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1 Introduction

The concept of a w-distance on a metric space has been introduced by
Kada et al. [22] (see also [11, 24, 26, 28, 29, 27, 25]). They general-
ized Caristi fixed point theorem, Ekeland variational principle and the
nonconvex minimization theorem according to Takahashi. Suzuki [33]
extended Kannan fixed point results to metric spaces with w-distances.

The following definition is the concept of w-distance on a metric
space (See Kada et al. [22]).

Definition 1.1. [22] Let X be a metric space endowed with a metric
d. A function p : X x X — [0,00) is called a w-distance on X if it
satisfies the following properties.

(i) p(z, 2) < p(z,y) + p(y, 2) for any z,y,z € X.

(ii) p is lower semi-continuous in its second variable, i.e., if x € X and
Yn — y in X, then p(z,y) < liminf, p(z, y,).

(iii) For each ¢ > 0, there exists 6 > 0 such that p(z,z) < ¢ and
p(z,y) < d imply d(z,y) <.

The following lemma will be used in the next section.

Lemma 1.2. [22] Let (X, d) be a metric space and p be a w-distance on
X.
(i) Let {x,} be a sequence in X such that

lim p(z,z) = lim p(zy,y) =0.
n—oo n—oo
Then x =vy. In particular, if p(z,x) = p(z,y) = 0, we have z = y.

(ii) If p(xn, yn) < an p(an,y) < Bn for any n € N, where {a,} and
{Bn} are sequences in [0,00) converging both to 0, then {y,} converges
to y.

(i1i) Let p be a w-distance on a metric space (X,d). Let {x,} be a
sequence in X such that for each € > 0, there exists N. € N such that
for m >n > N, p(@n,xn) < € (or limy ., p(zn, 2m) = 0). Then {x,}
is a Cauchy sequence.

Jleli and Samet [20] introduced the concept of #-contractions as fol-
lows.
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Definition 1.3. [20] The mapping 6 from (0, c0) into (1, 00) is said to
be B-contraction if it satisfies the following conditions.

(01) 0 is non-decreasing.
(02) For any t, € (0,00);

lim 6(t,) =1 <= lim t, =0;

n—oo n—oo
(03) there exists (r,1) € (0,1) x (0,00) such that

lim 0(t) —1

t—0+ tr

=1.

Ahmed et al. [3] in 2017, replaced the condition (#3) by the following
condition.

(04)] 0 is continuous on (0, c0).

Cho [11] introduced the concept of L-contraction mappings as fol-
lows.

Definition 1.4. [11] Suppose that £ is the family of all mappings ¢ :
[1,00) % [1,00) — R such that

(51) f(l, 1) =1
(&2) &(t,s) < ¢ for all s,t > 1.

(&3) For any sequences {t,}, {s,} in (1,00) with t, < s, for n =
1,2,3,

lim t, = li_)m Sp > 1= limsup&(t,, s,) < 1.
n oo

n—oo n—oo

Any £ € L is called L£-simulation function. Note that £(¢,¢) < 1 for each
t>1.

In the following, we list some examples of £-simulation functions.
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Example 1.5. [11] (i) £&(t,s) = % for all s, > 1, where k € (0,1).
(1) &(t,s) = 7o for all s,t > 1 where ¢ : [1,00) — [1,00) is

nondecreasing and lower semi-continuous such that ¢=1({1}) = 1.
D)
1, if (s,t) =(1,1),
E(t,s) =14 <, ifs<t,

otherwise,

for all s,¢ > 1 where A € (0,1).

The concept of quasi-metric spaces obtained by omitting the sym-
metry condition is used by many authors in [2, 4, 5, 10, &, 9, 7, 12, 13,

, 21, 32] for proving fixed point theorems. We recall the following
definition.

Definition 1.6. Let X be a non-empty set. Let ¢ : X x X — [0,00) be
a function satisfying

(q1)q(z,y) = 0 if and only if z = y,

(42)q(z,y) < q(z,2) + q(2, ).

Then q is called a quasi-metric and the pair (X, ¢) is called a quasi-metric
space.

In the present paper, after the definition of the concept of quasi
w-distance on a quasi-metric space, we prove some fixed point theo-
rems for L-contraction mappings using #-functions in the class of quasi-
metric spaces with quasi w-distance. Some consequences are also de-
rived. Moreover, we present some examples in support of the given
results.

2 Preliminary and Lemmas

In this section, we recall some basic concepts and notations. Some useful
lemmas are also included.

First, we give some basic concepts such as convergence and com-
pleteness on quasi-metric spaces.
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Definition 2.1. [6] Let (X, q) be a quasi-metric space, {x,} be a se-
quence in X and z € X.
(1) The sequence {x,} converges to z if and only if

lim ¢(zp,x) = lim ¢(x,z,) =0.
n—oo n—oo
(79) The sequence {x,} is left-Cauchy (resp. right-Cauchy, Cauchy)
if and only if for every € > 0, there exists a positive integer N = N(¢)
such that q(zp,z,) < € for allm > m > N (resp. m > n > N,
m,n > N).

(7i1) (X, q) is said left-complete (resp. right-complete, complete ) if
and only if each left-Cauchy (resp. right-complete, complete) sequence
in X is convergent.

Remark 2.2. (i) In a quasi-metric space (X, q), the limit for a con-
vergent sequence is unique. Also, if x,, — x, we have for all y € X

lim q(an,y) = q(z,y) and  lim q(y, z0) = q(y, ).

n—oo

(1) A sequence {x,} in a quasi-metric space is Cauchy if and only if it
is left-Cauchy and right-Cauchy.

Lemma 2.3. [0] Let (X,q) be a quasi-metric space and T : X — X be
a given mapping. Suppose that T is continuous at w € X. Then for all
sequences {xy} in X such that x,, — u, we have Tx, — Tu, that is,

lim ¢(Tx,, Tu) = lim ¢(Tu,Tz,) = 0.
n— o0 n—o0

In the following, we give the concept of quasi w-distance on a quasi-
metric space.

Definition 2.4. Let (X,q) be a quasi-metric space. A function p :
X x X — [0,00) is called a quasi w-distance on X if it satisfies the
following properties.

(i) p(x,z) < p(x,y) +py, 2) for any z,y,z € X.
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(ii) p is lower semi-continuous in its second variable; i.e., if z € X and
Yn — y in X, then p(z,y) < liminf, p(x, y,).

(iii) For each € > 0, there exists a 6 > 0 such that p(z,z) < ¢ and
p(z,y) <4 imply ¢(z,y) < € and q(y,x) < e
It is easy to see that each w-distance is a quasi w-distance.
Example 2.5. Let (X, q) be a quasi-metric space. Then each p : X X
X — R* defined by
(1) p(z,y) = q(y,z0) + q(x0,y), for some zy € X;
(ii)

p(z,y) = max{q(y, o), ¢(zo, y)}, for some xo € X;
(iii) p(z,y) = p'(x,y)+«, for some positive number a and a w-distance
/

9

(iv) p(x,y) = max{p'(z,y),p"(x,y)}, for two w-distances p', p";

(v) p(z,y) =p(x,y) + p"(z,y), for two w-distances p', p”;
for each z,y € X, is a quasi w-distance.

In section 3, we give some another examples of quasi w-distances.

The following lemma has an easy proof (following the proof of Lemma
1.2).

Lemma 2.6. Let (X,q) be a quasi-metric space and p be a quasi w-
distance on X.

(i) If{zy} is a sequence in X such that lim,p(xy,, ) = limyp(z,,y) =
0 then x =y. In particular, if p(z,x) = p(z,y) = 0 then = = y.

(ii) If p(xmyn) < an p(xn,y) < By for any n € N, where {an} and
{Bn} are sequences in [0,00) converging to 0, then {y,} converges
toy.

(iii) Let p be a quasi w-distance on a quasi-metric space (X, q) and
{zn} be a sequence in X such that, for each ¢ > 0, there exists
an N. € N such that m > n > N, (respectively, n > m > N,
m,n > Ng) implies p(Tn,xm) < €, then {zn} is a right-Cauchy
(respectively, left-Cauchy, Cauchy) sequence.
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3 Main results

Suppose that O is the class of functions 6 : (0,00) — (1, 00) satisfying
(A1) and (f2). One of our essential main results is the following theorem.

Theorem 3.1. Let (X, q) be a complete quasi-metric space with quasi
w-distance p and T : X — X be a given mapping. Suppose that there
exist £ € L and 0 € © such that for all x,y € X with q(Tx,Ty) # 0,

§Op(Tz, Ty)),0(p(z,y))) > 1. (1)

Then T has a unique fized point. Moreover, if condition (1) is true
for each x,y, then p(u,u) = 0.

Proof. Consider an 2y € X. Define a sequence {z,} by z,, = T"x, for
all n > 0. If x,, = z,41 for some n, then x,, = x,+1 = Tx,, that is, z,
is a fixed point of T" and so the proof is completed. Suppose from now
on that z,, # x,, 41 for all n. Then ¢(xy, xny1) > 0.

Now from the condition (1), we have

1 <&0(p(Trn—1,T2y)), 0(p(xn—1,2n)))
0(p(wn—1,n))

O(p(Twp—1,Try))

0(p(Tn—1,7n))

0(p(xn, Tny1))

Consequently, we obtain
0(p(zn, Tn+1)) < O0(p(Tn—1,7n)),
which implies for all n =1,2,3,...,
P(Tn, Tpy1) < P(Tp—1,Tn).

Thus, the sequence {p(zy,xn+1)} is decreasing and so it is convergent.
Let there is an € > 0 such that

lim p(zn, 2n41) =&
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From (62), we have lim,, o0 0(p(2n, Tn+1)) # 1, and so

lim O(p(zp,xnt1)) > 1.

n—oo

Using (&3), we get

1 <limsup&(0(p(xn, Tnt1)), 0(p(xn—1,2,)) < 1,

n—oo

a contradiction. This implies that

lim p(zy, Tpi1) = 0. (2)
n—roo

Similarly,
lim p($n+1>$n) =0. (3)
n—oo

Now, we shall prove that the sequence {z,} is right-Cauchy. By the
triangular inequality,

p(xm $n+2) < p(:cn, xn+1) +p($n+1’ I‘n+2),

and so limy,—c0 P(Xp, Tpy2) = 0.
Suppose that the induction hypothesis holds; i.e., limy,, o0 p(Tp, Tpik) =
0. Then

p(xna xn—l—k—l—l) < p(ﬁnv xn—l—k) + p(l‘n—i—ka $n+k+1)a

which implies that lim,, . p(n, Zntr+1) = 0. Therefore for each € > 0,
there is N. € N such that for each m > n > Ng, p(xn,zy) < €. So,
by Lemma 2.6, the sequence {x,} is right-Cauchy. Similarly, {z,} is a
left-Cauchy sequence. Therefore {z,} is a Cauchy sequence. Now since
X is complete, there exists u € X such that

lim q(xp,u) = lim q(u,z,) = 0.

n—oo n—oo

In the sequel, we shall prove that u is a fixed point of T'. Since

xn, — u and p(z,.) is lower semi-continuous, we have

p(zn.,u) < liminfp(zy,, 7,) <e.
n—oo
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Putting € = 1/k and N, = ng, we have
lim p(x,,,u) = 0.
k—o0
Again by condition (1) with z = zp, 41 and y = u, we get

1< g(e(p(T%%_H,Tu)),e(p(l‘nk+1,u)))
< G(p(a:nkﬂ,u))
O(p(zp;+2, Tu))’

Therefore,

9(p($nk+2, Tu)) < e(p(xnk-i-lv u))

Since 6 is non-decreasing, we obtain

p(mnk+27 TU) < p(l'nkJrl, U)

By triangular inequality we have

P(Xnyt1,0) < P(Tyt1, Tny, ) + D(Tny,, w).

From the relations (3) and (4), we conclude that
li = 0.
JHm p(zp41,u) =0

Similarly
lim p(zp,+2,u) =0.
k—o0

Now, by inequality (5), we obtain

lim p(xp,+2,Tu) = 0.
k—o0

(6)

(7)

Therefore by Lemma 2.6 and the equalities (6) and (7), we get u = T'u.
Now, we show that w is unique. Let x1,x9 € X be two distinct fixed

points (i.e., 1 # x2). So ¢(Tz1,Tz2) > 0 and from condition (1),

1 < &(0(p(Tar, T?x1)), 0(p(21, Tw1)))
0(p(z1,21))
0(p(z1,21))
=1
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It is a contradiction, so x1 = xs.
Moreover, if condition (1) is true for each z,y, without the condition
q(Tz,Ty) # 0, then

1 <&(0(p(Tw, T%x)), 0(p(w, T)))

O(p(z, Tx))
O(p(Tx, T?x))

A

Then we conclude that there is t, € (0,1) such that p(Twx, T?z) <
tzp(z, Tx), for each x € X. In particular

p(u,u) = p(Tu, T2u)
< tup(u, Tu)
— tup(uv ’LL)

Which implies that p(u,u) = 0.
U

Corollary 3.2. Let (X,q) be a complete quasi-metric space with quasi
w-distance p and T : X — X be a given mapping such that for all
z,y € X with q(Tx,Ty) # 0,

p(Tz,Ty) < p(z,y)) — o(p(z,y)) (8)

where ¢ : [0,00) — [0,00) is nondecreasing and lower semi-continuous
such that o= *({0}) = {0}. Then T has a unique fized point.

Proof. From condition (8), we have

eP(TzTy) < op(zy)—e(p(z.y))
Put 0(t) = €', we get

0(p(z,y))

0T, Ty)) < — o) -

Now consider the nondecreasing and lower semi-continuous map 1 :
[1,00) — [1,00) such that 1 0 8(t) = e#® and ¢~ ({1}) = {1}. Then

0(p(z,y))

0(p(Tx,Ty)) < VOp(z,9)))
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By putting £(t, s) = %, we get

~ 0(p(Tz, Ty))v(0(p(z,y)))
= &{(0(p(Tz, Ty)), 0(p(2,y)))-
Then by Theorem 3.1, T has a unique fixed point. O Following

Example 1.5 and taking in Theorem 3.1, £(¢,s) = % for all s,t > 1,
where k € (0, 1), we have the following corollary.

Corollary 3.3. Let (X,q) be a complete quasi-metric space and T :
X — X be a given mapping such that for oll z,y € X with q(Tz,Ty) #
0, 0(p(Tz, Ty)) < [0(p(x,y))]F. Then T has a unique fized point.

Remark 3.4. Corollary 3.2 improves Theorem 3.2 in [21], where ¢ is
lower semi-continuous, not necessary continuous. Corollary 3.3 is the
quasi-metric part of Theorem 2.1 in [I14], Theorem 2.1 in [20] without

the condition (f3) and Theorem 2.2 in [3] without condition (6y).

Theorem 3.5. Let (X, q) be a complete quasi-metric space with quasi
w-distance p and T : X — X be a given mapping. Suppose that there
exist £ € L and 0 € © such that for all x € X with q(Tz, T?r) # 0,

£ (0(p(Tz, T%2)),0(p(z, Tx))) > 1. (9)
Suppose that one of the following conditions hold.
(i) inf{p(z,y) + p(z,Tx): x € X} > 0 for every y € X with y # Ty,
(ii) The mapping T is continuous,

(iii) If for some sequence {xy}, limy, o0 p(Tn, ) = limy o0 p(Txn, x),
then Tx = x.

Then T has a fixed point u. Moreover, if inequality (9) is true for each
x, then p(u,u) = 0.

Proof. Fix zp € X. Define a sequence {z,} by z, = T"xg, for all
n > 0. Then similar to Theorem 1 we can show that there exists ©u € X
such that

lim ¢(zp,u) = lim q(u,z,) =0.

11
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Now, we prove u is a fixed point of T'.

Case (). If inf{p(z,y) + p(z,Tz) : x € X} > 0 for every y € X with
y # Ty, then for each € > 0 there exists N. € N such that for n > N,
p(zN.,xn) < €. But, z, — u and p(z,.) is lower semi-continuous, so we
have

p(zy.,u) <liminfp(xy., )
n—oo

<e.
Putting ¢ = 1/k and N, = ny, we have

lim p(x,,,u) = 0. (10)

k—o0

Assume that v # Tu. Then
0 < inf{p(z,u)+p(z,T2) : z € X} < inf{p(zn,,w)+p(xn,, Tn,+1) : k € N}.
Using Cauchiness and equality (10), we get

inf{p(zn,,u) +p(zn,, Tny+1) : k € N} =0.

Which is a contradiction. Thus, Tu = u.
Case (ii). Now if T is continuous, we have
q(u, Tu) = lim q(xn,Tu) = lim ¢(Txp—1,Tu) = q(Tu,Tu) = 0.
n—oo n—oo

Hence, u = T'u.
Case (iii). We have

nli_)rgop(Txn, u) = nli_)rgop(:vnﬂ,u) = nli_{gop(xn,u).

Hence Tu = u

Moreover, if inequality (9) is true for each z, without the condition
q(Tx, T?z) # 0, similar to Theorem 1 we can prove p(u,u) =0. [

If f: X — X and F(f) is the set of all fixed points of f, then in a
general case F(f) # F(f™). Abbas and Rhoades [!] studied cases when
F(f) = F(f™) for each n € N, that is, when f has a property P. The
following theorem extends and improves Theorem 3.1 of [1].
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Theorem 3.6. Let (X, q) be a complete quasi-metric space with quasi
w-distance p on X. Let T : X — X be a given mapping. Suppose that
there exist £ € L and 6 € © such that for all v € X with ¢(Tx,T?z) # 0,

£ (0(p(Tz, T?x)),0(p(x, Tx))) > 1. (11)
Then T has property P.

Proof. From Theorem 3.5, F(T) # (. Now we prove that T has
property P. Obviously F(T') C F(T™), for each natural number n. We
prove by induction F(T™) C F(T). First for n = 2, if F(T?) # F(T),
then there is z € X such that T2z = 2 # Tx = T3z. Therefore
q(Tx, T?x), q(T?z, T3x) > 0 and by inequality (11) we conclude that

O(p(Tz,T%x)) _ 0(p(Tw,x))

1 <E0(p(T?x, Tx)), 0(p(Tz, T?x)) < 0p(T%z, T%2)) _ 0(p(z, Tx))

and

O(p(z,Tx))  O(p(z,Tx))

L 8O(T e T0), 060, T) < o 20y = 3(p(T, )

or equivalently
0(p(z,Tx)) < O(p(Tz,z)) and O(p(Tz,x)) < 0(p(x, Tz)),

which is a contradiction. So F(T) = F(T?).

Now let F(T) = F(T?) = ... = F(T" ') but F(T) # F(T™). Then
there is # € X such that 7"z = x but o # T’z for each 1 <4 < n. Then
obviously T%z # T7x, for each distinct 1 < 7,5 < n and similar to case
n = 2 we conclude that 0(p(T7z, T7+'2)) < 0(p(T?7~'z,T7x)), for each
1 < j <n, where Tz = x. Now we have

O(p(x, Tz) = 0(p(T"x, T"z)) < O(p(T" Lz, T"z))
< ... < O(p(Tz, T?r)) < O(p(z, Tx));

which is a contradiction. Therefore for each natural number n we have
F(T)=F(T™). O

Forz € X,T:X — X,0(z,00) = {z, Tx, T?x, ...} is called the orbit
of z. The mapping G : X — [0,00) is T-orbitally lower semicontinuous
at z if for any sequence {x,} in O(x;00) which is convergent to x, we
have G(z) < liminf G(z,,). The following theorem extends Theorem 2.1
of ([19]) and implies Theorem 3.7 of [31].

13
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Theorem 3.7. Let (X, q) be a complete quasi-metric space with quasi
w-distance p on X. Let T : X — X be a given mapping. Suppose that
there exist £ € L, 0 € ©, and © € X such that for all y € O(x;00) with

p(Ty, T?y) #0, £ (0(p(Ty, T?y)),0(p(y, Ty))) > 1. Then
(i) imT"x = z exists and for some 0 < k < 1

n

™ <
p( m72’/)—1_]{;

p(xz,Tz) (n>1).
(ii) p(z,Tz) = 0 if and only if G(x) = p(x,Tx) is T-orbitally lower
semicontinuous at z.

Proof. (i) The proof of Theorem 3.5 implies the existence of the limit.
Now by lower semi continuity of p, we have

p(T"x, z) < liminf p(T"z, T"x),
and similar to end of the of proof of Theorem 3.1 we can show that

p(T"z, z) < liminf p(T"z, T™x)

m—00
n _ rm
.
=B e )
k.’n
< T
< 7—5p( T2),

for some k € [0, 1).

(ii) If p(z, Tz) = 0, then obviously p(z,Tz) = 0 < p(zn, Tnt+1) +¢, for
each € > 0 and each natural number n. Conversly, if G(z) = p(z, Tz) is
T-orbitally lower semicontinuous at z, then for each € > 0, there is ng,
such that

p(Z,TZ) < p(wn,$n+1) + €, (n > no)'

But in proof of Theorem 3.5, we show that {x,,} is right Cauchy sequence

and so limp(xy,, zpy1) = 0. Therefore p(z,Tz) < e, for each e. Hence
p(z,Tz)=0. O
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4 Examples

In this section, we will give some examples to illustrate our results.

Example 4.1. Let k € (0,1), G be a locally compact group and X =
LY(G). Then LY(G) with the following (quasi) metric is a complete
(quasi) metric space.

q(fvg) = Hf _th (fvg € LI(G))

Where | fll1 = [o|f(2)|d\(x), for each f € L*(G), and X is the Haar
measure on G. Consider the modular function A : G — (0,1) and z € G

such that 0 < A(z7!) < ke (for more details about these concepts see
[18]). For an arbitrary h € L'(G) define

T:LYG) — L'G)
f = Ry (f—h)

where R, f(y) = f(yz), for each f € L'(G) and y € G.

Now for the quasi w-distance p(f,g) = ||g|l1 on the quasi metric
space L1(G) and 0 : [0,00) — [1,00), defined by 6(t) = ¢!* and
sk L, (t,s) =(1,1),
E(t,s)=— or &t,s)=4 3, t>s,
t Sk .
otherwise,

)
we can see that & (0(10(Tf7 T%f)),0(p(f, Tf))) > 1, for each f with T'f #
T?f. Therefore since T is continuous, it has a fixed point. Note that if
h = 0, then 0 is the fixed point of T

For example if k = %, then A(z71) < 1, 6(t) = eVt and £(t, s) = #
Example 4.2. Let (X, <) be a an order set with a norm ||.|| (such as
R) and let T': X — X be a map such that for some k € (0, 1),

k(L4 |Ta]) > 1+ |T%],
for each x with Tx # T?z. Define a quasi metric ¢ and a w-distance p
on X as follows.

0, =z==y,

qlz,y) =9 1, x<y, play =14+yll, (z,ye€X).
2, y <z,

15
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Obviously a sequence {z,} in (X,¢q) is a Cauchy sequence if there is

N € N such that for every n > N, z,, = xn. Therefore each map on X
is continuous . Also

inf{p(z,w) + p(z,Tx) :x € X} > 1,
for every w € X.

Note that k%(l + | Tz|)) > 14 || T2z is equivalent to k(1 + ||Tz|)* >
(1 —+ ||T2xH)k and so ek(1+||Tx||)k Z e(1+”T2zH)k

Consider 6 and £ as the latter example. Then we have for each x, with
Tx # T?x
O(p(z, Tx))*
0(p(Tz, T?z))
ekp(x,Tx)k

£ (H(p(Tx,TQx)),H(p(a:,Ta:))) =

k(| Ta)*
(L T22l])F
1

v

Therefore T has a fixed point.

Example 4.3. Consider a set X = {z,;n = 0,1,2,---} and a map

T:X — X as Tz, = x10n. Define a quasi metric ¢ and a w-distance p
on X as follows.

0, n=m,
l—%, m > mn,m,n # 0,
q(xn, Tm) = %— %, m<n,m,n #0,
L m=0,n#0,
%, n=0,m=#0,
. m,n # 0,
P(xn, Zm) :{ i " n:O#orm:O.

Note that with this quasi metric, each sequence is a Cauchy sequence
and convergent to zo. Let 6(t) = eV? and £(t,s) = o forall st >1
where ¢ : [1,+00) — [1,00) is nondecreasing and lower semi-continuous
such that ¢~!({1}) = 1. Then similar to latter we can show that for

each z # wg, £ (0(p(Tx, T?x)),0(p(x, Txz))) > 1.
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5 Application

Consider the following integrals.
(I) (non linear) Feredholm integral (second Kind):

b
fl@) = o(a) 42 [ Kl (s

(IT) (non linear) Volterra integral (second Kind):

T

¢(x) = flx) = | Kz, )y(f(1))dt

Example 5.1. Let X = C*([a, b]) be the set of all upper semi-continuous
functions on [a,b] or X = C([a,b]). Then

o g) = | min{suelo(@) = f@)i € (@b} 1} f<g
’ 1 otherwise,
is a quasi metric on X which is not a metric. Also ¢(f,g) = ||f — gll,

where || f|| = sup{f(z);z € [a,b]}, is a quasi metric which is a metric.

For finding a solution in X = C([a, b]) or X = C*([a, b]) (with each of
the latter quasi metrics) for (I) or (II) define T': C*([a,b]) — C*([a, b])
with

(1) Tf(2) = () + A f,, K (1) (f (1))

(I1) Tf(z) = ¢(x) + A [ K (z, )y (f(t))dt.

Then we have the following theorem.

Theorem 5.2. If there is k € (0,1) such that for each f € X with

Tf # f we have k:%HTfH > ||T?f||, then under each of the following
conditions (I) (similarly (II)) has a solution. That is there is f € X
which satisfies in (1) ( similarly (I1I)).

(i) 1 is continuous.

(i) ¢ =0 and (0) = 0.
(iii) ||g|| # O for every g € X with g # Tg or || Tf|| # 0 for each f € X

17
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Proof. We only prove for (I). For (II) we should only put x insteed of b in
the upper bound of integral. Put p(f,g) = |gll, 0(t) = e, £(t,s) = %
Then for each f € X with ¢(T'f, T?f) # 0 we have T'f # T2 f. Therefore

b b
H(2)+ / K, 0 (F(6)dt # d(x)+ / Ko, (T 1)t (x € [a,b).

So f # Tf. This implies that k*||Tf|| > |T2f|. i. e. k& (p(f,Tf)) >
p(Tf,T?f) or equivalently k(p(f, Tf))* > p(Tf, T?f)*. Then since e is
increasing we have ek@(STf N* > P(TFT%] )* That is

0(p(f,Tf))*
O(p(Tf,T%f))

ekp(£,Tf)*
=TT )R
>1

EOPTF, T 1)), 0(p(f, Tf)) =

Now if 4 is continuous, then 7" is continuous and if ¢ = 0 and ¥ (0) = 0,
then inf{p(f,g9)+p(f,Tf): f€ X} >|g| > 0 for every g € X with g #
Tg. Also if (iii) is true, then inf{p(f,g) +p(f,Tf): f€ X} >|g] >0
for every g € X with g # Tg. That is in each case the conditions of
Theorem 3.5 are valid. Therefore T" has a fixed point u € X. Obviously
this u is the solution of the integral equation(I) or similarly (II). O
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