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Abstract. In this article we investigate the two-term Abel’s inte-
gral equations. We will do this in two different ways and show that
such equation is reducible to an integro−differential equation of Volterra
type.
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1. Introduction

Abel’s integral equation is a special kind of linear Volterra integral equa-
tions of the first kind, and is usually solved via the Laplace transform
method, which finally reduces it to a differentiation of fractional order
[2].
In this paper we investigate the two-term Abel’s equation given by∫ x

0

{
A

(x− t)α
+

B

(x− t)β

}
u(t)dt = f(x), x > 0, 0 < β < α < 1 (1)
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and will solve it in two different ways, and derive some results about
the connection between fractional differentiation and solution of linear
Volterra integro−differential equations of the second kind.
The structure of the paper is as follows:
In section 2 we solve (1) via the Laplace transform method and ex-
press its solution as an infinite sum of the Riemann−Liouville fractional
derivatives of the function f [3, 4, 5].
In section 3 we reduce (1) to a Volterra integro−differential equation of
the second kind. In section 4 we summarize some conclusions.

2. Solution by the Laplace Transform Method

We consider the two terms Abel’s integral equations in the general form:∫ x

0

{
A

(x− t)α
+

B

(x− t)β

}
u(t)dt = f(x), x > 0 , 0 < β < α < 1, (2)

and will solve it via the Laplace transform method. In this generalized
case as the original Abel’s equation:∫ x

0

u(t)
(x− t)γ

dt = f(x) , x > 0, 0 < γ < 1, (3)

by using the Laplace transforms and putting F (z) = L{f(x)} and
U(z) = L{u(x)} we obtain:{

AΓ(1− α)
z1−α

+
BΓ(1− β)

z1−β

}
U(z) = F (z), (4)

or equivalently:

U(z) =
z1−α

AΓ(1− α)
.

1

1 + BΓ(1−β)
AΓ(1−α)z

β−α
F (z), (5)

and in the domain |z|β−α <
∣∣∣AΓ(1−α)
BΓ(1−β)

∣∣∣ we can use the geometric series
to obtain:

U(z) =
z1−α

AΓ(1− α)

( ∞∑
n=0

(−1)n

(
BΓ(1− β)zβ−α

AΓ(1− α)

)n
)

F (z), (6)
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which by using the Riemann−Liouville’s integral formula[3]:

0D
−p
x f(t) =

1
Γ(p)

∫ x

0
(x− t)p−1f(t)dt, (7)

and the convolution theorem for the Laplace transform [2] on (6) gives

u(x) =
∑∞

n=0(−1)n (BΓ(1−β))n

(AΓ(1−α))n+1 · 1
Γ(η)

∫ x
0 (x− t)η−1f(t)dt

=
∑∞

n=0 cn 0D
−η
x f(x),

(8)

where η = (n + 1)α− nβ − 1 and cn = (−1)n (BΓ(1−β))n

(AΓ(1−α))n+1 .

3. Solution by Transforming to Volterra Inte-
gral Equations of the Second Kind

In this section we solve (1) by using integral operators[2]. So we define
the two integral operators

[Lu](x) =
∫ x

0

A

(x− t)α
u(t)dt, (9)

and
[Mu](x) =

∫ x

0

B

(x− t)β
u(t)dt. (10)

Then by using (9) and (10) in (1) we have:

[(L + M)u](x) = f(x), (11)

and so we obtain

[Lu](x) = f(x)− [Mu](x)

= f(x)−
∫ x
0

B
(x−t)β u(t)dt,

(12)

and so:

u(x) = [L−1f ](x)− L−1

[∫ x

0

B

(x− t)β
u(t)dt

]
, (13)
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where by using

[L−1g](x) =
1
A

sin(απ)
π

d

dx

∫ x

0

g(t)
(x− t)1−α

dt, (14)

can be expressed as[2]:

u(x) = [L−1f ](x)− L−1 ([Mu]) (x)

= 1
A

sin(απ)
π

d
dx

∫ x

0
f(t)

(x−t)1−α dt− B
A

sin(απ)
π

d
dx

∫ x

0
1

(x−z)1−α

∫ z

0
u(t)

(z−t)β dtdz,

(15)

and changing the order of integration and doing some manipulations we
obtain:

u(x) = 1
A

sin(απ)
π

d
dx

∫ x
0

f(t)
(x−t)1−α dt

−B
A

sin(απ)
π

Γ(α)Γ(1−β)
Γ(1−β+α)

d
dx

∫ x
0 (x− t)α−βu(t)dt

(16)

which is a Volterra integro−differential equation of the second kind,
whose unique solution must be given by (8).

4. Conclusion

In this section we summarize the results of sections 2 and 3.
Comparing (8) and (16) we obtain[1]:

u(x) =
∞∑

n=0

cn 0D
−(n+1)α+nβ+1
x f(x) =

(
[I − λQ]−1F

)
(x) (17)

where:

F (x) =
1
A

sin(απ)
π

d

dx

∫ x

0

f(t)
(x− t)1−α

dt (18)

λ = −B

A

sin(απ)
π

Γ(α)Γ(1− β)
Γ(1− β + α)

(19)
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[Qu](x) =
d

dx

∫ x

0
(x− t)α−βu(t)dt (20)

but the volterra equation

u(x) = F (x) + λ[Qu](x), (21)

is of the second kind and can be solved by many methods such as it-
eration method [7], Adomian’s method [6], ..., and given approximate
solutions for(1).
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