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in Prime and Semiprime Rings

Sh. Sahebi
Islamic Azad University, Central Tehran Branch

V. Rahmani∗

Islamic Azad University, Central Tehran Branch

Abstract. Let R be a ring with derivation d, such that (d(xy))n =
(d(x))n(d(y))n for all x, y ∈ R and n > 1 a fixed integer. In this paper,
we show that if R is prime, then d = 0 or R is commutative. If R is
semiprime, then d maps R into its center. Moreover in semiprime case
let A = O(R) be the orthogonal completion of R and B = B(C) be the
Boolian ring of C, where C is the extended centroid of R. Then there
exists an idempotent e ∈ B such that eA is a commutative ring and d
induces a zero derivation on (1− e)A.
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1. Introduction

Let R be an associative ring with center Z(R). Recall that an additive
map d : R → R is called derivation if d(xy) = d(x)y + xd(y), for all
x, y ∈ R. Many results in literature indicate that global structure of a
prime (semiprime) ring R is often lightly connected to the behaviour of
additive mappings defined on R. A well-known result of Herstein [13]
stated that if R is a prime ring and d is an inner derivation of R such
that d(x)n = 0 for all x ∈ R and n > 1 fixed integer, then d = 0.
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The number of authors extended this theorem in several ways. In [12]
Giambruno and Herstein extended this result to arbitrary derivations
in semiprime rings. In [5] Carini and Giambruno proved that if R is
a prime ring with derivation d such that d(x)n(x) = 0 for all x ∈ L, a
Lie ideal of R, then d(L) = 0 when R has no non-zero nil right ideal
and char R 6= 2. The same conclusion holds when n(x) = n is fixed
and R is a 2-torsion free semiprime ring. Using the ideas in [5] and
the methods in [10] Lanski [16] removed both the bound on the indices
of nilpotence and the characteristic assumptions on R. In [4] Bresar
gave a generalization of the result due to Herstein and Giambruno [12]
in another direction. Explicitly, he proved in semiprime ring R with
derivation d and a ∈ R, if ad(x)n = 0 for all x ∈ R, where n > 1 is a
fixed integer, then ad(R) = 0 when R is an (n− 1)!-torsion free ring. In
recent years, a number of articles discussed derivations in the context of
prime and semiprime rings (see [6, 11, 20, 8, 1, 9]).
But here we will extend Herstein result’s [13] when the condition is more
widespread.
Indeed, we consider the situation when (d(xy))n = (d(x))n(d(y))n for all
x, y ∈ R and n > 1 is a fixed integer.

The main results in this paper are as follows:

Theorem 1.1. Let R be a prime ring and d a derivation of R. Suppose
(d(xy))n = (d(x))n(d(y))n for all x, y ∈ R and n > 1 is a fixed integer.
Then d = 0 or R is commutative.
When R is a semiprime ring, we prove:

Theorem 1.2. Let R be a semiprime ring and d a non-zero derivation
of R. Suppose (d(xy))n = (d(x))n(d(y))n for all x, y ∈ R and n > 1 is a
fixed integer. Then d maps R into its center.

Theorem 1.3. Let R be a semiprime ring with derivation d. Consider
(d(xy))n = (d(x))n(d(y))n for all x, y ∈ R and n > 1 is a fixed integer.
Further, let A = O(R) be the orthogonal completion of R and B = B(C)
where C the extended centroid of R. Then there exists idempotent e ∈ B

such that eA is a commutative ring and d induce a zero derivation on
(1− e)A.
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Throughout the paper we use the standard notation from [3].
In particular, we denote by Q the two sided Martindale quotient of prime
(semiprime) ring R and C the center of Q. We call C the extended
centroid of R.

2. Main Results

First, we consider the case when R is a prime ring. The following results
are useful tools needed in the proof of Theorem 1.1.

Lemma 2.1. (see [7, Theorem 2]). Let R be a prime ring and I a non-
zero ideal of R. Then I, R and Q satisfy the same generalized polynomial
identities with coefficient in Q.

Lemma 2.2. (see [18, Theorem 2). Let R be a prime ring and I a non-
zero ideal of R. Then I, R and Q satisfy the same differential identities.

Theorem 2.3. (Kharchenko [15]). Let R be a prime ring, d a nonzero
derivation of R and I a nonzero ideal of R. If I satisfies the differential
identity

f(r1, r2, . . . , rn, d(r1), d(r2), . . . , d(rn)) = 0,

for any r1, r2, . . . , rn ∈ I, then one of the following holds:
(i) satisfies the generalized polynomial identity

f(r1, r2, . . . , rn, x1, x2, . . . , xn) = 0.

(ii) d is Q-inner, that is, for some q ∈ Q, d(x) = [q, x] and I satisfies
the generalized polynomial identity

f(r1, r2, . . . , rn, [q, r1], [q, r2], . . . , [q, rn]) = 0.

We establish the following technical result required in the proof of The-
orem 1.1.

Lemma 2.4. Let R be a prime ring with extended centroid C. Suppose
([a, x]y + x[a, y])n − [a, x]n[a, y]n = 0, for all x, y ∈ R and some a ∈ R.
Then R is commutative or a ∈ C.
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Proof. If R is commutative there is nothing to prove. Suppose R is not
commutative. Set

f(x, y) = ([a, x]y + x[a, y])n − [a, x]n[a, y]n.

Since R is not commutative, then by Lemma 2.1, f(x, y) is a nontrivial
generalized polynomial identity for R and so for Q.
In case C is infinite, we have f(x, y) = 0 for all x, y ∈ Q

⊗
C C, where

C is the algebraic closure of C. Since both Q and Q
⊗

C C are prime
and centrally closed [14], we may replace R by Q or Q

⊗
C C according

to C finite or infinite. Thus we may assume that R is a centrally closed
over C which is either finite or algebraically closed and f(x, y) = 0
for all x, y ∈ R. By Martindale’s Theorem [19], R is then a primitive
ring having nonzero socle H with C as associated division ring. Hence
by Jacobson’s Theorem [14] R is isomorphic to a dense ring of linear
transformations of some vector space V over C, and H consists of the
linear transformations in R of finite rank. Let dimCV = k. Then the
density of R on V implies that R ∼= Mk(C). If dimCV = 1, then R is
commutative, which is a contradiction.
Suppose that dimCV > 2. We show that for any v ∈ V , v and av are
linearly dependent over C. Suppose v and av are linearly independent
for some v ∈ V . By density of R, there exist x, y ∈ R such that

xv = 0, xav = v,

yv = 0, yav = v.

Since [a, y]nv = [a, x]nv = (−1)nv, hence we get the following contradic-
tion

0 = (([a, x]y + x[a, y])n − [a, x]n[a, y]n)v = −v.

So we conclude that {v, av} are linearly C-dependent. Hence for each
v ∈ V , av = vαv for some αv ∈ C. Now we prove αv is not depending
on the choice of v ∈ V .
Since dimCV > 2 there exists w ∈ V such that v and w are linearly
independent over C. Now there exist αv, αw, αv+w ∈ C such that

av = vαv, aw = wαw, a(v + w) = (v + w)α(v+w).
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Which implies

v(αv − α(v+w)) + w(αw − α(v+w)) = 0,

and since {v, w} are linearly C-independent, it follows αv = α(v+w)

= αw. Therefore there exists α ∈ C such that av = vα for all v ∈ V .
Now let r ∈ R, v ∈ V . Since av = vα,

[a, r]v = (ar)v − (ra)v = a(rv)− r(av) = (rv)α− r(vα) = 0,

that is [a, r]V = 0. Hence [a, r] = 0 for all r ∈ R, implying a ∈ C. �

Now we can prove Theorem 1.1.

Proof of Theorem 1.1. Let R be not commutative. By the given
hypothesis, R satisfies the generalized differential identity

(d(x)y + xd(y))n = (d(x))n(d(y))n. (1)

By Lemma 2.2, R and Q satisfy the same differential identities, thus Q

satisfies (1). We divide the proof in two cases:

Case 1. d is a Q-inner derivation. In the case, there exists an el-
ement a ∈ Q such that d(x) = [a, x] and d(y) = [a, y] for all x, y ∈ Q.
Notice that Q satisfies the generalized polynomial identity ([a, x]y +
x[a, y])n = [a, x]n[a, y]n. In this case the conclusion follows from Lemma 1.
Thus we have a ∈ C and so d = 0.

Case 2. d is not a Q-inner derivation. Applying Theorem 2.2, then
(1) becomes

(zy + xw)n − (z)n(w)n,

for all x, y, z, w ∈ Q. If z = w, then Q satisfies

(zy + xz)n − z2n = 0.

This is a polynomial identity. Hence there exists a field F such that Q ⊆
Mk(F ), the ring of k×k matrices over field F , where k > 1. Moreover Q

and Mk(F ) satisfy the same polynomial identity [17, Lemma 1]. Choose

x = z = eij , y = eji,
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for all i 6= j. This leads to the contradiction

0 = (zy + xz)n − z2n = eii.

This completes the proof. �

The following example shows the hypothesis of primeness is essential in
Theorem 1.1.

Example 2.5. Let S be any ring, and R =

{(
0 a b
0 0 c
0 0 0

)
|a, b, c ∈ S

}
.

Define d : R → R as follows:

d

(
0 a b
0 0 c
0 0 0

)
=

(
0 0 b
0 0 0
0 0 0

)
.

Then 0 6= d is a derivation of R such that (d(xy))n = (d(x))n(d(y))n for
all x, y ∈ R, where n > 1 is a fixed integer, however R is not commuta-
tive.

Now let R be a semiprime ring.
We establish the following technical result required in the proof of The-
orem 1.2.

Lemma 2.6. (see [2, Lemma 1 and Theorem 1] or [18, pages 31-32]).
Let R be a semiprime ring and P a maximal ideal of C. Then PQ is a
prime ideal of Q invariant under all derivations of Q. Moreover

∩{P |PQ is maximal ideal of C} = 0.

Now we can prove Theorem 1.2.

Proof. Since any derivation d can be uniquely extended to a derivation
in Q, and R, Q satisfy the same differential identities [18, Theorem 3],
we have

(d(xy))n = (d(x))n(d(y))n,
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for all x, y ∈ Q. Let P be any maximal ideal of C by Lemma 2.6, PQ

is prime ideal of Q invariant under d. Set Q = Q/PQ. Then derivation
d canonically induces a derivation d on Q defined by d̄(x̄) = d(x) for all
x ∈ Q. Therefore,

(d̄(xy))n = (d̄(x̄))n(d̄(ȳ))n,

for all x̄, ȳ ∈ Q. By Theorem 1.1 d(Q) ⊆ PQ or [Q,Q] ⊆ PQ. Hence
d(Q)[Q,Q] ⊆ PQ for any maximal ideal P of C. By Lemma 2.6,
d(Q)[Q,Q] = 0. Without loss of generality we have d(R)[R,R] = 0.
This implies that

d(R2)[R,R] = d(R)R[R,R].

Therefore
[R, d(R)]R[R, d(R)] = 0.

By semiprimeness of R, we have [R, d(R)] = 0. This complete the
proof. �

Now let R be a semiprime orthogonally complete ring with extended
centeroid C. The notations B = B(C) and spec(B) denotes Boolian ring
of C and the set of all maximal ideal of B, respectively. It is well known
that if M ∈ spec(B) then RM = R/RM is prime [3, Theorem 3.2.7].
We use the notations Ω-∆-ring, Horn formulas and Hereditary formulas.
We refer the reader to [3, pages 37, 38, 43, 120] for the definitions and
the related properties of these objects.

We establish the following technical result required in the proof of The-
orem 1.3.

Lemma 2.7. [3, Theorem 3.2.18]. Let R be an orthogonally complete
Ω-∆-ring with extended centroid C, Ψi(x1, x2, . . . , xn) Horn formulas of
signature Ω-∆, i = 1, 2, . . . and Φ(y1, y2, . . . , ym) a Hereditary first order
formula such that ¬Φ is a Horn formula. Further, let ~a = (a1, a2, . . . , an)
∈ R(n), ~c = (c1, c2, . . . , cm) ∈ R(m). Suppose R |= Φ(~c) and for every
M ∈ spec (B) there exists a natural number i = i(M) > 0 such that

RM |= Φ(φM (~c)) =⇒ Ψi(φM (~a)),

where φM : R → RM = R/RM is the canonical projection. Then there
exists a natural number k > 0 and pairwise orthogonal idempotents
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e1, e2, . . . , ek ∈ B such that e1 + e2 + . . . + ek = 1 and eiR |= Ψi(ei~a) for
all ei 6= 0.

We denote O(R) the orthogonal completion of R which is defined as
the intersection of all orthogonally complete subset of Q containing R.

Now we can prove Theorem 1.3.

Proof. By assumption we have R satisfies

(d(xy))n = (d(x))n(d(y))n.

According to [3, Theorem 3.1.16] d(A) ⊆ A and d(e) = 0 for all e ∈
B. Therefore, A is an orthogonally complete Ω-∆-ring, where Ω =
{o,+,−, ·, d}. Consider formulas

Φ = (∀x)(∀y)‖(d(xy))n = (d(x))n(d(y))n‖,

Ψ1 = (∀x)‖d(x) = 0‖,

Ψ2 = (∀x)(∀y)‖xy = yx‖.

One can easily check that Φ is a hereditary first order formula and
¬Φ, Ψ1, Ψ2 are Horn formulas. So using Theorem 1.1 shows that all
conditions of Lemma 2.7 are fulfilled. Hence there exist two orthogonal
idempotent e1 and e2 such that e1 +e2 = 1 and if ei 6= 0, then eiA |= Ψi,

i = 1, 2. The proof is complete. �
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