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Abstract. Let H be a separable infinite dimensional complex Hilbert
space and SA(H) be the real Jordan algebra of all bounded self-adjoint
operators acting on H. In this paper, we study the general form of
surjective non-linear maps ξ : SA(H) → SA(H), that preserve the
difference of minimum and surjectivity moduli of self-adjoint operators
in both directions. It turns out that

ξ(P ) = EPE∗ +R, (P,R ∈ SA(H))

where E : H → H, is either a bounded unitary or an anti-unitary oper-
ator.
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1 Introduction

Recently non-linear preserver problems have been investigated by many
authors, see for instance [10, 14, 15, 18, 20]. In [5], authors characterized
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surjective maps preserving the spectral radius of the difference of matri-
ces. In [19], Molnar studied maps preserving the spectrum of operator
or matrix products. His results have been extended in several direction
for uniform algebras and semisimple commutative Banach algebras, and
a number of results is obtained on maps preserving several spectral and
local spectral quantities of operator or matrix product, or Jordan prod-
uct, or difference; see for instance [9, 13, 14, 15, 17] and the references
therein. In [18], authors characterized maps of ξ : B(X) → B(X) that
preserve difference minimum moduli of operators. They proved that this
map has the form ξ(P ) = EP ]F + R for E, F isometry operators and
P ] denotes P , or P ∗.

In this paper, we attempt to determine the general form of ξ when
it is restricted to the real Jordan algebra SA(H).

Throughout this paper, H stands for an infinite dimensional separa-
ble complex Hilbert space, and B(H), SA(H) and F(H), FS(H) denote
the space of all bounded operators, self-adjoint bounded operators, finite
rank operator on H, finite rank operator on SA(H), and As(H) the set
of all algebraic operators on SA(H). In [15], Havlicek and Semrl showed
a complete characterization of bijective maps ξ on B(H) satisfying the
condition

ξ(Q)− ξ(P ) is invertible⇐⇒ Q− P is invertible.

Theorem 1.1. ([15] Theorem 1.2) Let H be an infinite dimensional
complex Hilbert space and B(H) denotes the algebra of all bounded linear
operators on H. Let ξ : B(H) → B(H) be bijective map such that for
every pair M,W ∈ B(H) the operator M −W is invertible if and only
if ξ(M)− ξ(W ) is invertible. Then there exist R ∈ B(H) and invertible
P,Q ∈ B(H) such that either

ξ(M) = PMQ+R (1)

for every M ∈ B(H),or

ξ(M) = PM tQ+R (2)

for every M ∈ B(H) ,or

ξ(M) = PM∗Q+R (3)



MAPS PRESERVING THE DIFFERENCE OF MINIMUM ... 3

for every M ∈ B(H), or

ξ(M) = P (M t)∗Q+R (4)

for every M ∈ B(H).

Here M t and M∗ denote the transpose with respect to an arbitrary but
fixed orthonormal basis, and the usual adjoint of M in the Hilbert space
sense, respectively.

Definition 1.2. ([23]) The minimum modulus of an operator P ∈ B(H)
denoted by ρ(P ), is defined by ρ(P ) = inf{||Ph|| : h ∈ H , ||h|| = 1}.
The surjectivity modulus of P is defined by
τ(P ) = sup{ε > o : εB(0, 1) ⊂ P (B(0, 1))}, where B(0, 1) = {x ∈ H :
||x|| < 1}. Maximum modulus of P is defined by
N(P ) = max{ρ(P ), τ(P )}.

Definition 1.3. ([23]) A linear map ξ : B(H) → B(H) preserves the
minimum modulus(resp. surjectivity modulus), if for all P ∈ B(H),

ρ(ξ(P )) = ρ(P ) , (resp. τ(ξ(P )) = τ(P )).

Note that ρ(P ∗) = τ(P ) and τ(P ∗) = ρ(P ) for all P ∈ B(H).

Theorem 1.4. ([23] Theorem 3.5) Let ξ : B(H)→ B(H) be a surjective
linear map. The following are equivalent:

1. ρ(ξ(P )) = ρ(P ) , for all P ∈ B(H).

2. τ(ξ(P )) = τ(P ) , for all P ∈ B(H).

3. There exist two unitary operators E ∈ B(H) and F ∈ B(H) such

that ξ(P ) = EPF for every P ∈ B(H).

In this paper, we let ν(.) stand for either ρ(.) or τ(.) or N(.). We
stablish a similar result to Theorem 1.1 of characterizing maps from
SA(H) onto SA(H) preserving any of the surjectivity, the injectivity,
and the boundedness from below of the difference and sum of operators.
We show the adjacency of operators in term of any of the previous
mentioned spectral quantities and use such a description to show that if
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a map ξ from SA(H) onto SA(H) preserves operator pairs difference is
invertible and thus Theorem 1.1 ensures that such a map ξ takes either
(1) or (3). Then we describe maps ξ from SA(H) onto SA(H) satisfying

ν(ξ(M)− ξ(W )) = ν(M −W ) (5)

ν(ξ(M) + ξ(W )) = ν(M +W ) (6)

for all M,W ∈ SA(H).
For g, h ∈ H, 〈g, h〉 stands for the inner product of g and h. For every

P ∈ B(H), we use the notations rank(P ), ker(P ), ran(P ) and σ(P ) for
the rank, kernel, range and the spectrum of P , respectively. A conjugate
linear bijective operator E on H is called anti-unitary, provided that
〈Ex,Ey〉 = 〈y, x〉 for all x, y ∈ H. The identity operator on H will
be denoted by I. Two operators Q,P in SA(H) are called adjacent,
provided that Q − P is a rank one operator. It is said that a surjective
map ξ : SA(H) −→ SA(H) preserves adjacency of operators in both
directions, if it preserves adjacent operators in both directions. Recall
that we say that an operator is a rank one operator on H, if there exist
u, v ∈ H so that Tx = 〈x, v〉u for all x ∈ H. We use the notation
T = u ⊗ v. Every self-adjoint rank one operator on H is of the form
λb⊗b for some non-zero b ∈ H and λ ∈ R.

2 Main results

In this part, we recall some important lemmas that will be used in
the proof of our results. Recall that the spectral radius of an operator
P ∈ B(H) is
r(P ) = lim

n→∞
||Pn||1/n , and coincides with the maximum modulus of

σ(P ), the spectrum of P.

Lemma 2.1. ([12]) Let A ∈ B(H). Then A = 0 if and only if
r(A+P ) = 0, for all nilpotent operators P ∈ B(H) of rank at most one.

Lemma 2.2. ([23]) Let C,D ∈ B(H) be two invertible operators. The
following are equivalent:

(1) ρ(CPD) = ρ(P ) for all P ∈ B(H),
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(2) τ(CPD) = τ(P ) for all P ∈ B(H),

(3) there are two unitary operators E ∈ B(H) and F ∈ B(H) such
that C = αE , D = βF where α, β ∈ C \ {0} with |αβ| = 1.

Let Mn(C) be the algebra of all n × n complex matrices, and note
that ρ(P ) = τ(P ) = N(P ) for all matrices P ∈Mn(C).

Theorem 2.3. ([15]) A surjective map ξ on Mn(C) satisfies

ρ(ξ(Q)− ξ(P )) = ρ(Q− P ), (Q,P ∈Mn(C))

if and only if there are E,F,R ∈Mn(C) with E and F unitary matrices
such that

ξ(P ) = EP ]F +R , (P ∈Mn(C))
where P ] uses for P or P tr or P ∗ orP̄ , the complex conjugation of P .

We describe maps ξ from SA(H) onto SA(H) satisfying (5) and (6)
and prove some details needed for the proof of the main results. These
results generalize published results on linear or additive maps preserving
the minimum and surjectivity moduli of operators. See for instance [6,
8, 23].

Theorem 2.4. Let ξ : SA(H)→ SA(H) be a surjective map satisfying
(5). Then following situation hold:
There are R ∈ B(H) and unitary or anti-unitary operator E : H → H
such that

ξ(P ) = EPE∗ +R , P ∈ SA(H). (7)

If ξ satisfies (7), then (5) is satisfied.

For our aims, we show a similar result to Havlicek and Semrl [15]
and Hou and Huang [16] by replacing the invertibility by surjectivity
and boundedness below. This result plays an important role in the proof
of the Theorem 2.4. Let ∆Inj(H),∆Surj(H),∆LB(H),∆Inj−or−Surj(H)
and ∆LB−or−Surj(H) be respectively the subsets of all non-injective,
non-surjective, lower bounded, non-injective or non-surjective, and lower
bounded or non-surjective operators on SA(H). Assume that ∆(H)
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denotes any of these sets, and note that every operator P ∈ ∆(H) is
either non-injective or non-surjective and that

P.∆(H) = ∆(H).P = ∆(H)

for all invertible operators P ∈ SA(H).

Theorem 2.5. If a surjective map ξ : SA(H) −→ SA(H) satisfies

ξ(Q)− ξ(P ) ∈ ∆(H)⇐⇒ Q− P ∈ ∆(H), (8)

there is an operator R ∈ SA(H) such that ξ is of the form

ξ(P ) = APA∗ +R , P ∈ SA(H)

for some bijective continuous mapping A : H → H.

For proving of this theorem, we show that if ξ satisfies (8), then
ξ is a bijective map that preserves the invertibility of the difference of
operators. But to show this, we first specify the adjacency of operators
in term of operators in ∆(H), similar to following lemma.

Lemma 2.6. Let Q,P be two different operators in SA(H). Then Q,P
are adjacent, if and only if there exists R ∈ SA(H) \ {Q,P} such that
R − P ∈ ∆(H) and for every Y ∈ ∆(H), Y − R, Y − P ∈ ∆(H) imply
Y −Q ∈ ∆(H).

Proof. We can restrict ourselves to the case where P = 0. Assume Q
is a rank one operator. Hence Q = λh⊗h, where h ∈ H is a unit vector
and λ is non-zero real scalar. Let R = −Q. Then R ∈ ∆(H) \ {Q, 0}.
Let Y ∈ ∆(H) be such that Y − R ∈ ∆(H). We claim Y − Q is non-
invertible(non-injective or non-surjective). For this, we consider two
cases: if ker(Y )∩ {h}⊥ 6= {0}, then ker(Y −Q) 6= {0} and consequently
Y − Q is non-invertible. Assume ker(Y ) ∩ {h}⊥ = {0}, then Y + Q
is non-injective, as Y − R = Y + Q ∈ ∆(H). Let k ∈ ker(Y + Q)
be a non-zero unit vector. Then Y k = −λ〈k, h〉h. Hence k /∈ {h}⊥.
As H = {h}⊥ ⊕ Ch, it follows that k = βh + g, for some non-zero
scalars β ∈ C and g ∈ {h}⊥. Since 〈g, h〉 = 0, we have Y k = −λβh.
Consequently, as Y − Q = Y (I + h ⊗ h), applying the facts that Y is
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non-invertible and I + h ⊗ h is invertible, it follows that Y − Q is not
invertible. So Y −Q ∈ ∆(H).

For the inverse direction, it is assumed dim ran(Q) ≥ 2. We claim
that for every R ∈ ∆(H) \ {Q, 0}, there exists Y ∈ ∆(H) such that
Y − R ∈ ∆(H) and Y −Q /∈ ∆(H). For this, let R ∈ ∆(H) \ {Q, 0} be
fixed. There are two cases: If Q /∈ ∆(H), then it is enough to consider
Y = 0. If Q ∈ ∆(H), then Q is not injective and there exist some h ∈ H
such that (R−Q)h 6= 0, as R 6= Q. Applying the fact that dim ran(Q) ≥
2, it follows that there exist some k ∈ H such that the vectors {(R −
Q)h,Qk} are linearly independent. By replacing k with k+ θ, for some
θ ∈ ker(Q) if necessary, we may assume {h, k} are linearly independent.
Let V = span{h, k, (R−Q)h,Qk}. Then we can represent the operators
Q and R with respect to the decomposition of H = V ⊕ V ⊥ as follows:

Q =

[
Q1 Q2

Q∗2 Q3

]
, R =

[
R1 R2

R∗2 R3

]
.

Let Y ∈ SA(H) be the operator that with respect to the decompo-
sition H = V ⊕ V ⊥ is represented as

Y =

[
P +Q1 Q2

Q∗2 cI

]
,

where c /∈ σ(Q3) and P ∈ SA(V ) is an invertible operator such that
Ph = (R1 −Q1)h and Pk = −Q1k. It follows that R, Y and Y −R are
algebraic operators. But as Y k = (Y −R)h = 0, hence Y, Y −R ∈ ∆(H).
On the other hand, as

Y −Q =

[
P 0
0 cI −Q3

]
,

it follows that Y −Q is invertible, thus Y −Q /∈ ∆(H), which completes
the proof. �

Proposition 2.7. Let Q,P ∈ SA(H) and for every invertible Y ∈
SA(H) we have

Q− Y ∈ ∆(H)⇐⇒ P − Y ∈ ∆(H).

Then Q = P .
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Proof. Since 0 ∈ ∆(H) by setting Y = Q, it follows P − Q ∈ ∆(H).
As ∆(H) does not contain any invertible operator and P −Q ∈ ∆(H),
for asserting that P = Q, it is enough to show that P − Q is a scalar
multiple of the identity. If this is not so, P − Q 6= cI for every c ∈ R,
then there exists a unit vector k ∈ H such that k, (P −Q)k are linearly
independent. Let V = span{k, (P −Q)k}. Then P −Q has the matrix
representation

P −Q =

[
A B
B∗ C

]

where A =

[
0 1
1 β

]
.

Let

R =

[
0 −B
−B∗ I − C

]
.

Then R ∈ SA(H) and since Rk = 0, it follows that R is not invertible.
Since by assumption P −Q ∈ ∆(H), it follows that C and hence R are
algebraic. Consequently, if we set Y = Q−R, then Q−Y = R ∈ ∆(H).
But since

P − Y =

[
A 0
0 I

]
,

is invertible, so P − Y /∈ ∆(H). we get a contradiction. �

Lemma 2.8 take from [21], and characterize non-linear maps that
preserving finite rank operators and preserve the operator that difference
of them is rank one. Recall that a map B : H → H is called semilinear
if it is additive and there is an automorphism σ of C such that B(αx) =
σ(α)Bx for all x ∈ H and α ∈ C. Such a map is sometimes said σ-
semilinear when the automorphism σ is specified.

Lemma 2.8. (Petek-Semrl [21]) Assume that X and Y are Banach
spaces of dimensions at least 2, and let ξ be a bijective map from F(X)
into F(Y ) such that whenever C,D are operators in F(X) that satisfies

C −D has rank one ⇐⇒ ξ(C)− ξ(D) has rank one,
then one of the following properties is satisfied:
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(1) There is an automorphism σ of C, R ∈ B(Y ), and bijective σ-
semilinear maps S : X → Y and T : X∗ → Y ∗ such that
D 7→ ξ(D) − R is an additive map defined by ξ(x ⊗ f) − R =
Sx⊗ Tf, (x ∈ X, f ∈ X∗).

(2) There is an automorphism σ of C, R ∈ B(Y ), and bijective σ-
semilinear maps S : X → Y ∗ and T : X∗ → Y such that D 7→
ξ(D) − R is an additive map defined by ξ(x ⊗ f) − R = Tf ⊗
Sx, (x ∈ X, f ∈ X∗).

This lemma is true for X = Y = H and SA(H).

Let AIs(H) be the set of all invertible operators in SA(H).

Proposition 2.9. Let Q,P ∈ SA(H) and for every N ∈ AIs(H) we
have

Q−N ∈ AIs(H)⇐⇒ P −N ∈ AIs(H).
Then Q = P .

Proof. First we claim that σ(Q) = σ(P ). For this note that for every
scalar λ ∈ R, λ ∈ σ(Q) if and only if Q − λI is not invertible, but
by assumption, this holds precisely when P − λI is not invertible or
equivalently λ ∈ σ(P ).

For the rest of proof, it is enough to show that Q − P is a scalar
operator, since from Q = P + λI and the fact that σ(Q) = σ(P ), it
follows that λ = 0. If Q − P is not a scalar operator, then there exists
k ∈ H such that the vectors k and (Q − P )k are linearly independent.
There are two cases: either {k, Pk} or {k,Qk} is a linearly independent
set. It is enough to consider the first case, since the other one is similar.
Put V = span{k,Qk, Pk}. Then the operator Q can be represented as

Q =

[
Q1 Q2

Q∗2 Q3

]
regarding the decomposition of H = V

⊕
V ⊥. Before proceeding fur-

ther, we make a claim:
Claim. There exists an invertible A ∈ SA(V ) such that Ak = Pk and
Q1 −A is invertible.
For this we consider two cases:
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Case1. Assume dim(V ) = 3. Let

Q1 =

q11 q12 q13

q∗12 q22 q23

q∗13 q∗23 q33

 , A =

a11 a12 a13

a∗12 a22 a23

a∗13 a∗23 a33


be the representations of Q1 and A regarding the decomposition of V =

{k}
⊕
{Pk}

⊕
{Qk}. Since Q1k = Q1

1
0
0

 =

0
0
1

, it follows that q11 =

q12 = 0 and q13 = 1. Similarly, since Ak = A

1
0
0

 =

0
1
0

, it follows that

a11 = a13 = 0 and a12 = 1. Hence, it is enough to consider

A =

0 1 o
1 q22 − 1 q23

0 q∗23 q33 − 1

 .
Then A is invertible and satisfies Ak = Pk.

Case2. Assume dim(V ) = 2. Let Qk = λk + µPk, for λ, µ ∈ R.
Since {k, (P −Q)k} is linearly independent, µ 6= 1. Let

Q1 =

[
q11 q12

q∗12 q22

]
, A =

[
a11 a12

a∗12 a22

]
be the representations of Q1 and A regarding the decomposition of V =

{k}
⊕
{Pk}. Since Q1k = Q1

[
1
0

]
= λk + µPk =

[
λ
µ

]
, it follows that

q11 = λ ans q12 = µ. Similarly, since Ak = A

[
1
0

]
=

[
0
1

]
, it follows that

a11 = 0 and a12 = 1. Hence, it is enough to consider

A =

[
0 1
1 q22

]
.

Then since µ 6= 1, A is invertible and satisfies Ak = Pk.
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Consider the operator N ∈ SA(H) such that regarding the decom-
position of H = V

⊕
V ⊥ has the matrix representation

N =

[
A Q2

Q∗2 λI

]
,

where λ ∈ R \ σ(Q3). Since A and Q1−A are invertible, it follows from
Lemma 2.6 that N and Q−N are algebraicly invertible operators. But
since (P − N)k = 0, we conclude that P − N /∈ AIs(H), which is a
contradiction. �

Now, we can prove Theorem 2.5.

Proof.(Proof of Theorem 2.5) Assume that ξ satisfies in following rela-
tion

ξ(Q)− ξ(P ) ∈ ∆(H)⇐⇒ Q− P ∈ ∆(H)
and note that ξ−R satisfies to this relation. Thus, after replacing ξ1 by
ξ −R, we may assume that ξ1(0) = 0. We do this through a few step.
Step 1. ξ1 is bijective and preserves adjacency of operators in both
directions.

Let Q1, Q2 ∈ SA(H) be such that ξ1(Q1) = ξ1(Q2). Then by as-
sumption, for every operator we have

Q1 −N ∈ ∆(H)⇐⇒ ξ1(Q1)− ξ1(N) ∈ ∆(H)

⇐⇒ ξ1(Q2)− ξ1(N) ∈ ∆(H)

⇐⇒ Q2 −N ∈ ∆(H)

for every N ∈ SA(H). Therefore, it follows from Proposition 2.9 that
Q1 = Q2 and consequently ξ1 is injective. It is also bijective because it
is supposed to be surjective.

Now, let A,B ∈ SA(H) be such that A− B has rank one. Then by
Lemma 2.6 it follows that there exists R ∈ SA(H) \ {A,B} such that
R − B ∈ ∆(H) and for every P ∈ SA(H), the relations P − R ∈ ∆(H)
and P −B ∈ ∆(H) yield that P −A ∈ ∆(H). As ξ1 is injective, we get
ξ1(R) ∈ SA(H)\{ξ1(A), ξ1(B)}. By assumption ξ1(R)− ξ1(B) ∈ ∆(H).
Suppose Q ∈ SA(H) such that Q − ξ1(R) ∈ ∆(H) and Q − ξ1(B) ∈
∆(H). There exists P ∈ SA(H) that ξ1(P ) = Q, as ξ1 is surjective.
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Thus ξ1(P ) − ξ1(R) ∈ ∆(H) and ξ1(P ) − ξ1(B) ∈ ∆(H), which implies
P −R ∈ ∆(H) and P −B ∈ ∆(H). Hence, we have P −A ∈ ∆(H) and
consequently Q − ξ1(A) ∈ ∆(H). Now applying Lemma 2.6 it follows
that ξ1(A) − ξ1(B) has rank one. On the other hand, as ξ1 is bijective
and ξ−1

1 satisfies the same properties as ξ1, it follows that ξ1 preserves
adjacency in both directions.
Step 2. ξ1 maps rank one operators onto rank one operators and maps
FS(H) onto itself.

Let F be a rank one operators in SA(H). Then F is adjacent to 0.
By step 1, ξ1(F ) is adjacent to ξ1(0) = 0. Hence ξ1(F ) is a rank one
operator. On the other hand as every rank 2 operator is adjacent to
a rank one operator, hence, if rank(E) = 2, then rank(ξ1(E)) < ∞.
Similarly, it follows that ξ1 maps FS(H) onto itself.
Step 3. ξ1 preserves projections of rank one and there exists either a
bijective linear or conjugate-linear operator A : H → H such that for
every P ∈ FS(H)

ξ1(P ) = λAPA∗.

As ξ1 : FS(H)→ FS(H) preserves adjacency and satisfies ξ1(0) = 0,
it follows [22, Theorem 2.1] that either

• There exists a rank one operator R ∈ SA(H) such that the range
of ξ1 is contained in the linear span of R; or

• There exists an injective linear or conjugate-linear map A : H → H
such that

ξ1(
k∑

j=1

njyj ⊗ yj) =
k∑

j=1

njA(yj ⊗ yj)A∗

for every
∑k

j=1 njyj ⊗ yj ∈ FS(H); or

• There exists an injective linear or conjugate-linear map A : H → H
such that

ξ1(
k∑

j=1

njyj ⊗ yj) = −
k∑

j=1

njA(yj ⊗ yj)A∗

for every
∑k

j=1 njyj ⊗ yj ∈ FS(H).
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As ξ1 is bijective, the first case doesnot happen. Since both ξ1 and ξ−1
1

have the same properties, from above discussion it follows that there
exists either an invertible linear or conjugate-linear operator A : H → H
such that for every P ∈ FS(H)

ξ1(P ) = λAPA∗,

where λ ∈ {−1, 1}. Replacing ξ1 by P 7−→ (ξ1(I))−
1
2 (ξ1(P ))(ξ1(I))−

1
2 ,

we may assume without loss of generality that ξ1 is unital, that is,
ξ1(I) = I. Note that for an arbitrary unit vector f ∈ H, I − f ⊗ f ∈
∆(H). Hence, by assumption we should have

ξ1(I)− ξ1(f ⊗ f) = I − λAf ⊗Af ∈ ∆(H).

But this happens precisely when λ = 1. Now, consider an arbitrary
vector b ∈ H. Then

〈b, b〉 = 1⇐⇒ I − b⊗ b ∈ ∆(H)
⇐⇒ I −Ab⊗ bA∗ ∈ ∆(H)
⇐⇒ 〈Ab,Ab〉 = 1.

Hence ξ1 preserves projections of rank one.
By replacing ξ1 with ξ2 = A∗ξ1A, in the sequel we may assume

ξ2(F ) = F , for every F ∈ FS(H).
Step 4. ξ2 preserves the difference of AIs(H) in both directions, that
is, for every Q,P ∈ SA(H)

Q− P ∈ AIs(H)⇐⇒ ξ2(Q)− ξ2(P ) ∈ AIs(H).

Let Q,P ∈ SA(H) be such that Q − P ∈ AIs(H). Then for some
unit vectors b ∈ H, we have

〈b, (Q− P )−1b〉 = 1.

Set F = b ⊗ b. It follows that (Q − P ) − F is not invertible. Hence
Q− (P + F ) ∈ ∆(H) which implies ξ2(Q)− ξ2(P + F ) ∈ ∆(H). On the
other hand, since (P +F )−P is rank one then so is ξ2(P +F )− ξ2(P ).
Therefore, since

ξ2(Q)− ξ2(P ) = ξ2(Q)− ξ2(P + F ) + (ξ2(P + F )− ξ2(P )),
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it follows that ξ2(Q)− ξ2(P ) ∈ As(H). But since by assumption Q− P
is invertible, Q − P /∈ ∆(H), which implies ξ2(Q) − ξ2(P ) /∈ ∆(H). So
ξ2(Q) − ξ2(P ) ∈ AIs(H). Similarly, let Q,P ∈ SA(H) be such that
ξ2(Q)− ξ2(P ) ∈ AIs(H). Since ξ−1

2 satisfies the same properties as ξ2,
we conclude Q− P ∈ AIs(H).
Step 5. ξ2(P ) = P for every P ∈ AIs(H).

Let P ∈ AIs(H). Since P − 0 ∈ AIs(H), it follows from step
4 that ξ2(P ) = ξ2(P ) − ξ2(0) ∈ AIs(H). If ξ2(P ) 6= P , then there
exists a unit vector e ∈ H such that P−1e 6= ξ2(P )−1e, 〈e, P−1e〉 =
1 while 〈e, ξ2(P )−1e〉 6= 1. It shows that P − e ⊗ e /∈ AIs(H) but
ξ2(P )−e⊗e = ξ2(P )−ξ2(e⊗e) ∈ AIs(H), there appears a contradiction.
This contradiction shows that ξ2(P ) = P .
Step 6. ξ2(P ) = P for every P ∈ ∆(H).

Let P ∈ ∆(H). Then ξ2(P ) = ξ2(P ) − ξ2(0) ∈ ∆(H). For every
N ∈ AIs(H), from step 5 we have ξ2(N) = N and

P −N ∈ AIs(H)⇐⇒ ξ2(P )−N ∈ AIs(H).

Hence, from Proposition 2.9 it follows that ξ2(P ) = P .
Step 7. ξ2(P ) = P for every P ∈ SA(H).

ξ2 |∆(H) is additive, then the desired result follows from step 6.
Let P1, P2 ∈ ∆(H) be fixed and consider the map ξ : SA(H)→ SA(H)
that for every P ∈ SA(H) is defined by

ξ(P ) := ξ2(P + P2)− P2.

Then it follows from previous steps that ξ is bijective, preserves the
difference of ∆(H) in both directions, ξ(I) = I and ξ(F ) = F for all
finite rank operator F ∈ SA(H). Hence, for every P ∈ ∆(H), ξ(P ) = P .
In particular, we have

P1 = ξ(P1) = ξ2(P1 + P2)− P2,

that follows ξ2(P1 + P2) = P1 + P2. Hence ξ2 |∆(H) is additive.

From step 7, it follows that for every P ∈ SA(H), ξ2(P ) = P . But
from this we get

P = ξ2(P ) = A∗ξ1(P )A = A∗(ξ(P )−R)A.
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Hence for every P ∈ SA(H)

ξ(P ) = APA∗ +R,

which is the desired result and finishes the proof. �

Proof. (Proof of Theorem 2.4) Assume that ξ is a map satisfying

ν(ξ(Q)− ξ(P )) = ν(Q− P ),

for all Q,P ∈ SA(H), and note that ξ is a bijective map satisfying (8),
so ξ is of the form

ξ(P ) = APA∗ +R,
for all operators P ∈ SA(H). So we have

ν(AQA∗ +R−APA∗ −R) = ν(Q− P ) =⇒ ν(A(Q− P )A∗) = ν(Q− P ),

and since ν is ρ or τ , by Lemma 2.2 there is an unitary operator
E : H → H and scalar λ such that A = λE and |λλ∗| = 1. Thus

ξ(P ) = λEP (λE)∗ +R,
so we have

ξ(P ) = EPE∗ +R. �
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