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Abstract. In this paper, we introduce the notion of generalized pseu-
dolinearity for nondifferentiable and nonconvex but locally Lipschitz
functions defined on a Banach space. We present some characteriza-
tions of generalized pseudolinear functions. The characterizations of
the solution set of a convex and nondifferentiable but generalized pseu-
dolinear program are obtained. The results of this paper extend various
results for pseudolinear functions, pseudoinvex functions and pseudo-
linear functions, and also for pseudoinvex programs, pseudolinear pro-
grams and pseudolinear programs.
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1. Introduction

A vector ξ ∈ X∗ is said to be a proximal subgradient of f at x ∈ K, if
(ξ,−1) ∈ NP

epif (x, f(x)), where epif = {(x, α) : α > f(x)}. The set of
all proximal subgradient vectors of f at x is denoted by ∂P f(x). A vector
ξ ∈ X∗ is a limiting subdifferential vector of f at x ∈ K, if there exist two
sequences ξi ∈ X∗ and xi ∈ X such that ξi ∈ ∂P f(xi), ξi → ξ, xi → x

and f(xi) → f(x). The set of all limiting subdifferential vectors of f at
x is denoted by ∂Lf(x). The notion of the limiting subdifferential was
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first introduced, in the equivalent form, in [10]. One of the classes of
functions whose set of limiting subdifferentials is nonempty is the class of
locally Lipschitz functions. Considering this class, the following results
are obtained and known in nonsmooth analysis (see [3,6,7]).

2. Preliminaries

Definition 2.1. A Banach space X is an Asplund, or it has the Asplund
property, if every convex continuous function ϕ : U → R defined on an
open convex subset U of X is Fréchet differentiable on a dense subset
of U.

Remark 2.2. One of the most popular Asplund spaces is any reflexive
Banach space [6].

Theorem 2.3. [6] Let X be a Asplund space and ϕ : U → R proper and
lower semicontinuous around x̄ ∈ domϕ, then

∂Lϕ(x̄) = lim sup
x→x̄

∂F ϕ(x).

It is well known that

∂F f(x) ⊆ ∂Lf(x) ⊆ ∂Cf(x) ⊆ ∂CRf(x).

Theorem 2.4. Let f be locally Lipschitz at x ∈ K, then ∂Lf(x) is
closed. In fact, if xi → x, ξi ∈ ∂Lf(xi), and ξi → ξ, then ξ ∈ ∂Lf(x).

Theorem 2.5. f is locally Lipschitz, then the set of all limiting subdif-
ferential vectors of f is uniformly bounded.

Theorem 2.6.([7]) Let f be locally Lipschitz on an open set containing
[x, y]. Then

f(y)− f(x) 6 〈x∗, y − x〉

for some c ∈ [x, y), x∗ ∈ ∂Lf(c).

Throughout this paper, we suppose that K ⊆ X be a nonempty set and
f : K → R be a function.
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3. Characterization of Pseudolinear Functions

Definition 3.1. The function f is said to be pseudoconvex if, for each
x, y ∈ K with 〈ξ, y − x〉 > 0 for some ξ ∈ ∂Lf(x), we have f(y) > f(x).

Definition 3.2. The function f is said to be quasiinvex with respect to
η if for each x, y ∈ K and each t ∈ [0, 1], we have f(x + t(y − x)) 6
max(f(x), f(y)). The function f is said to be strictly quasiinvex with re-
spect to η if for each x, y ∈ K and each t ∈ [0, 1], with f(x) 6= f(y) we
have f(x + t(y − x)) < max(f(x), f(y)).

A function f is said to be pseudoconcave on K if −f is pseudoconvex.

Definition 3.3. Let K be convex set. A function f is said to be pseu-
dolinear If f is both pseudoconvex and pseudoconcave on K.

Example 3.4. Let X = R, K = (−1, 1) and f : X → R be defined as

f(x) :=
{

0 if x < 0;√
x if x > 0.

The limiting subdifferential mapping of f is

∂Lf(x) =


1

2
√

x
if x > 0;

[0,∞) if x = 0;
0 if x < 0.

Then we can see easily that the continuous (not locally Lipschitz) func-
tion f is pseudoconvex and quasiconvex.

Theorem 3.5. Let X be an Asplund space and f be locally Lipschitz
on K ⊂ X, an open convex set. If the function f is a pseudolinear.
Then for all x, y ∈ K, f(x) = f(y) if and only if there exists ξ ∈ ∂Lf(x),
such that 〈ξ, y − x〉 = 0.

Proof. Suppose that there exists ξ ∈ ∂Lf(x), such that 〈ξ, y − x〉 = 0.

By the definition pseudoconvex function, we have:

〈ξ, y − x〉 6 0 ⇒ f(y) 6 f(x). (1)
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From the definition of pseudoincave function, we get

〈ξ, y − x〉 > 0 ⇒ f(y) > f(x). (2)

Then, from (1) and (2), we obtain

〈ξ, y − x〉 = 0 ⇒ f(x) = f(y).

Conversely, For any x, y ∈ K, suppose that f(x) = f(y). We need to
prove that there exists ζ ∈ ∂Lf(y), such that 〈ζ, x − y)〉 = 0. We first
show that for any t ∈ (0, 1),

f(y + t(x− y)) = f(y). (3)

If f(y + t(x − y)) > f(y), by the pseudoconvexity of f, for any ζ ∈
∂Lf(y + t(x− y)), we have

〈ζ,−t(x− y)〉 < 0.

Therefore,
〈ζ, (1− t)(x− y)) > 0.

By the pseudoconvexity of f, we have f(x) > f(y + t(x − y)) which
contradicts to f(y + t(x− y)) > f(y) = f(x).
Similarly, we can get that f(y+t(x−y)) < f(y) leads to a contradiction.
From (3), for any t ∈ (0, 1),

f(y + t(x− y))− f(y) = 0.

By assumption of the theorem, f is Lipschitz on open set K containing
[y, y + t(x − y)] and hence there exists x(t) ∈ [y, y + t(x − y)] and ζt ∈
f(x(t)) by Theorem 2.4, such that

0 = f(y + t(x− y))− f(y) 6 〈ζt, t(x− y)〉 (4)

and hence for ζt ∈ ∂Lf(x(t)) we have

〈ζt, t(x− y)〉 > 0,
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Therefore

〈ζt, x− y〉 > 0.

Since ∂Lf is locally bounded at y, hence, there exists a neighborhood of
y and a constant k > 0 such that for each z in this neighborhood and
ξ ∈ ∂Lf(z) we have ‖ξ‖ 6 k. Since x(t) → y when t → 0+, thus for t > 0
small enough ‖ζt‖ 6 k. Without loss of generality, we may assume that
ζt → ζ in w*-topology. Since the set-valued mapping z 7→ ∂Lf(z) has a
closed graph, thus for each x ∈ K there exists ζ ∈ ∂Lf(y) such that

〈ζ, x− y〉 > 0. (5)

Since −ζt ∈ ∂L(−f)(x(t)), from (4) and Theorem 2.4, for (−f), we have

0 = (−f)(y + t(x− y)− (−f)(y) 6 〈−ζt, t(x− y)〉

and then for for some ζt ∈ ∂Lf(x(t)) we have

〈−ζt, t(x− y)〉 > 0,

that is

〈ζ, (x− y)〉 6 0. (6)

Hence, by (5) and (6), we obtain 〈ζ, x− y〉 = 0. �

Remark 3.6. Obviously, Theorem 3.5, is a generalization of Proposi-
tion 1 in [1].

Example 3.7. Consider K = (−1, 1) ⊆ R. It is clear that K is convex
set. Let f : K → R be a function defined by

f(x) :=
{

0 if x ∈ (−1, 0],
(−1/2)x if x ∈ (0, 1).

Then f is locally Lipschitz with constant 1. Then, we claim that for all
x, y ∈ K, we have f(x) = f(y) if and only if there exists ξ ∈ ∂Lf(x)
such that 〈ξ, x− y〉 = 0.

∂Lf(0) = {−1/2, 0}
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if x = 0 and y ∈ (0, 1), thus for each ξ ∈ ∂Lf(0) we have

〈ξ, y〉 ∈ [−1/2, 0]

but f(y) < f(0), therefore f is not pseudoconvex and so f is not psedo-
linear.

Theorem 3.8. Let K be an open convex set. Then f is η−pseudolinear
on K if and only if there exists a function p : K ×K → R+such that for
all x, y ∈ K, there exists ξ ∈ ∂Lf(x), such that

f(y) = f(x) + p(x, y)〈ξ, y − x〉. (7)

Proof. Let f be pseudolinear. We have to construct a function p :
K ×K → R+ such that for all x, y ∈ K, for some ξ ∈ ∂Lf(x),

f(x) = f(y) + p(x, y)〈ξ, y − x〉.
If 〈ξ, y − x〉 = 0 for any x, y ∈ K and for some ξ ∈ ∂Lf(x) we define
p(x, y) = 1. By Theorem 3.5, we have f(y) = f(x), thus (3.7) holds.
If 〈ξ, y − x〉 6= 0 for any x, y ∈ K for some ξ ∈ ∂Lf(x), we define

p(x; y) =
f(y)− f(x)
〈ξ, y − x〉

. (8)

Then we have to show that p(x, y) > 0. If f(y) > f(x), then by the
pseudoconvexity of -f, we have 〈ξ, y−x〉 > 0 for some ξ ∈ ∂Lf(x). From
(8), we get p(x, y) > 0. Similarly, if f(y) < f(x), we can get p(x, y) > 0
by using pseudoconvexity of f.

Conversely, suppose that for any x, y ∈ K, there exist a function p : K×
K → R+ such that (7) holds for all x, y ∈ K and for some ξ ∈ ∂Lf(x).
If 〈ξ, y − x〉 > 0, then from (7), we have

f(y)− f(x) = p(x, y)〈ξ, y − x〉 > 0.

Hence f is pseudoconvex. Likewise, if 〈ξ, y − x〉 6 0, we can prove that
f is pseudoconcave. Hence, f is pseudolinear. �

Remark 3.9. It is clear that Theorem 3.8, is a generalization of Propo-
sition 2 in [1].
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Lemma 3.10. Let K be convex set. f is locally Lipschitz and pseudo-
convex. Then f is quasiconvex on K.

Proof. Suppose that f is pseudoconvex. Assume that f is not quasicon-
vex. Then, there exist x, y ∈ K such that f(x) 6 f(y) and a t0 ∈ (0, 1),
such that

f(x) 6 f(y) < f(x0). (9)

where x0 = y + t0(x − y). Let ϕ(t) = f(y + t(x − y)). Since f is lo-
cally Lipschitz function,ϕ(t) is continuous function. It follows that ϕ(t)
attains its maximum. From (9) and x0 = y + t0(x − y) ∈ K, we have
ϕ(0) = f(y) < f(x0). So t = 0 is not a maximum point. By (9), we
have f(x) = ϕ(1) 6 max{f(x), f(y)} = f(y) < f(x0) which leads to
t = 1 is not a maximum point. Hence, there exits t∗ ∈ (0, 1) such that
f(y∗) = maxt∈[0,1] f(y + t(x − y)), where y∗ = y + t∗(x − y). Thus, we
have 0 ∈ ∂Lf(y∗). Now ξ = 0, we can obtain that 〈ξ, x− y∗〉 = 0. Since
f is pseudoconvex, we obtain f(x) > f(y∗) which contradicts (9). The
proof is complete. �

Remark 3.11. It is clear that Lemma 3.10, is a generalization of
Lemma 4.1, in [12].

Theorem 3.12. Let K be convex. If f is pseudolinear. Then for any
x, y ∈ K, there exists ζ ∈ ∂Lf(y), such that

〈ζ, x− y〉 = 0 ⇒ f(zt) = f(y) = f(x),

where zt = y + t(x− y), t ∈ [0, 1].

Proof. For any x, y ∈ K and t ∈ [0, 1], let zt = y + t(x − y). Suppose
that there exists ζ ∈ ∂Lf(y), such that

〈ζ, η(x, y)〉 = 0. (10)

Since f is pseudoconvex, we have

f(x) > f(y). (11)
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By the quasiconvexity of f and Lemma 3.10, we get

f(zt) 6 max{f(x), f(y)} = f(x). (12)

Since −f is pseudoconvex and from (10), we have

f(x) 6 f(y). (13)

Again by the quasiconvexity of −f and Lemma 3.10, we get

f(zt) > min{f(x), f(y)} = f(x). (14)

From (12) and (14), we can get f(zt) = f(x). From (13) and (14), we
can obtain f(y) = f(x). The proof is completed. �

Remark 3.13. It is clear that Theorem 3.12, is a generalization of
Theorem 3.3, in [13].

4. Characterizations of the Solution Sets of Op-
timization Problems

Consider the following optimization problem:

(V OP ) min f(x) subject to x ∈ K,

where K ⊆ X is a nonempty convex set and f : K → R. Throughout
this section, we assume that the solution set

S = arg minx∈Kf(x)

of the (VOP) is nonempty.

Proposition 4.1. The solution set S of (OP) is convex with respect to
if f : K → R is locally Lipschitz and pseudolinear.

Proof. Suppose that x1, x2 ∈ S. Then f(x1) 6 f(y) and f(x2) 6 f(y)
for all y ∈ K. By pseudolinearity of f for some ξ1 ∈ ∂Lf(x1),〈ξ1, x2 −
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x1〉 = 0. Since 〈ξ1, x1 − x2〉 = 0, and so, −t〈ξ1, x1 − x2〉 = 0 for all
t ∈ [0, 1]. Therefore, we get

〈ξ1, t(x2 − x1)〉 = −t〈ξ1, x1 − x2〉 = 0.

Since f is pseudolinear, by Theorem 3.12, f(x1 + t(x2 − x1)) = f(x1),
and therefore, x1 + t(x2 − x1) is also a solution of (VOP), and thus, the
solution set of optimization problem is convex. �
We give some characterizations of the solution set of a pseudoconvex
program in terms of any of its solutions.

Theorem 4.2. Suppose K is an convex set. Let f : X → R be a non-
differentiable, locally Locally Lipschitz pseudolinear and x̄ ∈ S. Then
S = S1 = S2, where

S1 = {x ∈ K : 〈ξ, x̄− x〉 = 0 for some ξ ∈ ∂Lf(x)}

S2 = {x ∈ K : 〈ξ, x̄− x〉 > 0 for some ζ ∈ ∂Lf(x̄)}.

Proof. The point x ∈ S if and only if f(x) = f(x̄). Then from Theorem
3.1, we have f(x) = f(x̄) if and only if 〈ξ, x̄ − x〉 = 0 for some ξ ∈
∂Lf(x). Also, f(x̄) = f(x) if and only if 〈ζ, x − x̄〉 = 0 for some ζ ∈
∂Lf(x̄). The latter is equivalent to 〈ζ, x̄− x〉 = 0 for some ζ ∈ ∂Lf(x̄).
�

Corollary 4.3. Let K, f be the same as in Theorem 4.2 and let x̄ ∈ S.
Then S = S3 = S4, where

S3 = {x ∈ K : 〈ξ, x̄− x〉 > 0 for some ξ ∈ ∂Lf(x)}

S4 = {x ∈ K : 〈ζ, x̄− x〉 > 0 for some ζ ∈ ∂Lf(x̄)} .

Proof. It is clear from Theorem 4.2 that S ⊂ S3. We prove that S3 ⊂ S.
Assume that x ∈ S3, that is, x ∈ K such that 〈ξ, x̄ − x〉 > 0 for some
ξ ∈ ∂Lf(x). In view of Theorem 3.8, there exists a real-valued function
p defined on K ×K such that p(x, y) > 0 and

f(x̄) = f(x) + p(x, x̄)〈ξ, x̄− x〉 > f(x).
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This implies that x ∈ S, and hence, S3 ⊂ S. Similarly, we can prove
that S = S4. �

Remark 4.4. Corollary 4.3, improves and generalizes Theorem 1, in
[5] and Theorem 3.1, in [11] and [4].

Theorem 4.5. Let K ⊆ X be an convex set. Let f be nondifferentiable
and locally Lipschitz on K. If f : K → R is pseudolinear and x̄ ∈ S,
then S = S5 = S7, where

S5 = {x ∈ K : 〈ζ, x− x̄〉 = 〈ξ, x̄− x〉 for some ξ ∈ ∂Lf(x), ζ ∈ ∂Lf(x̄)} , (15)

S7 = {x ∈ K : 〈ζ, x− x̄〉 6 〈ξ, x̄− x〉 for some ξ ∈ ∂Lf(x), ζ ∈ ∂Lf(x̄)} . (16)

Proof. Let x ∈ S. Then by Theorem 4.2, for some ξ ∈ ∂Lf(x) and
some ζ ∈ ∂Lf(x̄),

〈ξ, x̄− x〉 = 0 = 〈ζ, x̄− x〉. (17)

Since we have

〈ξ, x− x̄〉 = 0 = 〈ζ, x̄− x〉. (18)

Thus x ∈ S5, and hence, S ⊂ S5. S5 ⊂ S6 is obvious.
We now prove that S6 ⊂ S. Assume that x ∈ S6. Then for some
ξ ∈ ∂Lf(x) and some ζ ∈ ∂Lf(x̄),

〈ζ, x̄− x〉 > 〈ξ, (x− x̄〉. (19)

Suppose that x 6∈ S. Then f(x̄) < f(x). By the pseudoconcavity of f ,
we have

〈ζ, x− x̄〉 > 0.

It follows that
〈ζ, x̄− x〉 < 0.

By using (19), we have

〈ξ, x− x̄〉 < 0 or 〈ξ, x̄− x〉 > 0.
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By Theorem 3.8, there exists exists a function p defined on K ×K such
that p(x, x̄) > 0 and for some ξ0 ∈ ∂Lf(x),

f(x̄) = f(x) + p(x, x̄)〈ξ0, x̄− x〉 > f(x),

which contradict with of the fact that f(x̄) < f(x). Hence x ∈ S. �

Theorem 4.6. Let K be an open convex set. If f is pseudolinear on K
and x̄ ∈ S. Then there exist ξ ∈ ∂Lf(x), ζ ∈ ∂Lf(x̄), ξt ∈ ∂Lf(zt), where
zt = x + t(x̄− x), t ∈ [0, 1],

S1 = {x ∈ K : 〈ξ, x̄− x〉 = 0},

S2 = {x ∈ K : 〈ζ, (x− x̄〉 = 0},

S3 = {x ∈ K : 〈ξt, x̄− x〉 = 0},

such that S = S1 = S2 = S3.

Proof. x ∈ S if and only if f(x) = f(x̄). From Theorem 3.5, we have
x ∈ S if and only if there exists ξ ∈ ∂Lf(x), such that 〈ξ, x̄− x〉 = 0.

Then, we have S = S1. Next, we prove that S1 = S2. For any
x ∈ S1, there exists ξ ∈ ∂Lf(x) such that 〈ξ, x̄ − x〉 = 0. By Theorem
3.5, we can obtain f(x) = f(x̄). Again by Theorem 3.5, there exists
ζ ∈ ∂Lf(x̄) such that 〈ζ, x − x̄〉 = 0. Thus, x ∈ S2 and S1 ⊂ S2. By
the similar method we have S2 ⊂ S1. Hence S1 = S2. Now, we prove
that S = S3. For any x ∈ S, f(x) = f(x̄), by Theorem 3.5, we can
get ξ ∈ ∂Lf(x) such that 〈ξ, x̄ − x〉 = 0. By Theorem 3.12, for any
t ∈ (0, 1], zt = x + t(x̄ − x), f(zt) = f(x). By Theorem 3.5, there exists
ξt ∈ ∂Lf(zt) such that

〈ξt, x̄− x〉 = 0. (20)

We have

x− zt = −t(x̄− x). (21)

From (20) and (21), 〈ξt, x̄− x〉 = 0. Thus, x ∈ S3 i.e., S ⊂ S3.

Let x ∈ S3, then for any t ∈ (0; 1], zt = x + t(x̄ − x), there exists
ξt ∈ ∂Lf(zt) such that
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〈ξt, x̄− x〉 = 0. (22)

From (21) and (22), we can obtain that

〈ξt, x− zt〉 = 0. (23)

From (23) and Theorem 3.12, we have f(x) = f(zt). By Theorem 3.5, it
follows that there exists ξ ∈ ∂Lf(x), such that

〈ξ, zt − x〉 = 0. (24)

Since

zt − x = t(x̄− x). (25)

From (24) and (25), it follows that 〈ξ, x̄−x〉 = 0. Therefore, by Theorem
3.5, we have f(x) = f(x̄) and S3 ⊂ S. The proof is completed. �

Remark 4.7. Theorem 4.5, extends Theorem 2 [1], to nondifferentiable
and generalized pesudolinear functions. Hence Theorems 4.2 and 4.5,
extend the results of Jeyakumar and Yang [4].

Theorem 4.8. Let K be an open convex set. If f is pseudolinear on
K and x̄ ∈ S. Then, there exist ξ ∈ ∂Lf(x), ζ ∈ ∂Lf(x̄), ξt ∈ ∂Lf(zt),
where zt = x + t(x̄− x), t ∈ [0, 1],

S4 = {x ∈ K : 〈ξ, x̄− x〉 > 0},

S5 = {x ∈ K : 〈ζ, x− x̄〉 > 0},

S6 = {x ∈ K : 〈ξt, x̄− x)〉 > 0},

such that S = S4 = S5 = S6.

The proof can obtain by some modifications from the proof of Theorem
4.6, hence it is omitted.

Remark 4.9. Theorem 4.5, improves Corollary 3.1, in [4] and Corol-
lary 4.2, in [13].
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Theorem 4.10. Let K be an open convex set on K. If f is pseudolinear
on K and x̄ ∈ S. Then S = S7 = S8, where

S7 = {x ∈ K : ∃ξ ∈ ∂Lf(x), ζ ∈ ∂Lf(y), 〈ξ, x̄− x〉 = 〈ζ, x− y〉},

S8 = {x ∈ K : ∃ξ ∈ ∂Lf(x), ζ ∈ ∂Lf(x̄), 〈ξ, x̄− x〉 > 〈ζ, x− x̄〉}.

Proof. For any x ∈ S, f(x) = f(x̄). By Theorem 3.5, there exist ξ ∈
∂Lf(x), ζ ∈ ∂Lf(y) such that

〈ξ, x̄− x〉 = 0 (26)

〈ζ, x− x̄〉 = 0. (27)

It implies x ∈ S7 and S ⊂ S7.

S7 ⊂ S8 is obvious.

Now, we prove that S8 ⊂ S. For any x ∈ S8, there exist ξ ∈ ∂Lf(x) and
ζ ∈ ∂Lf(x̄) such that

〈ξ, x̄− x〉 > 〈ζ, x− x̄〉 (28)

Suppose that x 6∈ S, we get that f(x̄) < f(x). By the pseudoconvexity
of −f, we have

〈ζ, x− x̄〉 > 0. (29)

From (28) and (29), it follows that

〈ξ, x̄− x〉 > 0. (30)

By Theorem 3.8, there exists ξ0 ∈ ∂Lf(x), such that

f(x̄) = f(x) + p(y, x)〈ξ0, x̄− x〉 < f(x).

Therefore,

〈ξ0, x̄− x〉 < 0. (31)
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From (30) and (31), we can get that there exists ξ00 ∈ ∂Lf(x), such that
〈ξ00, x̄ − x〉 = 0. Again by Theorem 3.5, it follows that f(x) = f(x̄),
which is a contradiction. �

Remark 4.11. Theorem 4.6, generalizes Theorem 3.2, in [4] and The-
orem 4.3, in [13].
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