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Abstract. The perfect m-coloring with matrix A = [aj]; je{1,... ,m} Of
a graph G = (V, E) with {1,--- ,m} color is a vertex coloring of G with
m-~color so that the number of vertices in color j adjacent to a fixed
vertex in color i is a;;, independent of the choice of vertex in color i.
The matrix A = [aij]; je{1,...,m} is called the parameter matrix.

We study the perfect 4-colorings of the 3-regular graphs of order
at most 8, that is, we determine a list of all color parameter matrices
corresponding to perfect 4-colorings of 3-regular graphs of orders 4, 6,
and 8.
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1 Introduction

The concept of a perfect m-coloring plays an important role in graph
theory, algebraic combinatorics, and coding theory (Completely regu-
lar codes). There is another term for this concept in the literature as
"equitable partition” (see [3]).

The existence of completely regular codes in graphs is a historical
problem in mathematics. Completely regular codes are a generalization
of perfect codes. In 1973, Delsarte conjectured the non-existence of
perfect codes in Johnson graphs. Therefore, some effort has been done on
enumerating the parameter matrices of some Johnson graphs, including
J(6,3), J(7,3), J(8,3), J(8,4), and J(n,3) (n odd) (see [2], [3] and [7]).

Fon-Der-Flaass enumerated the parameter matrices of n-dimensional
hypercube @Q,, for n < 24. He also obtained some constructions and a
necessary condition for the existence of perfect 2-colorings of the n-
dimensional hypercube with a given parameter matrix (see [1], [5] and

[6])-

In [!] all perfect 3-colorings of the cubic graphs of order 10 were
described.

In this paper we enumerate the parameter matrices of all perfect
4-colorings of the 3-regular graphs of order at most 8.

2 Preliminaries

In this section we use the following definition.

Definition 2.1. For each graph G and each integer m, a mapping T :
V(G) — {1,---,m} is called a perfect m-coloring with matriz A =
[@ijlijeq1,..my 5 if it is surjective and for all i, j for every vertex of color
i , the number of its neighbors of color j is equal to a;j. The matriz A
1s called the parameter matrix of a perfect coloring.

The spectrum of a matrix A, denoted by o(A) is the set of all eigen-
values of A. The set of eigenvalues of the adjacency matrix of graph G
is called the spectrum of G.

We denote M, (4) for all parameter matrices of the perfect 4-colorings
of r-regular graphs. Note that if A € M, (4), then the sum of entries for
each row is equal to r.
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If A = [aij]nxn is a perfect 4-colorings matrix for a 3-regular graph
4
G = (V,E), then ) a;; =3 for all 1 <1i < 4. So there are 20 different
j=1
models for each row of matrices. Hence there are 20* matrices.
Let A = [ajjlaxa be a 4-color parameter matrix for a graph G =
(V,E). The first observation says A must possess a weak form of sym-

metry, described in the following lemma:

Lemma 2.2. Suppose A = [aijlnxn 1S a parameter matriz for a graph
G = (V,E). Then, a;; =0 if and only if aj; =0 for 1 <i,j <n.

Definition 2.3. Let A and B are two parameter matrices of the perfect
4-colorings of graph G. We define A and B are equivalent if A trans-
formed to B by a permutation on colors and we use the symbol ~ to
show it.

We have the obvious lemmas:

Lemma 2.4. Let A = [ajjlaxa and A € M3(4) and o € Sy (where Sy is
the symmetric group of degree 4), then [a;jlaxa ~ |@iz(j)laxa-

Lemma 2.5. Let A = [ajjlaxa € M3(4). Then the following cases do
not happen.

1) a14 =0, a13 =0, a12 = 0;
2) agq =0, asz3 =0, az; = 0;
3) asy =0, aza =0, ag; = 0;
4) as3 =0, as2 =0, ag; = 0;

Lemma 2.6. Suppose A € M3(4). Then there is not o € Sy such that

* % 0 0
* x 0 0
{aio(j)] = 0 0 % =x
0 0 % =x

Proof. It is clear with connectivity. U

3
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Remark 2.7. Suppose A € M3(4) is a parameter matriz for a 3-reqular

0 0 x =
. 0 0 % =

graph G. If there is 0 € Sy such that A = [a;s(;)] = .« 0 ol then
* x 0 0

G is bipartite.

To see this, V is the set of vertices of G. Divide V into two inde-
pendent sets V7 and V5 include vertices with color number 3, 4 and 1,
2 respectively. According to matrix structure, thus vertices V7 are non-
adjacent. Similarly for the vertices V. Therefore G is a bipartite graph.

It is easy to see that each perfect coloring on a graph G, create an
equitable partition. So by (]3], lemma 1.1), we have the following lemma.

Lemma 2.8. Suppose A € M3(4) is a coloring matriz for graph G. Then
the spectrum of A is a subset of the spectrum of G.

Lemma 2.9. If A € M3(4), then all of the eigenvalues of A are real.

Proof. By symmetry of adjancy matrices of G is obvious. O
a b c d
s e f g h o .
Proposition 2.10. Let A = ik be a color incidence matrix
m n o p
of some connected graph G = (V,E). Let |v| denote the number of

E
vertices of G and v; denote color i; (1 <i<4).

1) Ifb#0, c# 0 and d # 0 then

o |v] by — |v]
L le D e e
e i m b bi  bm
e — v o — ||
3T % b id * " m mb mc

— — 41
c ce+ +cm d+de+di+
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2) Ifb#0, c#0 and h # 0 then

o — |v] y |v]
1 b ¢ bh’ 2 e ec h
1+-—4-+— 414 — 4=
e 1 en b bi n
y |v] , |v]
870 b ibh Tt T me m mee
P on b " h " hbi

N . I |
1 1+b+c+cl’2 e+1+ec+ecl
e 1 io b bi  bio
. bl
Ci b e b oy
c  ce le  lce 1

S R, o
b b d’ d
1+-4+242 Sri4d4 X
e e m b b
R 4 o
je J jed’ m mb  mbg
AT | 4
b+gjL +gbm d ale+<1lejjL

S o
1_1+9+@ ijz E+1+@+ﬁ
[ m b bml  bm
o o . o
Pim mb U T m mb o
od ode d de l
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6) Ifb#0, g# 0 and h # 0 then

vy = |v] ,— |v]
b bg bh T e h
14—+ 242 14942
ej en b Jj n

L= [v] " |v]
je | J Jh’ ne. . n_ng.
R VR Y

7) If b#0, g #0 and [ # 0 then

S B
N b b bgl’* e l
142424 7 Cr1+94 %
e ej ejo b j  jo
_ [l _ [l
vs = je j "7 oje o o
e +=+5+1
gb+g+ +o lgb lg 1

8) Ifb#0, h#0 and | # 0 then

. o I
1= b bho bR’ 2 e ho h
14-+—4— +14+—4 -
e enl en b nl  n
S | R |
Ine In l’ ne n o
AT —+-+-=-+41
0hb+0h+ +0 hb ~ h

9) If c#0,d#0 and g # 0 then

S R
- cj ¢ d’° gi 1d
1+2454 2 N
ig i m cj Jj o jem
N o
i id ’ m  mcj = mc
Sl 14— ey Tt
Tyt c d dig + di +
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10) If c # 0, d # 0 and h # 0 then

v =

1+dn c a7 Im hme ﬁ
mh m d ndi n
. o o
) idn id’ m n mc
oo el — 4+ -+ —+1
ity nie i i e d Tt a T
11) If ¢ #0, g # 0 and h # 0 then
. o _
o V2T h
P IR [ T + -
ig i ign je J

_ v
V3 =

h’4 ngi n  ng
- 14— —+ -+ +1
+g+ +gn hjc ' h ' hj

12) If c #0, g # 0 and | # 0 then

oy — ) v
cj ¢ c’ gi g gl
1+2 454+ 2 T i14+24 7
tu it PR
N R
j ’ oL 0] o
A 2y %
g l lg 1

18) If c#0, h #0 and | # 0 then

vl

_ _ v
Ul_l+0ln E+g’02_@+1+@+ﬁ
ioh 1 o nlc nl  n
S B o
iy DT e o
oh o le h 1
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14) Ifd#0, g # 0 and h # 0 then

" o 2 o
o dn  dn d’ hm h
14 2 8 LALLIy L
mh  mhj m d J
el el
ghm g g7 RNy
gnd g q d h h

. oo o
- doj do d’7°  glm l
1+ 2,2 UL
mlg ml m jod j  jo
o i
3 — , V4 = g
Zrliiy UL |
d o d g1

o o] o o]
! dn  do d’' % hm ho h
1+ — 4+ — + — — 14—+~
mh ml m nd nl  n
S R
T lm In > m om0
AT I —+-4+-+1
0d+0h+ +0 d h 1
By using above proposition and lemmas for n= 4, 6, 8 we only have
the following matrices, which we have shown with My, ..., Mys.
0111 0111 2 0 0 1
1 011 1 01 1 01 11
M=ty 0o M=y 1 1 o M=o 1 1 1]
1 110 1 1 0 1 1 1 10
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— — O — AN O O
AN — - O N o +H O
S O —H O A
o o = = S o a -
Il Il
] =
= o — - o ~
SO NN~ N —H O O
S AN O S~
Qo o ) S O A H
Il Il
] =
_1011_ _1110
O = = N~ O
SN —H O S - -
N O O~ O O~ -

M7 =

— N — O — - - O — - - O N O~ — O —H
N~ O N O~ AN O S AN~ AN O
S O o S AN O SO~ S —H —H O SO —-H — O
_0011 _0011_ _0011 _1001 _0011
Il Il I Il I
— o o™ oo o — o oo o o
N —H O O N — O O NN O O — o O O A~ — O
SO AN —H O S O —H AN S AN O - — o O O O = —H A
_0021 _0021_ _0021 _0333 _0011
I I I I I
_1011 _1201_ _1101 _1101 _1220
AN~ O N — O O NN o —H O NN OO SO~ -
S AN —H O SO~ S AN O - SO~ o —+H O -
S O —H O O AN O O AN O O AN N O O -

M3 =

Mg =



Z. VAHEDI, M. ALAEIYAN AND M. MAGHASEDI

10

— AN AN O

N O O

S —~H O -

S O —H -

s Mo7 =

— AN —H O

N O A -

S —~H O -

S O —H -

7M26:

— O O

NN OO

S - — O

S O AN AN

Mss =

— N O o — - O O
AN~ - O AN AN~ O
S O S O o
_0011 _0012
I Il
_1010 _1100
AN —H O A N O —H O
SO AN —-H O S AN O
_0011 _0022
Il I
_1002 _1100
N~ — O N O AN O
SO AN — O SO AN O AN
o O S O o

Moy

M3,

—\ O O O — — O O
AN N O O AN~ O O
S O —H O S~ AN -
_0023 _0012
I Il
_1330 _1101
oo oA N —H O O
o o o - S~ AN o
_2001 _0011
Il I
_1301 _1100
—\ O O O N~ — O
oo o - S~ o~
— O ™M O O — AN

M3y =

Ms7 =

— - O O

AN N O O

S O — AN

S O AN~

s Myo =

— - O O

N O N O

o N O -

O O —H AN

My =

— AN O -

AN —H O O

S O AN -

S O

My =



PERFECT 4-COLORINGS OF THE 3-REGULAR GRAPHS OF ...

Aa az

Gl as

Figure 1: Connected 3-regular graph of order 4

ai ai
de az de az
ds as ds ds
As ds
G2 Gs3

Figure 2: Connected 3-regular graphs of order 6

3 Main Results

None isomorphic 3-regular connected graphs of order 4, 6 and 8 are
shown below in figures 1, 2 and 3.

Theorem 3.1. The parameter matrix of 3-reqular graph of order 4 is
Just M.

Proof. Because each vertex is colored with one color. O

Theorem 3.2. If M is a perfect 4-colorings matriz of the 3-reqular
graph of order 6, then only the matrices Mas, Msg for Go and Moy for
G3 can be parameter matrices.

11
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ai a1 di
ds a2 a: ax as dz
az daz ar as arz as
a Qs de as de da
ds
G as Gs Ge as
ai a
dg d2 a a
az as ar as
as as as A
ds as
Gy Gs

Figure 3: Connected 3-regular graphs of order 8

Proof. With consideration of 3-regular graphs eigenvalues and using
Lemma 2.5, it can be seen the connected 3-regular graphs with 6 vertices
can have perfect 4-colorings with matrices Moy, Maos and Msg.

So we introduce 3-regular graphs of order 6 that have perfect 4-
colorings. Now we introduce the mappings of all graphs that have perfect
4-colorings with the parameter matrices.

The graph G5 has perfect 4-colorings with matrix Mss. Consider the
mapping T as follows:

T(a1) =1, T(a3) =T(as) =2, T(az) = T(as) = 3, T'(as) = 4.

There is no perfect 4-colorings with the matrix Msy for the graph
(5. Contrary to our claim, suppose that T is a perfect 4-colorings with
the matrix Mjg for the graph Gs. Then according to the matrix Msg,
by symmetry if T, is a coloring, then we have 2 cases for the color of
number 1 as follows:

T(a1) =1or T(az) = 1.

(1) T(a1) = 1, according to the matrix Msg, T'(a2) = 3, T'(ag) = 3 as
a result T'(aq) = 4, it follows that T'(a3) = 4 or T'(a5) = 4, which are a
contradiction with the third row and fourth column of the matrix Msg.

(2) T'(az) = 1, according to the matrix Msg, T'(a1) = 3 and T'(ag) = 3
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as a result T'(a3) = 4, it follows that T'(as) = 4 or T'(as) = 4, which
are a contradiction with the third row and fourth column of the matrix
Msy.

Therefore the graph G2 has no perfect 4-colorings with matrix Msg.

The graph G5 has perfect 4-colorings with matrix Mag. Consider the
mapping T as follows:

T(a1) =T(a3) =T(as) =1. T(a2) =2, T(as) =4, T(ag) =3. O

Theorem 3.3. If M is a perfect 4-colorings matrixz of the 3-reqular
graph of order 8, then only matrices Ms, My, Mg for G4 and Mss for
G5 and Mg fOT GG and Mg, M34 fOT' G7 and Ml, Mg, M14, M36 fO?” Gg
can be parameter matrices.

Proof. With consideration of 3-regular graphs eigenvalues and using
Lemma 2.5, it can be seen the connected 3-regular graphs with 8 vertices
can have perfect 4-colorings with matrices My, Mo, Mg, Mg, M1y, M;s,
]\4347 M35 and Mg@.

The graph G4 has perfect 4-colorings with the matrices My and M.
Consider two mappings 17 and T as follows:

Tl(al) = T1<a6) = 1, Tl(ag) = Tl(a5) = 4, Tl(ag) = T1(CL4) = 2,
Tl(a7) == Tl(ag) =3.

Tg(al) = Tg(a4) = 1, Tg(ag) = TQ((I3) = 4, TQ(CL5) = Tg(ag) = 2,
TQ(CLG) = TQ((I7) =3.

There is no perfect 4-colorings with the matrix Mig.

Contrary to our claim, suppose that T is a perfect 4-colorings with
the matrix Mg for graph G4.

According to the matrix Mg, by symmetry we have two cases for
the color of number 1 as follows:

(1) If T(a1) = 1, then T'(ag) = T'(az) = 3. It follows that T'(a7) = 4,
which is a contradiction with the third row of the matrix Mjisg.

(2) If T(az) =1, then T'(a1) = T(az) = 3. It follows that T'(as) = 4,
which is a contradiction with the third row of the matrix M;g. Therefore
the graph G4 has no perfect 4-colorings with the matrix Msg.

The graph G5 has perfect 4-colorings with the matrix Mss.

Consider the mapping T as follows:

T(a4) = T(a5) = T(aﬁ) = 1, T(QQ) = 2.

T(az) =T(a1) =T(ay) =4, T(ag) = 3.
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The graph Gg has perfect 4-colorings with the matrix Mg. Consider
the mapping T as follows:

T(ag) = T(a7) = 1, T(a4) = T(a5) = 2.
T(ag) = T(CLG) = 3, T(al) = T(ag) =4.

The graph G7 has no perfect 4-colorings with the matrices Mg and
Msy.

Contrary to our claim, suppose that T is a perfect 4-colorings with
matrix Mg for the graph G7. Then according to the matrix Mg, by
symmetry we have two cases for the color of number 2 as follows:

(1) If T'(a1) = 2, then T'(a2) = 2, T(ag) = 4 and T'(a5) = T'(a3) =
3. It follows that T'(a7) = 1, T(as) = 1 and T'(ag) = 1, which is a
contradiction with the first row of the matrix Msg.

(2) If T'(az) = 2, then T'(a1) = 2, T'(ag) = 3 and T'(a3) = 4 according
to the T'(ag), 2 vertices should be connected with color 1 so, it’s not
possible.

Therefore the graph G7 has no perfect 4-colorings with the matrix
Mg. Similarly, we can show that the graph G~ has no perfect 4-colorings
with the matrix Msy.

The connected 3-regular graphs Gg with 8 vertices can have perfect
4-colorings with the matrices My, Mo, My4, M3g. Now we introduce the
mappings of all graphs that have perfect 4-colorings with the parameter
matrices.

The graph Gg has perfect 4-colorings with the matrices My, My, M1y
and Msg. Consider four mappings 11, 1o, T3 and T as follows:

Ti(a1) = Ti(ag) = 1, Ti(as) = Ti(as) =

Ti(a2) = Th(as) = 3, Ti(as) = Th(ar) =

Ta(a1) = Ta(as) = 1, Ta(az) = Ta(as) = 2.
Ty(a7) = Ta(as) = 3, Ta(az) = Ta(as) = 4.
T3(a1) = Ts(a3) = 3, Tz(a2) = T3(ayg) = 1.
T3(ae) = Ts(as) = 2, Ts(as) = T3(a7) = 4.
Ti(ar) = Ty(az) = Ty(ay) = 1, Ty(as) = 2.
Ti(as) = Tu(ag) = Ty(as) = 3, Ta(az) =4. O
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