TΓ)x, TΘξ〉 = 〈TGx, TΘξ〉−〈TΓx, TΘξ〉 = 〈x, ξ〉−〈x, ξ〉 = 0. Hence,
VΘ ⊂ (R(TΘ))⊥. For the converse, assume without loss of generality
that (R(TΘ))⊥ 6= {0}. Let g ∈ (R(TΘ))⊥ be arbitrary and choose the
algebraic dual ∆ of Θ as in the last paragraph of the proof of Theorem
2.6 in which the (isometry or coisometry) N contains g in its range; i.e.,
g = Nx for some x ∈ D(TΘ′). Then g = Nx = (T∆ − TΘ′)x ∈ VΘ.

Part (γ): Assume Θ has zero redundancy and Γ is any algebraic dual
of Θ. Then, for all x ∈ D(TΘ) and all y ∈ D(TΓ), 〈TΘx, TΓy〉 = 〈x, y〉.
By definition of the adjoint, TΓy ∈ D(T ∗Θ) and T ∗ΘTΓy = y. There-
fore, T ∗ΘTΓy = y for all y ∈ D(TΓ) and, thus, T ∗ΘTΓ = I|D(TΓ). Hence,

R(TΓ) ⊂ D(T ∗Θ) and D(TΓ) ⊂ R(T ∗Θ). Since ker(T ∗Θ) = R(TΘ)⊥ = {0},
it follows that (T ∗Θ)−1 exists and TΓ = (T ∗Θ)−1|D(TΓ) = (T−1

Θ )∗|D(TΓ). But
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(T ∗Θ)−1 = [(W−1/2(I −W )1/2V ∗]−1 = V (I −W )−1/2W 1/2 = TΘ′ . This
means that the standard algebraic dual is the largest algebraic dual.

Finally, if R(TΘ) = L2(µ), we claim Θ is a Riesz type frame. In
fact, it follows from the closed graph theorem that T−1

Θ is a bounded
operator. Therefore, (T ∗Θ)−1 is bounded and so is every algebraic dual
frame TΓ(⊂ (T ∗Θ)−1). Therefore, TΓ = (T ∗Θ)−1 = TΘ′ . �

Open question. What happens in Part (γ) of Theorem 2.8 in case
L2(µ) = R(TΘ) 6= R(TΘ)?

Remark 2.9. Let Θ be a lower bounded algebraic frame; i.e., c||x|| ≤
||TΘx|| for all x ∈ D(TΘ) and some c > 0. Then it follows that T−1

Θ :
R(TΘ)→ D(TΘ) is a surjective bounded operator; since T−1

Θ is a closed
operator, its domain R(TΘ) must be closed. Now, if Θ has zero re-
dundancy, then R(TΘ) = L2(µ) and, hence, T−1

Θ : L2(µ) → H and
(T ∗Θ)−1 : H → L2(µ) are bounded operators. Therefore, in view of Part
(γ) of Theorem 2.8, all algebraic duals are bounded operators with the
same domain H and, hence, they are all equal. That is Θ is a Riesz type
algebraic frame (cf. Proposition 2.2 of [6]).

Proposition 2.10. Assume that Θ = (θz)z∈Z is an algebraic frame in
H with signal space X = D(TΘ). If K is an algebraic dual for Θ, then
for all x ∈ D(TΘ′) ∩ D(TK), ||TΘ′x|| ≤ ||TKx||.

Proof. Let x ∈ D(TΘ′) ∩ D(TK). Since R(T ′Θ) ⊂ V H = R(TΘ), we
have TKx = (TK − T ′Θ)x ⊕ TΘ′x ∈ VΘ ⊕ R(TΘ) = (R(TΘ))⊥ ⊕ R(TΘ).
Thus, ||TKx||2 = ||(TK − TΘ′)x||2 + ||TΘ′x||2 and, so, ||TΘ′x|| ≤ ||TKx||.

�

Theorem 2.11. Assume Θ = (θz)z∈Z is a lower bounded algebraic
frame in H with finite redundancy. There exists an analytic frame Γ =
(γz)z∈Z in the Hilbert space K := R(TΘ)⊥ such that Θ⊕Γ = (θz⊕γz)z∈Z
is a Riesz-type algebraic frame in H ⊕K.

Proof. We follow a modification of the argument given at the end of
the proof of Theorem 2.6. Let N : K → K be any unitary operator.
Define Γ = (γz)z∈Z by γz(x) = (Nx)(z) for all x ∈ K. If δz = θz ⊕ γz,
then the family ∆ = (δz)z∈Z is an algebraic frame in H⊕K with signal
space D(TΘ)⊕K and closed analysis operator T∆ = TΘ ⊕ TΓ. Since TΘ

is lower bounded, R(T∆) = R(TΘ) ⊕ K = R(TΘ) ⊕ R(TΘ)⊥ = L2(µ).
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Now, Theorem 2.8 implies that ∆ is a Riesz-type algebraic frame in the
Hilbert space H ⊕K. �

The following example from [8], is a lower bounded algebraic frame
whose redundancy is finite. Here, we study some duals of this algebraic
frame.

Example 2.12. Let

X = {f ∈ L2([0, 1]) : f is abs. cont., f ′ ∈ L2, f(0) = f(1) = 0}.

Define the densely defined unbounded operator T : X ⊂ L2([0, 1]) →
L2([0, 1]) by Tf = f ′ for all f ∈ X. Thus, T is a closed injective
operator with a bounded inverse. Moreover, T ∗g = −g′ and D(TΘ

∗) =
{g ∈ L2([0, 1]) : g is abs. cont. and g′ ∈ L2([0, 1])} [5]. Next, for all
z ∈ Z = [0, 1](⊂ R), define the unbounded linear functional θz : X → C
by θz(f) = (Tf)(z) = f ′(z) for all f ∈ X. Therefore, the family Θ =
(θz)z∈Z is a lower bounded algebraic frame with the analysis operator
TΘ = T . Since R(TΘ) = {f ′ : f ∈ X} = {g ∈ L2([0, 1]) :

∫
0

1
g(t)dt =

0} = {1}⊥, it follows that red(Θ) = 1.
Let us first construct the algebraic dual Θ̃ with analysis operator

TΘ̃ = TΘS
−1
Θ ⊂ TΘ′ and D(TΘ̃) = R(SΘ) = R(I − W ). Now, we

can write SΘf = TΘ
∗TΘf = TΘ

∗f ′ = −f ′′ for all f ∈ D(SΘ), where
D(SΘ) := {f ∈ X : f ′ is abs.cont., f ′′ ∈ L2([0, 1])}. Let Y = R(SΘ).
If g ∈ Y , there exists f ∈ X such that g = SΘf = −f ′′. Define
the linear functional θ̃z : Y ⊂ L2(0, 1) → C by θ̃z = θzSΘ

−1, for all
z ∈ Z. Therefore, for all g ∈ Y , θ̃zg = θzSΘ

−1(SΘf) = θzf = f ′(z) =
−
∫

0
z
g(t)dt. Therefore, we have Θ̃ = (−

∫
0
z
g(t)dt)z∈Z . Since Θ is lower

bounded, the operator TΘ̃ is closed. Thus, part (α) of theorem 2.8

implies that TΘ̃ ⊂ TΘ′ and, so, Θ̃ is an algebraic dual frame for Θ.
Similar to what we did at the end of the proof of Theorem 2.6, assume

N : Y → R(TΘ)⊥ is any (nonzero) isometry or coisometry between H
and R(TΘ)⊥. Define Γ = (γz)z∈Z by γz(x) = (Nx)(z) for all x ∈ Y and
observe that the algebraic frame ∆ = Θ̃ + Γ specified by T∆ := TΘ̃ + TΓ

is an algebraic dual of Θ different from Θ̃.

The following Proposition is a consequence of Part (2) of Theorem
2 of [7] relates the discreteness of the indexing measure and the zero
redundancy of the algebraic frame. Note that a measurable subset E of
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M is called an atom if 0 < µ(E) < ∞ and E contains no measurable
subset F such that 0 < µ(F ) < µ(E) [1].

Proposition 2.13. Assume that Θ = (θz)z∈Z is a lower bounded ana-
lytic frame indexed by the measure space (Z,M, µ) and that θz 6= 0 for
almost all z. If Θ is a Riesz-type algebraic frame, then the measure µ
is discrete in the sense that Z is the union of (countably many) atoms.

Proof. Theorem 2.6 implies that red(Θ) is zero. Thus the proof follows
from the Part (2) of Theorem 2 of [7]. �
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