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1 Introduction

Frames, as an expansion of bases in Hilbert spaces, were first introduced
by Duffn and Schaeffer during their study of nonharmonic Fourier se-
ries in 1952. They introduced frames. as an expansion of the bases
in Hilbert spaces ([9]). Recently, frames play a fundamental role not
only in mathematics but also in many aspects of applications and have
been widely applied in filter bank theory, coding and communications,
signal processing, system modeling (e.g. [2, 5, 10, 14, 15]). One of the
newest generalization of frames is controlled frames. Controlled frames
have been introduced to improve the numerical efficiency of interactive
algorithms for inverting the frame operator on abstract Hilbert spaces
(e.g. [1, 12, 13]).

This manuscript is organized as follows. In Section 2, we recall some
definitions and Lemmas for frames and operators theory. In Section 3,
we fix the notations of this paper, summarize known and prove some
new results. In Section 4, we defined Q-duality and perturbation for
controlled fusion frames and express some results about them.

Throughout this paper, H andK are separable Hilbert spaces, B(H,K)
is the family of all the bounded linear operators on H into K and GL(H)
denotes the set of all bounded linear operators which have bounded in-
verses. Let GL+(H) be the set of all positive operators in GL(H).

It is easy to check that if C,C ′ ∈ GL(H), then C ′∗, C ′−1 and CC ′

are in GL(H). We define πW is the orthogonal projection onto W .

2 Preliminaries

In this section, some necessary definitions and lemmas are introduced.

Lemma 2.1 ([8]). Let H1, H2 are Hilbert spaces and let L1 ∈ B(H1, H)
and L2 ∈ B(H2, H). Then the following assertions are equivalent:

(I) R(L1) ⊆ R(L2);

(II) L1L
∗
1 ≤ λL2L

∗
2 for some λ > 0;

(III) there exists U ∈ B(H1, H2) such that L1 = L2U .
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Moreover, if those conditions are valid then there exists a unique operator
U such that

(a) ‖U‖2 = inf{α > 0 | L1L
∗
1 ≤ αL2L

∗
2};

(b) kerL1 = kerU ;

(c) R(U) ⊆ R(L∗2).

For the proof of the following lemma, we refer to [8].

Lemma 2.2. Let V ⊆ H be a closed subspace, and T be a linear bounded
operator on H. Then

πV T
∗ = πV T

∗πTV .

If T is a unitary (i.e. T ∗T = IdH), then

πTV T = TπV .

If an operator U has closed range, then there exists a right-inverse
operator U † (pseudo-inverse of U) in the following senses (see [7]).

Lemma 2.3. Let U ∈ B(K,H) be a bounded operator with closed range
R(U). Then there exist a bounded operator U † ∈ B(H,K) for which

UU †x = x, x ∈ R(U),

and
(U∗)† = (U †)∗.

Definition 2.4. A sequence {fi}i∈I in H is a frame if there exist con-
stants 0 < A ≤ B <∞ such that for all f ∈ H

A‖f‖2 6
∑
i∈I
|〈f, fi〉|2 6 B‖f‖2.

Definition 2.5. Let W := {Wi}i∈I be a family of closed subspaces of
H and v := {vi}i∈I be a family of weights (i.e. vi > 0 for any i ∈ I).
We say that W is a fusion frame with respect to v for H if there exist
0 < A ≤ B <∞ such that for each f ∈ H,

A‖f‖2 ≤
∑
i∈I

v2i ‖πWi(f)‖2 ≤ B‖f‖2. (1)
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The constants A, B are called the fusion frame bounds. The family
W is called a tight fusion frame if A = B, it is a Parseval fusion frame
if A = B = 1, and v-uniform if v = vi = vj for all i, j ∈ I. If the
right-hand of the inequality (1) holds, then we say that W is a Bessel
fusion sequence with Bessel fusion bound B. Moreover we say that W
is an orthonormal fusion basis for H if H =

⊕
i∈I Wi. If W is a Bessel

fusion sequence then the following operators are bounded:

TW : (
∑
i∈I

⊕
Wi)`2 7−→ H, T ∗W : H 7−→ (

∑
i∈I

⊕
Wi)`2 ,

TW ({ci}i∈I) =
∑
i∈I

vici, T ∗W f = {viπWif}.

These operators are called synthesis operator and analysis operator, re-
spectively. Thus, the fusion frame operator is defined by:

SW : H 7−→ H,

SW f = TWT
∗
W f =

∑
i∈I

v2i πWif.

For each Bessel fusion sequence W of H, we define the representation
space is (

∑
⊕Wi)`2 , due the notations of [6].(∑
⊕Wi

)
`2

=
{
{ci}i∈I : ci ∈ C,

∑
i∈I
|ci|2 <∞

}
with inner product given by

〈{ci}i∈I , {di}i∈I〉 =
∑
i∈I
〈ci, di〉.

3 Controlled Fusion Frame

In thissection, we present the notion of controlled fusion frames in Hilbert
spaces and discuss on some their properties. Our approach to define con-
trolled fusion frames is a generalization of the idea in [13].

Definition 3.1. Let {Wi}i∈I be a collection of closed subspace in Hilbert
space H, {vi}i∈I be a family of weightsand C,C ′ ∈ GL(H). The se-
quence W = {(Wi, vi)}i∈I is called a fusion frame controlled by C
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and C ′ or CC ′-Controlled fusion frames for H if there exist constants
0 < A ≤ B <∞ such that for all f ∈ H

A‖f‖2 ≤
∑
i∈I

v2i 〈πWiC
′f, πWiCf〉 ≤ B‖f‖2.

Throughout this paper, W = {(Wi, vi)}i∈I unless otherwise stated.
W is called a tight controlled fusion frame, if the constants A,B can be
chosen such that A = B, a Parseval fusion frame provided A = B = 1.
We call W is a C2-Controlled fusion frame if C = C ′. If only the second
inequality is required, We call W is a Controlled Bessel fusion sequence
with bound B. If W is a CC ′-controlled fusion frame and C∗πWiC

′ is a
positive operator for each i ∈ I, then C∗πWiC

′ = C ′∗πWiC and we have

A‖f‖2 ≤
∑
i∈I

v2i ‖(C∗πWiC
′)

1
2 f‖2 ≤ B‖f‖2.

We define the controlled analysis operator by (for more details, we refer
to [13])

TW : H → K2,W

TW (f) = {vi(C∗πWiC
′)

1
2 f}i∈I ,

where

K2,W :=
{
{vi(C∗πWiC

′)
1
2 f}i∈I : f ∈ H

}
⊂ (
⊕
i∈I

H)l2 .

It is easy to see that K2,W is closed and TW is well defined. Moreover
TW is a bounded linear operator with the adjoint operator T ∗W defined
by

T ∗W : K2,W → H

T ∗W {vi(C∗πWiC
′)

1
2 f}i∈I =

∑
i∈I

v2iC
∗πWiC

′f.

Therefore, we define the controlled fusion frame operator SW on H by

SW f = T ∗WTW (f) =
∑
i∈I

v2iC
∗πWiC

′f.
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Theorem 3.2. W is a CC ′-controlled fusion Bessel sequence for H with
bound B if and only if the operator

T ∗W : K2,W → H

T ∗W {vi(C∗πWiC
′)

1
2 f}i∈I =

∑
i∈I

v2iC
∗πWiC

′f.

is well -defined and bounded operator with ‖T ∗W ‖ ≤
√
B.

Proof. The necessary condition follows from the definition of CC ′-
controlled fusion Bessel sequence. We only need to prove that the suf-
ficient condition holds. Suppose that T ∗W is well-defined and bounded
operator with ‖T ∗W ‖ ≤

√
B. For any f ∈ H, we have(∑

i∈I
v2i 〈πWiC

′f, πWiCf〉
)2

=
(∑

i∈I
v2i 〈C∗πWiC

′f, f〉
)2

=
(〈
T ∗W
{
vi(C

∗πWiC
′)

1
2 f}i∈I , f

〉)2
≤ ‖T ∗W ‖2‖{vi(C∗πWiC

′)
1
2 f}i∈I‖2‖f‖2.

But

‖{vi(C∗πWiC
′)

1
2 f}i∈I‖22 =

∑
i∈I

v2i 〈πWiC
′f, πWiCf〉.

It follows that ∑
i∈I

v2i 〈πWiC
′f, πWiCf〉 ≤ B‖f‖2.

This means that W is a CC ′-controlled fusion Bessel sequence for H.
�

Theorem 3.3. W is a CC ′-Controlled fusion frame for H if and only
if

T ∗W : K2,W → H

T ∗W {vi(C∗πWiC
′)

1
2 f}i∈I =

∑
i∈I

v2iC
∗πWiC

′f

is a well-defined, bounded and surjective.
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Proof. If W is a CC ′-controlled fusion frame for H, the operator SW
is invertible. Thus, T ∗W is surjective.

Conversely, let T ∗W be a well-defined, bounded and surjective. Then,
by Theorem 3.2, W is a CC ′-controlled Bessel fusion sequence for H.
So, TW (f) = {vi(C∗πWiC

′)
1
2 f}i∈I for all f ∈ H. Since T ∗W is surjective,

by Lemma 2.3, there exists the operator T ∗†W : H → K2,W such that

T †WTW = IH . Now, for each f ∈ H we have

‖f‖2 ≤ ‖T †W ‖
2.‖Twf‖2 = ‖T †W ‖

2.
∑
i∈I

v2i 〈πWiC
′f, πWiCf〉2.

Therefore, W is a CC ′-controlled fusion frame for H with the lower
controlled fusion frame bound ‖T †W ‖−2 and the upper controlled fusion
frame ‖T ∗W ‖2. �

Theorem 3.4. Let W be a C2-controlled fusion frame with frame bounds
A and B. If U ∈ B(H) is an invertible operator such that U∗C = CU∗,
then {(UWi, vi)}i∈I is a C2-controlled fusion frame for H.

Proof. Let f ∈ H and by Lemma 2.2, we have

‖πWiCU
∗f‖ = ‖πWiU

∗Cf‖ = ‖πWiU
∗πUWiC

∗f‖ ≤ ‖U‖‖πUWiCf‖.

Therefore,

A‖U∗f‖2 ≤
∑
i∈I
‖πWiCU

∗f‖2 ≤ ‖U‖2
∑
i∈I
‖πUWiCf‖.

But,

‖f‖2 ≤ ‖(U−1)∗U∗f‖2 ≤ ‖U−1‖2‖U∗f‖2.

Then,

A‖U−1‖−2‖U‖−2‖f‖2 ≤
∑
i∈I
‖πUWiCf‖.

On the other hand, from lemma 2.2, we obtain, with U−1 instead of T :

πUWi = πUWi(U
∗)−1πWiU

∗.



8 H. SHAKOORY et. al.

Thus,
‖πUWiCf‖ ≤ ‖U−1‖‖πWjU

∗Cf‖,
and it follows∑

i∈I
v2i ‖πUWiCf‖2 ≤ ‖U−1‖2

∑
i∈I

v2i ‖πWiU
∗Cf‖2

= ‖U−1‖2
∑
i∈I

v2i ‖πWiCU
∗f‖2

≤ B‖U−1‖2‖U‖2‖f‖2.

�

Theorem 3.5. Let W = {(Wi, vi)}i∈I be a C2-controlled fusion frame
with frame bounds A and B. If U ∈ B(H) is an invertible and unitary
operator such that UC = CU , then {(UWi, vi)}i∈I is a C2-controlled
fusion frame for H.

Proof. Using Lemma 2.2, we have for any f ∈ H,

A‖f‖2 ≤ ‖U‖2‖U−1f‖2

≤ ‖U‖2
∑
i∈I

v2i ‖πWiU
−1Cf‖2

≤ ‖U‖2
∑
i∈I

v2i ‖U−1πUWiCf‖2

≤ ‖U‖2‖U−1‖2
∑
i∈I

v2i ‖πUWiCf‖2,

and we obtain ∑
i∈I

v2i ‖πUWiCf‖2 ≥
A

‖U‖2‖U−1‖2
‖f‖2.

On the other hand, from Lemma 2.2, we obtain∑
i∈I

v2i ‖πUWiCf‖2 ≤ ‖U‖2
∑
i∈I

v2i ‖πWiU
−1Cf‖2

= ‖U‖2
∑
i∈I

v2i ‖πWiCU
−1f‖2

≤ B‖U−1‖2‖U‖2‖f‖2.

�
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Theorem 3.6. Let W := {(Wi, vi)}i∈I and Z := {(Zi, vi)}i∈I be two
CC ′-controlled fusion Bessel sequence for H with bounds B1 and B2,
respectively. Suppose that T ∗W and T ∗Z be their controlled synthesis op-
erators for W and Z. Let a bounded linear operator U : (

∑
⊕zi)`2 →

(
∑
⊕wi)`2 exist such that T ∗wUTz = IH . Then, both W and Z are CC ′-

controlled fusion frames for H.

Proof. For each f ∈ H, we have

‖f‖4 = |〈f, f〉|2

= |〈UTzf, Twf〉|2

≤ ‖U‖2 · ‖Tzf‖2 · ‖Twf‖2

= ‖U‖2 ·

(∑
i∈I
〈πzic′f, πzicd〉

)(∑
i∈I

v2i 〈πwic
′f, πwicf〉

)

≤ ‖U‖2 ·B2 · ‖f‖2 ·

(∑
i∈I

v2i 〈πwic
′f, πwicf〉

)
.

Thus,

‖U‖−2 ·B−12 ≤

(∑
i∈I

v2i 〈πwic
′f, πwicf〉

)
,

and W is a CC ′-controlled fusion frame for H. Similarly, Z is a CC ′-
controlled fusion frame with the lower bound ‖U‖−2 ·B−11 . �

Theorem 3.7. Let W = {(Wi, vi)}i∈I and Z = {(Zi, vi)}i∈I be CC ′-
Controlled Bessel fusion sequences for H with boundesB1 and B2. Sup-
pose that Tz be the analysis and T ∗w be synthesis operators for Z and
W . Let there exist 0 < ε < 1 and a bounded linear operators U :(∑

i∈I ⊕Zi

)
→
(∑

i∈I ⊕Wi

)
such that

‖f − T ∗wUTzf‖ ≤ ε‖f‖.

Then W and Z are CC ′−controlled fusion frames for H.

Proof. For each f ∈ H, we have

‖T ∗WUTZf‖ ≥ ‖f‖ − ‖f − T ∗WUTZf‖ ≥ (1− ε)‖f‖.
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Therefore

(1− ε)‖f‖ ≤ ‖T ∗WUTZf‖ = sup
‖g‖=1

|〈T ∗WUTZf, g〉|

= sup
‖g‖=1

|〈UTZf, TW g〉|

≤ sup
‖g‖=1

‖U‖ · ‖TZf‖ · ‖TW g‖

≤ ‖U‖ ·
√
B1(
∑
i∈I

v2i 〈πZiC
′f, πZiCf〉)

1
2 ,

where B1 is a controlled Bessel bound for W . Hence,

(1− ε)2

B
.‖f‖2 ≤ (

∑
i∈I

v2i 〈πZiC
′f, πZiCf〉).

Therefore, W is a CC ′-controlled fusion frame for H. Similarly, we can
show that Z is also a CC ′-Controlled fusion frame for H. �

4 Q−Dual and Perturbation on Controlled Fu-
sion Frames

In this section, we introduce the duality of CC ′-controlled fusion frames
and we characterize their fundamental properties. Finally, perturbation
of CC ′-controlled frames will be discussed.

Definition 4.1. Assume that W is a CC ′-controlled fusion frame for H.
We call a CC ′-controlled fusion Bessel sequence as W̃ := {(W̃i, zi)}i∈I
a Q-dual CC ′-controlled fusion frame of W , if there exists a bounded
linear operator Q : K

2,W̃
−→ K2,W such that

T ∗WQTW̃ = CC ′.

Theorem 4.2. Let W̃ be a Q-dual CC ′-controlled fusion frame for W
and Q : K2,W −→ K2,W̃

. Then, the following conditions are equivalent.

1. T ∗WQTW̃ = CC ′;
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2. T ∗
W̃
Q∗TW = C ′∗C∗;

3. 〈C ′f, C∗g〉 = 〈QT
W̃
f, TW g〉 = 〈T

W̃
f,Q∗TW g〉 for all f, g ∈ H.

Proof. Straightforward. �

Theorem 4.3. If W̃ = {(W̃i, zi)}i∈I is a Q-dual for W = {(Wi, vi)}i∈I ,

then W̃ is a CC ′-controlled fusion frame for H.

Proof. Let f ∈ H and by definition (4.1), W is a CC ′−controlled fusion
frame for H and we suppose that B is the upper bound of W . Therefore

‖f‖4 = |〈f, f〉|2

= |〈C ′f, C∗(C∗)−1(C ′∗)−1f〉|2

= |〈QT
W̃
f, TW (C∗)−1(C ′∗)−1f〉|

≤ ‖T
W̃
f‖2‖Q‖2‖TW ‖2‖C−1‖2‖C ′−1‖2‖f‖2

≤ ‖T
W̃
f‖2‖Q‖2B‖C−1‖2‖C ′−1‖2‖f‖2.

Hence,

B−1‖C−1‖−2‖C ′−1‖−2‖Q‖−2‖f‖2 ≤
∑
i∈I

z2i 〈πW̃i
C ′f, π

W̃i
Cf〉2,

and this completes the proof. �

Corollary 4.4. If Eop and Fop are the optimal bounds of W̃ , then

Eop ≥ B−1op ‖Q‖−2‖C−1‖−2‖C ′−1‖−2 and Fop ≥ A−1op ‖Q‖−2‖C−1‖−2‖C ′−1‖−2

where Aop and Bop are the optimal bounds of W , respectively.

Consider a C2-controlled fusion frame W = {(Wi, vi)}i∈I for H. Ap-
plying Lemma 2.1, there exists an operator X ∈ B(H,K2,W ) such that
T ∗WX = I. We denote the i-th component of Xf by Xif = (Xf)i
and clearly Xi ∈ B(H,C∗(Wi)). In the last result we note that these
operators construct some Q-dual for W .

Theorem 4.5. Let W := {(Wi, vi)}i∈I be a CC ′-controlled fusion frame,

and X be an operator such that T ∗WX = I. Suppose that W̃ := {(W̃i, vi)}i∈I ,

where W̃i = C∗X∗i C
∗(Wi), is a CC ′-controlled fusion Bessel sequence.

Then W̃ is a Q-dual CC ′-controlled fusion frame for W .
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Proof. Define the mapping

U0 : R(T
W̃

)→ K2,W ,

U0(TW̃ f) = XCC ′f.

Then U0 is well-defined and bounded. Indeed, if T
W̃
f1 = T

W̃
f2, so

C∗π
W̃i
C ′(f1 − f2) = 0,

for any i ∈ I. Therefore,

C ′(f1 − f2) ∈ (W̃i)
⊥ = R(C∗X∗i )⊥ = ker(XiC),

and hence XCC ′(f1 − f2) = 0. Moreover,

‖U0{C∗πW̃i
C ′)

1
2 f}‖2 = ‖XCC ′f‖2

=
∑
i∈I
‖πC∗WiXiCC

′f‖2

=
∑
i∈I
‖πC∗WiXiCπC∗X∗

i C
∗WiC

′f‖2

≤ ‖X‖2
∑
i∈I
‖π

W̃i
C ′f‖2 · ‖C‖2

= ‖X‖2
∑
i∈I
‖C∗−1C∗π

W̃i
C ′f‖2 · ‖C‖2

≤ ‖X‖2‖C−1‖2
∑
i∈I
‖(C∗π

W̃
C ′)

1
2 (C∗π

W̃
C ′)

1
2 f‖2 · ‖C‖2

≤ ‖X‖2‖C−1‖2‖‖C‖‖C ′‖
∑
i∈I
‖(C∗π

W̃i
C)

1
2 f‖2 · ‖C‖2

= ‖X‖2‖C−1‖2‖‖C‖‖C ′‖‖{C∗π
W̃i
C ′)

1
2 f}‖2 · ‖C‖2.

Assume that,

U =

{
U0, on R(T

W̃
),

0, on R(T
W̃

)
⊥
.

Hence, U is well-defined and bounded. If we ler Q = U , then we have
Q ∈ B(K

2,W̃
,K2,W ) and

T ∗WQTW̃ = T ∗WXCC
′ = CC ′.

�
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Example 4.6. LetH = R3 with the standard orthonormal basis {e1, e2, e3}.
We define

W1 = span{e1, e2}, W2 = span{e2, e3}, W3 = span{e3},

and

C(x1, x2, x3) = (ax1, bx2, cx3), C ′(x1, x2, x3) = (αx1, βx2, γx3),

where a, b, c, α, β, γ > 0. It is easy to check that C,C ′ ∈ GL+(R3) and
also W := {(Wi, 1)}i=1,2,3 is a CC ′-controlled fusion frame with bounds

min{aα, 2bβ, 2cγ}, max{aα, 2bβ, 2cγ}.

It is obvious that

K2,W = {(
√
aαx1,

√
bβx2, 0), (0,

√
bβx2,

√
cγx3), (0, 0,

√
cγx3), (x1, x2, x3) ∈ R3}.

Hence, we can get

Xf = {(x1,
√

2

2
x2, 0), (0,

√
2

2
x2,

√
2

2
x3), (0, 0,

√
2

2
x3)},

for each f = (x1, x2, x3) ∈ R3 and it is clear that all of Xi are adjoint.
Now, by Theorem 4.5, if we define

W̃1 = {a2e1,
√

2

2
b2e2}, W̃2 = {

√
2

2
b2e2,

√
2

2
c2e3}, W̃1 = {

√
2

2
c2e3},

then, W̃ := {(W̃i, 1)}i=1,2,3 is a Q-dual CC ′-controlled fusion frame for

W . We notice that W̃ is a CC ′-controlled fusion frame with bounds

min{a5α,
√

2b5β,
√

2c5γ}, max{a5α,
√

2b5β,
√

2c5γ}.

Perturbation of frames have been discussed by Cazassa and Chris-
tensen in [4]. In this part, we aim to present it for controlled fusion
frames.

Definition 4.7. Let W := {(Wi, vi)}i∈I and Z := {(Zi, vi)}i∈I be CC ′-
controlled fusion frame for H where C,C ′ ∈ GL(H) and 0 ≤ λ1, λ2 < 1
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be real numbers. Suppose that β := {ci}i∈I ∈ `2(I) is a positive sequence
of real numbers. If

‖vi(C∗πWi
C ′ − C∗πZi

C ′)
1
2 f‖2 ≤ λ1‖vi(C∗πWi

C ′)
1
2 f‖2 + λ2‖vi(C∗πZi

C ′)
1
2 f‖2+

+ ‖β‖2‖f‖,

then, we say that Z := {(Zi, vi)}i∈I is a (λ1, λ2, β, C,C
′)-perturbation

of W = {(Wi, vi)}i∈I .

Theorem 4.8. Let W := {(Wi, vi)}i∈I be a CC ′-controlled fusion frame
for H with frame bounds A,B, and Z := {(Zi, vi)}i∈I be a (λ1, λ2, β, C,C

′)-
perturbation of W := {(Wi, vi)}i∈I . Then Z := {(Zi, vi)}i∈I is a CC ′-
controlled fusion frame for H with bounds:

(
(1− λ1)

√
A− ‖β‖2

1 + λ2
)2 , (

(1 + λ1)
√
B + ‖β‖2

1− λ2
)2

Proof. Let f ∈ H. We have

‖vi(C∗πZi
C ′)

1
2 f‖2 = ‖vi(C∗πZi

C ′ − C∗πWi
C ′)

1
2 f + vi(C

∗πWi
C ′)

1
2 f‖2

≤ ‖vi(C∗πZi
C ′ − C∗πWi

C ′)
1
2 f‖2 + ‖vi(C∗πWi

C ′)
1
2 f‖2

≤ λ1‖vi(C∗πWi
C ′)

1
2 f‖2 + λ2‖vi(C∗πZi

C ′)
1
2 f‖2+

+ ‖β‖2‖f‖+ ‖vi(C∗πWi
C ′)

1
2 f‖2.

Hence,

(1− λ2)‖(vi(C∗πZiC
′)

1
2 f‖2 ≤ (1 + λ1)‖vi(C∗πWiC

′)
1
2 f‖2 + ‖β‖2‖f‖.

Since W is a CC ′-controlled fusion frame with bounds A and B, then

‖vi(C∗πWiC
′)

1
2 f‖2 =

∑
i∈I

v2i 〈πWiC
′f, πWiCf〉 ≤ B‖f‖2.

So,

‖vi(C∗πZiC
′)

1
2 f‖2 ≤

(1 + λ1)‖vi(C∗πWiC
′)

1
2 f‖2 + ‖β‖2‖f‖

1− λ2

≤ (
(1 + λ1)

√
B + ‖β‖2

1− λ2
‖f‖).
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Thus∑
i∈I

v2i 〈πZi
C ′f, πZi

Cf〉 = ‖vi(C∗πZi
C ′)

1
2 f‖22 ≤ (

(1 + λ1)
√
B + ‖β‖2

1− λ2
‖f‖)2.

Now, for the lower bound, we have

‖vi(C∗πZi
C ′)

1
2 f‖2 = ‖vi(C∗πWi

C ′)
1
2 f − vi(C∗πWi

C ′ − C∗πZi
C ′)

1
2 f‖2

≥ ‖vi(C∗πWiC
′)

1
2 f‖2 − ‖vi(C∗πZiC

′ − C∗πZiC
′)

1
2 f‖2

≥ ‖vi(C∗πWi
C ′)

1
2 f‖2 − λ1‖vi(C∗πWi

C ′)
1
2 f‖2

− λ2‖vi(C∗πZiC
′)

1
2 f‖2 − ‖β‖2‖f‖.

Therefore,

(1 + λ2)‖vi(C∗πZiC
′)

1
2 f‖2 ≥ (1− λ1)‖vi(C∗πWiC

′)
1
2 f‖2 − ‖β‖2‖f‖,

or

‖vi(C∗πZiC
′)

1
2 f‖2 ≥

(1− λ1)‖vi(C∗πWiC
′)f‖2 − ‖β‖2‖f‖

1 + λ2
.

Thus, we get

‖vi(C∗πWiC
′)

1
2 f‖2 =

∑
i∈I

v2i 〈πWiC
′f, πWiCf〉 ≥ A‖f‖2.

So,

‖vi(C∗πZiC
′)

1
2 f‖2 ≥ (

(1− λ1)
√
A− ‖β‖2

1 + λ2
‖f‖).

Thus, ∑
i∈I

v2i 〈πZiC
′f, πZiCf〉 = ‖vi(C∗πZiC

′)
1
2 f‖22

≥ (
(1− λ1)

√
A− ‖β‖2

1 + λ2
‖f‖)2

and the proof is completed. �
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Theorem 4.9. Let W be a CC ′-controlled fusion frame with bounds
A,B for H. Also, let Z := {Zi}i∈I be a family of closed subspaces in H
and

‖vi(C∗πWiC
′ − C∗πZiC

′)
1
2 f‖ ≤ ε‖f‖,

for some 0 < ε <
√
A. Then Z := {(Zi, vi)}i∈I is a CC ′-controlled

fusion frame with bounds (A− ε2) and (B + ε2).

Proof. For every f ∈ H, we can write

‖vi(C∗πZiC
′)

1
2 f‖2 ≤ ‖vi(C∗πWiC

′)
1
2 f‖2 + ‖vi(C∗πWiC

′ − C∗πZiC
′)

1
2 f‖2

≤ (B + ε2)‖f‖2

Thus,∑
i∈I

v2i 〈πZiC
′f, πZiCf〉 = ‖vi(C∗πZiC

′)
1
2 f‖2 ≤ (B + ε2)‖f‖2.

Therefore, Z := {(Zi, zi)}i∈I is a Controlled Bessel fusion sequence. On
the other hand

‖vi(C∗πZiC
′)

1
2 f‖2 ≥ ‖vi(C∗πWiC

′)
1
2 f‖2 − ‖vi(C∗πWiC

′ − C∗πZiC
′)

1
2 f‖2

≥ (A− ε2)‖f‖2.

Hence,∑
i∈I

v2i 〈πZiC
′f, πZiCf〉 = ‖vi(C∗πZiC

′)
1
2 f‖2 ≥ (A− ε2)‖f‖2

and the proof is completed. �
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