Journal of Mathematical Extension

Vol. 16, No. 5, (2022) (8)1-13

URL: https://doi.org/10.30495/JME.2022.1513
ISSN: 1735-8299

Original Research Paper

Some Fixed Point Results for
F — G—Contraction in F—Metric Spaces
Endowed with a Graph

H. Faraji*

Saveh Branch, Islamic Azad University

S. Radenovié
University of Belgrade

Abstract. In this paper, we introduce the concept of 7 —G—contraction
mappings in F-metric spaces endowed with a graph and give some fixed
point results for such contractions. Our results are generalization of
some famous theorem in metric spaces to F—metric spaces endowed
with a graph. Also, we give some examples that support obtained the-
oretical results.
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1 Introduction

Fixed point theory is one of the traditional theory in functional and
nonlinear analysis. Fixed point theory has developed rapidly in various
extensions of metric spaces (see e.g. [1, 6, 9, 11, 14, 15, 20, 21, 22, 25]
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and references therein). Jleli and Samet [24] introduced the concept of

a F-metric spaces as follows (see e.g. [18, 26] and references therein).
Let F be the set of functions f : (0,00) — R such that

(F1) f is non-decreasing, i.e., 0 < s < t implies f(s) < f(¢).

(F2) For every sequence {t,} C (0,00), we have

lim ¢, =0 if and only if hm f(tn) = —o0.

n—0o0

Definition 1.1. [24] Let X be a (nonempty) set. A function D : X x
X — [0,00) is a F-metric on X iff, there exists (f, ) € F x [0, 00) such
that for all z,y € X the following conditions are satisfied:

(D1) D(z,y) =0 if and only if x = y.

(D2) D(x,y) = D(y, ).
(D3) For every N € N, N > 2 and for every {u;}Y; C X with (u,uyn) =
(

x,y), we have

N-1
D(z,y) > 0 implies f(D Z D(uj,uiy1)) + a.
=1

The pair (X, D) is called a F-metric space.

Example 1.2. [24] Let X =R and D : X x X — [0,00) be defined as
follows:

(.’ﬁ - y)2 (‘T? y) € [Oa 3] X [O? 3]5
|r —y|  otherwise,

D(l’,y) = {

and let f(t) = In(t) for all ¢ > 0 and o = In(3). Then, D is a F-metric
on X. Since D(0,3) =9 > D(0,1)+ D(1,3) = 5, then D is not a metric
on X.

Example 1.3. [21] Let X =R and D : X x X — [0,00) be defined as
follows:

lz—yl £
e o y,
D(z,y) = {0 vy

Then, D is a F-metric on X. Since D(2,4) = e > D(2,3)+D(3,4) = 2e,
so D is not a metric on X.
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Definition 1.4. [21] Let (X, D) be an F-metric space and {z,} be a
sequence in X.

1) A sequence {x,} is called F-convergent to x € X, iff D(xy,z) — 0
as n — oo.

2) A sequence {z,} is F-Cauchy, iff D(zy,xm) — 0 as n,m — cc.

3) A F-metric space (X, D) is said to be F-complete, if every F-Cauchy
sequence in X is F-convergent to some element in X.

Theorem 1.5. [2)] Let (X, D) be an F-complete F-metric space and
let T : X = X be a self-mapping satisfying

D(Tz, Ty) < AD(z,y), (1)
forallxz,y € X where 0 < X< 1. Then T has a unique fixed point.

Espinola and Kirk in 2006 published some useful results on combin-
ing fixed point theory and graph theory [12]. In 2008, Jachymski [23]
proved the contraction Principal for mappings on a metric space with a
graph. For some recent works in metric spaces endowed with graph the
reader is referred to (see e.g. [1, 2, 3, 5, 7, 8, 10, 13, 16, 17, 19, 28]

Let G = (V(G),E(G)) be a directed graph such that V(G) is the
set of vertices and E(G) is edges of G. Also A C E(G) where A =
{(z,z) : x € X} and assume that G has no parallel edges. We denote
the conversion of a graph G by G~', i.e., the graph obtained from G
by reversing the direction of edges. Let G be the undirected graph
obtained from G by ignoring the direction of edges, so we have E(G) =
E(G)UE(G™). Let z and y are vertices in a graph G. A path in G
from z to y of length m is a sequence {z,}, of m + 1 vertices such
that xo = x, 2, = y and (z;-1,2;) € E(G) for i = 1,...,m. A graph
G is called connected if there is a path between any two vertices of G
and graph G is weakly connected if G is connected. For z € X we set
[z] 5 which is the equivalence class of the following relation R defined on
V(G) by the rule: zRy if there is a path in G from x to y. Also, for
x € G and m € N, define

[z]¢x = {y € X : there is a directed path from x to y of length m}.

Definition 1.6. [27] Let (X, d) be a metric space and T': X — X be a
self-mapping. Then
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i) T is called a Picard operator (briefly PO), if 7" has a unique fixed
point z* € X and T"z — x* for each x € X.

ii) T is called a weakly Picard operator (briefly WPO) if the sequence
{T™z} converges to a fixed point of T for all z € X.

Definition 1.7. [23] Let (X, d) be a metric space endowed with a graph
G. A mapping T : X — X is called orbitally G—continuous on X if for
allz,y € X and all {p,} of positive integers with (TPrx, TP *12) € E(G)
for all n > 1, the convergence TPrx — y implies T'(TPrx) — Ty.

Let T be a self mapping on X. We denote
Xr={z € X|(z,Tz) € E(G)},

Fiz(T) ={z € X|Tz = z}.

2 Main Results

Now, we introduce one new type of contractive mappings in the context
of F-metric spaces endowed with a graph and prove the corresponding
new result. We also prove and extend some the results of Jachymski [23]
and Falahi et al. [13] to the context of F—metric spaces. Throughout
this section we assume that (X, D) is a F—metric space endowed with
directed graph G, which V(G) = X and A C E(G).

Definition 2.1. Let (X, D) be an F-metric space and 7' be a self-
mapping on X. We say that T" is an F — G—contraction if for every
x,y € X, we have

(z,y) € E(G) implies (Tz,Ty) € E(G);

(z,y) € E(G) implies D(Tz,Ty) < AD(z,y);
where A € [0,1).

Example 2.2. Let (X,F) be an F—metric space and G = (X, A).
Then any self-mapping 1" on X is an F — G—contraction.
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Example 2.3. Let X be a nonempty set and (X, F) be an F—metric
space. Then for any graph G = (X, E(G)), constant mapping T : X —
X is a F — G—contraction.

Example 2.4. Consider the F-metric space given in Example 1.2. De-
fine

3r x>2
Tr=q35 0<2<2
0 x < 0.

Then, for any A € [0,1), we have

2 2 25
D(T2,T3) = D(3.9) = |5 — 9| = 5 > A =AD(2,3).

Then, T does not satisfy (1). Define G = (V(G), E(G)), where V(G) =
R and E(G) = {(z,x)|x € R}. Therefore, T is an F — G—contraction
mapping for any A € [0, 1).

Example 2.5. Let X = {0,1,2} be endowed with the F-metric given
in Example 1.3. Define 70 = T2 = 0,71 = 2. Then, for any X € [0,1),
we have

D(T1.72) = el =12 = 2 > Xe = AD(1,2).

Consequently, T' does not satisfy (1). Define G = (V(G), E(G)), where
V(G) = X and E(G) = {(0,0),(1,1),(0,2),(2,2)}. Then T is an F —
G—contraction mapping for any A € [0,1).

Proposition 2.6. Let (X, D) be an F—metric space and T : X — X
be a F — G—contraction. Then:

(i) T is a F — G—contraction and also a F — G~'—contraction.

(i) w0l is T—invariant and Ty, ., is a F — Gz, — contraction, where
zo € X and T(xo) € [xo]a-

Proof. (i) Since F—metric is symmetric, then T is a F — G —contraction
and also a F — G~ !—contraction. .
(ii) Let = € [zo]s. So there exists a path {z}l, in G from z to

xo which z = 2y and g = 2y and (z;-1,2;) € E(G). Since T is a
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F — G—contaraction, for all i = 1,..., N, we have (T'z;—1,Tz) € E(Q).
Then Tz € [Txo|s = [vo]s, that is, [xo]s is T—invariant. Now, assume

(z,y) € E(Gy,). Since T is a F — G—contraction, (Tz,Ty) € E(G).
Also, [zo]s is T-invariant, then (T'z,Ty) € E(Gy,). Since Gy, is a
subgraph of GG, we obtain T‘[:vo}@ isa F— éxo—contraction. 0

Definition 2.7. Let (X,F) be a F—metric space. We say that se-
quences {z,}, {yn} are equivalent if lim,_,c D(zp,yn) = 0, and they are
called F—Cauchy equivalent, if each of them is a F—Cauchy sequence.

The following result extend the main one from [23].

Theorem 2.8. Let (X,D) be an F-metric space. The following are
equivalent:

(i) G is weakly connected.

(ii) For any F — G—contraction T : X — X, given x,y € X, the se-
quences {T"x} and {T"y} are equivalent.

iii) For any F — G—contraction T : X — X, card(Fiz(T)) < 1.

Proof. First we prove that (i) implies (ii). Let z,y € X and by hy-
pothesis, [z]5 = X, then y € [z]5. So there exists a path {z;}Y, in
G from z to y which zg = z and zy = y and (xi—1,25) € E(é) for all
t=1,2,..., N. Using Proposition 2.6, T" is an F — G —contraction. Then,
we have

(T"xi—1, T"x;) € E(G),
consequently
D(T"z; 1, T"x;) < AD(T" oy, T 1ay),
forallm e Nand i =1,...,N. Then, we get
D(T"zi—1,T"x;) < N"D(xi-1,x;), (2)

forall n € Nand ¢ = 1,...,N. Now, let (f,«a) € F x [0,4+00) be such
that (Ds) is satisfied and € > 0 be fixed. From (F2), there exists 6 > 0
such that

0 <t<¢implies f(t) < f(e) — a. (3)
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Using (2), we have

N N N
Z D(Tnl’i_l, Tnl‘i) < Z )\”D(mi_l, .75%) =\" Z D(l’i_l, .732)
i=1 i=1 i=1
Scince limy, o0 A™ Zf\il D(zi—1,z;) = 0, there exists some Ny € N such
that
N
0< )\nZD(xi_l,ﬂii) <46, n>Ng.
i=1

Using (3) and (F1), we obtain

N N

FOQ DT @iy, Twi) < fA" Y D(i-1,20)) < f(e) —a,  (4)

i=1 i=1
for all n > Ny. Using (D3) and (4), we have

N
F(D(T"2, T ) < fO_ D(T i1, T"x;)) + o < f(e) —a+ a < f(e),
i=1
for all n > Ny. Then, we get
D(T"x,T"y) <e, n > Np.

So D(T"x,T™y) — 0 as n — oo, that is, the sequences {T"z} and {T"y}
are equivalent.

Now, we shall prove that (ii) implies (iii). Let T be a F —G—contraction
and z,y € Fiz(T). From (i7), {T"x} and {T™y} are equivalent. Then,
we have D(z,y) = D(T"z,T"y) — 0 as n — oo, that is, x = y.

Finally we prove that (iii) implies (i). On the contrary, we assume that G
is not weakly connected, that is, G is disconnected. Suppose that there
exists o € X such that both sets [xo]5 and X — [zo]5 are nonempty.

Suppose yo € X — [z0]5 and define
Te=uxoifw€lrglg ; Tr=yifz e X — [zo]a.

Consequently, Fiz(T) = {xo,y0}. Now, we show that T is a F —
G—contraction. Suppose (z,y) € E(G), so [z]s = [y]a, that is, z,y €
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[z0]a, or z,y € X —[z0]5. Then, we have Tz = Ty, so (T'xz,Ty) € E(G).
Since A C E(G) and D(Tx,Ty) = 0 < AD(z,y) for any A € [0,1), we
get T is a F — G—contraction having two fixed points which violates
assumption (iii). O

Corollary 2.9. Let (X, D) be an F-complete F-metric space endowed
with a graph weakly connected G. Then, for any F — G—contraction
T:X — X, there is x* € X such that limy, o T"z = x* for all x € X.

Proof. Let T : X — X be a F — G—contraction and fix any point
x € X. Let m>n >0 and m,n € N. Scince G is a weakly connected,
from Theorem 2.8, the sequences {T"z} and {T"T™ "x} are equvailent.
Then limy, ;00 D(T"x, T™x) = 0, that is, {T"(x)} is a F-Cauchy se-
quence in X. Hence, there exists * € X such that T"x — z* as n — oo.
Suppose y € X, then by Theorem 2.8, sequencs {T"z} and {T"y} are
equivalent. Using (Ds3), we have

f(D(T"y,z*) < f(D(T"x, T"y) + D(T"z,x¥)) + «,

for all n € N. Since D(T"z,T"y) + D(T"x,xz*) — 0 as n — 00, so
lim, oo f(D(T"z, T"y)+D(T"z,2*))+a = —oco. Then D(T"y, x*) — 0
as n — oo. ]

Theorem 2.10. Let (X, D) be an F—complete F —metric space endowed
with a graph G and T be a self-mapping on X such that T is o F —
G—contraction mapping. Then T'|x, is a weakly Picard operator if one
of the following conditions hold:

i) T is orbitally G-continuous on X.

i) Ifxp, — x asn — 0o and (zy, Tnt1) € E(Q) for alln € N, then there
exists a subsequence {xy,} of {x,} such that (xy,,z) € E(G) for
all k € N.

Moreover, if (i) or (ii) holds, then X1 # 0 if and only if Fix(T) # 0.

Proof. If X = (), then it is clear that there is nothing to prove. Let
x € Xp, then (z,Tx) € E(G) and since T is an F — G—contraction
mapping, it following (Tx,T?%z) € E(G), that is, Tx € Xp. Thus, T
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maps X7 into Xp. Then, it follows by induction that (T"z, T"z) €
E(G) and

D(T"z, T""z) < o"D(zx, Tx), (5)

for all n € N. Let (f,a) € F x [0,400) be such that (Ds) is satisfied
and € > 0 be fixed. Using (F2), there exists § > 0 such that

0 <t < ¢ implies f(t) < f(e) — a. (6)
From (5), we have

n

D(Tiz, Tz Dz, Tx) < D(z, T
z 5 T0) £ 3 N D, T2) < 15 Dl Ta),

for all m > n > 0. Scince lim,,_ o %D(w,Tx) = 0, there exists some
Ny € N such that

1-A
Using (6) and (F7), we have

0<

D(z,Tx) <6, n> Np.

)\n
1-A

f(z D(T"z,T"x)) < f( D(x,Tx)) < f(e) — . (7)

Then, from (D3) and (7), we get
f(D(T"2,T"x)) < fOO_ D(T'z, T 'z)) + o < f(e).

Using (F1), we obtain
D(T™z,T"x) < e, m >mn > Ny.

This prove that {T™z} is a F—Cauchy sequence. Since (X, D) is F-
complete, there exists £* € X, such that

lim Tz = x*. (8)

n—oo
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Now, we show that x* is a fixed point of T. To this end, if T is orbitally
G-continuous on X, then 7"tz — Tz* as n — oco. Because the limit
of convergent sequence in a F-metric space is unique, we get, Tx* = z*.
Now, we suppose that condition (ii) holds. Then there exists a strictly
increasing sequence {ny} of positive integer such that (T"*z, z*) € E(G)
for all k > 1. Then, from (D3), we have

f(D(Tz*, ) < f(D(Tx*, T x) + D(T™ M, 2*)) + a
< fOD(z*, T™z) + D(T™ 2, 2%)) + «

Using (F2) and (8), we have

lim f(AD(z*, T"x) + D(T™ g, %)) + a = —o0,
k—ro0

which is a contradiction. Therefore, we have D(T'z*,z*) = 0, i.e. Tx* =
z*. Since Fiz(T) C Xp, we have 2* € Xp, that is, T|x, is a weakly
Picard operator. O

In Theorem 2.10, if G = Gy, where Gy = (X, X x X), then X7 = X
and we get the following corollary.

Corollary 2.11. Let (X, D) be a F-complete F—metric space and T be
a self-mapping on X which satisfy (1). Then T is a Picard operator.
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