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Abstract. In this paper we will give sufficient conditions for the pow-
ers of the multipliction operator Mz to be reflexive on formal Laurent
sequence spaces.
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1. Introduction

Let {β(n)}∞n=−∞ be a sequence of positive numbers satisfying β(0) = 1.
If 1 < p <∞, the space Lp(β) consists of all Laurent power series

f(z) =
∞∑

n=−∞
f̂(n)zn,

such that the norm

‖f‖p = ‖f‖pβ =
∞∑

n=−∞
|f̂(n)|pβ(n)p,
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is finite. These are reflexive Banach spaces with the norm ‖ · ‖β and
Lp(β)∗ = Lq(β−1), where 1

p + 1
q = 1 ([18]). Let f̂k(n) = δk(n). So

fk(z) = zk and then {fk}k is a basis for Lp(β) such that ‖fk‖ = β(k).
We denote the set of multipliers

{ϕ ∈ Lp(β) : ϕLp(β) ⊆ Lp(β)},

by Lp∞(β) and the linear operator of multiplication by ϕ on Lp(β) by
Mϕ.
We say that a complex number λ is a bounded point evaluation on
Lp(β) if the functional e(λ) : Lp(β) −→ C defined by e(λ)(f) = f(λ) is
bounded.
Recall that if E is a separable Banach space and A is a bounded linear
operator on E, i.e., A ∈ B(E), then Lat(A) is by definition the set of all
invariant subspaces of A, and AlgLat(A) is the algebra of all operators
B in B(E) such that Lat(A) ⊂ Lat(B). For the algebra B(E), the weak
operator topology is the one induced by the family of seminorms

px∗,x(A) = | < Ax, x∗ > |,

where x ∈ E, x∗ ∈ E∗ and A ∈ B(E). Hence Aα −→ A in the weak
operator topology if and only if Aαx −→ Ax weakly. Also similarly
Aα −→ A in the strong operator topology if and only if Aαx −→ Ax in
the norm topology. An operator A in B(E) is said to be reflexive if

AlgLat(A) = W (A),

where W (A) is the smallest subalgebra of B(E) that contains A and the
identity I and is closed in the weak operator topology. For some source
on weighted sequence spaces, we refer the reader to [1 – 20].

2. Main Results

In this section we will investigate the reflexivity of the powers of the
operator Mz acting on Lp(β). First, we note that the multiplication
operator Mz on Lp(β) (Hp(β)) is unitarily equivalent to an injective
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bilateral (unilateral) weighted shift and conversely, every injective bilat-
eral (unilateral) weighted shift is unitarily equivalent to Mz acting on
Lp(β) (Hp(β)) for a suitable choice of β (the proof is similar to the case
p=2 that was proved in [3]).

We use the following notations:

r0 = limβ(−n)−1/n,

r1 = limβ(n)1/n,

Ω0 = {z ∈ C : |z| > r0},
Ω1 = {z ∈ C : |z| < r1},
Ω = Ω0 ∩ Ω1.

From now on we consider that Mz is bounded on Lp(β).

Theorem 2.1. Let 0 < r0 < r1 = 1 and 1
p + 1

q = 1. If∑
n<0

r0
nq

β(n)q
<∞ ;

∑
n>0

1
β(n)q

<∞,

then Mzk is reflexive on Lp(β) for all positive integers k.

Proof. LetX ∈ AlgLat(Mzk). Since Lat(Mz) ⊂ Lat(Mzk), thus Lat(Mz)
⊂ Lat(X). This implies that X ∈ AlgLat(Mz). It is well known that
X = Mψ for some ψ ∈ Lp∞(β). Now set

N = H∞(Ω1)
⋂
Lp∞(β).

Then N 6= ∅, since 1 ∈ N . It is a closed subspace of Lp(β), since if
{hn}n ⊂ N and hn −→ f in Lp(β), then for all n, ‖hn‖p 6 c2 for some
c2 > 0. Note that λ ∈ Ω is a bounded point evaluation on Lp(β) if and
only if {λn/β(n)} ∈ `q where 1

p + 1
q = 1. Now, since

c3 =
∑
n<0

r0
nq

β(n)q
<∞

and
c4 =

∑
n>0

1
β(n)q

<∞,
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each point of Ω is a bounded point evaluation on Lp(β). By boundedness
of point evaluations, for all λ in Ω we have

hn(λ) =< hn, e(λ) > −→ < f, e(λ) >= f(λ).

Also, for all λ in Ω,

|hn(λ)| = | < hn, e(λ) > |
6 ‖hn‖p‖e(λ)‖
6 (c3 + c4)‖hn‖p,

because
sup
λ∈Ω

‖e(λ)‖ 6 c3 + c4.

Thus
‖hn‖Ω1 = ‖hn‖Ω 6 c3‖hn‖p 6 c2(c3 + c4),

for all n. This implies that {hn}n is a normal family in H∞(Ω1) and by
passing to a subsequence if necessary, we may suppose that hn −→ f

uniformly on compact subsets of Ω1. Thus f ∈ H∞(Ω1). Note that

‖Mhn‖ 6 c1‖hn‖Ω1 6 c1c2(c3 + c4),

for all n, and ball B(H) is compact in the weak operator topology.
Hence Mhn −→ A in the weak operator topology for some A ∈ B(H).
Since hn(λ) −→ f(λ), we see that A = Mf and so N is indeed a closed
subspace of Lp(β). Now clearly N ∈ Lat(Mz), thus XN ⊂ N . Since
1 ∈ N , we get

X1 = ψ ∈ N = H∞(Ω1)
⋂
Lp∞(β).

This implies that MPn(ψ) →Mψ in the weak operator topology, where

Pn(ψ) =
n∑
k=0

(1− k

n+ 1
)ψ̂(k)zk, n > 0,

(see [3]). For simplicity put rn = Pn(ψ) and let Mk be the closed linear
span of the set {fnk : n > 0}. We have

Mzkfnk = f(n+1)k ∈Mk,
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for all n > 0. Thus Mk ∈ Lat(Mzk) and so Mk ∈ Lat(Mψ). Let

ψ(z) =
∞∑
n=0

ψ̂(n)zn.

Since 1 ∈ Mk, thus Mψ1 = ψ ∈ Mk. Hence ψ̂(i) = 0 for all i 6= nk,
n > 0. Now, by the particular construction of rn, each rn should be a
polynomial in zk, i.e., rn(z) = qn(zk) for some polynomial qn. Thus

Mrn = rn(Mz) = qn(Mzk) → X,

in the weak operator topology. Hence X ∈W (Mzk). Thus Mzk is reflex-
ive and so the proof is complete. �
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