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1 Introduction

Algebra and topology in mathematics sometimes play complementary
roles to each other. By studying some topological concepts through alge-
braic methods and also by applying some topological notions in algebra,
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the delicacy of these branches of mathematics becomes more evident.
Therefore, the study of algebraic logics as algebraic structures, through
topological concepts, has been considered by mathematical researchers.
BL-algebras have been introduced by Hájek [7] in order to investigate
many valued logic by algebraic way. He provided an algebraic coun-
terpart of a propositional logic, called Basic Logic, which typifies a
portion common to some of the most important many-valued logics,
namely,  Lukasiewicz logic, Gödel logic and Product logic. This Basic
Logic (BL for short) is proposed as the most general many-valued logics
with truth values in [0,1] and BL-algebras which are the correspond-
ing to Lindenbaum-Tarski algebras. Also, Hájek presented an algebraic
mean for the study of continuous t-norms (or triangular norms) on the
unit real interval [0,1]. Apart from their logical interest, BL-algebras
have important algebraic and topological properties and they have been
intensively studied from an algebraic point of view.

In 1958, C. C. Chang defined MV -algebras [4] as the algebraic coun-
terpart of ℵ0-valued  Lukasiewicz logic, which allowed him to give another
completeness proof for this logic. In fact, MV -algebras are BL-algebras
but, the converse is not true. Proved by Höhle [8], a BL-algebra A be-
comes an MV -algebra if, we adjoin to the axioms the double negation
law, i.e., x = x−−, for every x ∈ A. Thus, a BL-algebra is in some
intuitive way, a non-double negation MV -algebra. Hence the theory of
MV -algebras, becomes one of the guiding to the development of the
theory of BL-algebras.

Several authors have claimed that in BL-algebras, the notions of
ideals are less studied than filters, because in these algebras, there is
no appropriate algebraic addition. Therefore, the study of topological
BL-algebras has been done mostly through its filters.

Najafi and Kohestani [10], introduced the notions of the quasi and
para topological MV -algebras. We generalize these concepts through
ideals to BL-algebras. This paper is organized as follows:

In Section 2, we recall some basic concepts on BL-algebra, topo-
logical spaces and topological BL-algebras. In Section 3, we define the
notions of para and quasi-topological BL-algebra and derive some the-
orems and relations between them.
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2 Preliminaries

In this section, we recall and summarize some definitions and proposi-
tions about topology and BL-algebras, which will be used in the follow-
ing.
Definition 2.1. [7] A BL-algebra is a nonempty set A with four binary
operations ∧, ∨, �, → and two constants 0, 1, such that:
BL1: (A,∧,∨, 0, 1) is a bounded lattice;
BL2: (A,�, 1) is a commutative monoid;
BL3: x� y ≤ z iff x ≤ y → z;
BL4: x ∧ y = x� (x→ y);
BL5: (x→ y) ∨ (y → x) = 1.

The main examples of BL-algebras are from the unit interval [0, 1]
endowed with the structure induced by continuous t-norms. Every BL-
algebra has the negation operation defined by x− = x→ 0.
A BL-algebra satisfying the double negation law is called an MV -
algebra, that is x−− = x. Therefore, if A is a BL-algebra, then the
set MV (A) = {x ∈ A | x−− = x} = {x− | x ∈ A} is an MV -algebra.

Definition 2.2. [3] A set A with a family PA of its subsets is called a
topological space, denoted by (A,PA), if the following conditions hold:
(i) A, ∅ ∈ PA;
(ii) The intersection of any finite number of the members of PA is in PA;
(iii) The arbitrary union of members of PA is in PA.

The members of PA are called open sets of A, and the complement
of an open set U , i.e., A− U is a closed set. If B is a subset of A then
the biggest open set contained in B, i.e., B◦ is called the interior of B [3].

Definition 2.3. [3] Let (A,PA) be a topological space. Then
(i) A subfamily {Ui} of PA is called a basis of PA if for each x ∈ U ∈ PA,
there is an i in index set I such that x ∈ Ui ⊆ U and if x ∈ Ui ∩ Uj for
some i, j ∈ I, then there exists k ∈ I, with x ∈ Uk ⊆ Ui ∩ Uj .
(ii) A sub-basis for (A,PA) is a sub-collection S of PA if any open set
in PA can be written as union of finite intersections of elements of S.
(iii) Let x ∈ A, then G ⊆ A is a neighborhood of x if x ∈ W ⊆ G, for
some open set W .
(iv) Let t ∈ A and F = {G | G ⊆ A, G is an open neighborhood of t}.
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Then a fundamental system of neighborhoods of t is a sub-collection E
of F , if for every W ∈ F , N ⊆W , for some N ∈ E.
(v) A function g from a topological space (X,PX) to a topological space
(Y,PY ) is continuous, if the inverse image of each open set in Y is an
open set in X.
(vi) A topological space (X,PX) is compact if every open cover of X
has a finite subcover.
(vii) A topological space (X,PX) is locally compact if for every x ∈ X
x has a compact neighborhood, i.e., x ∈ G ⊆ F , for some compact set
F and some open set G.

We summarize the main properties ofBL-algebras that will be needed
throughout the paper.

Proposition 2.4. [7,11] Let A be any BL-algebra. Then the following
properties hold for every x, y, z ∈ A:
(i) x ≤ y iff x→ y = 1;
(ii) 1→ x = x, x→ x = 1, x→ 1 = 1;
(iii) x→ (y → z) = y → (x→ z) = (x� y)→ z;
(iv) x� y ≤ x ∧ y and x� (x→ y) ≤ y;
(v) x ≤ y → x, x ≤ x−− and x−−− = x−;
(vi) 0− = 1, 1− = 0 and x ≤ y implies x� z ≤ y � z;
(vii) x� x− = 0 and x� y = 0 iff x ≤ y−.
(viii) (x� y)− = (x→ y−) = (y → x−);
(ix) (x� y)−− = x−− � y−−, (x→ y)−− = x−− → y−−;

From [5,6] we recall the following operations which are defined for
every x, y in BL-algebra A:
(i) x⊕ y = (x− � y−)−;
(ii) x	 y = x� y−;
(iii) (x	 y)− = (x� y−)− = x→ y−− = y− → x−;
(iv) x→ y = (x� y−)− = (x	 y)−, for every x ∈ A and y∈MV (A).

Definition 2.5. [7] A subset F of a BL-algebra A is called a filter
if it satisfies the following conditions:
(i) for every x, y ∈ F , x� y ∈ F ;
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(ii) for every x, y ∈ A if x ≤ y and x ∈ F then y ∈ F .

E. Turunen [11] defined a deductive system of a BL-algebra A to
be a nonempty subset D of A such that (i) 1 ∈ D and (ii) x ∈ D and
x → y ∈ D imply y ∈ D. He proved that a subset F of a BL-algebra
A is a deductive system of A if and only if F is a filter of A. From
Proposition 2.4, it is clear that x ∈ F implies x−− ∈ F .

C. Lele et.al. [9] proved that the operation ”�” on BL-algebra A by
x� y = x− → y, for every x, y ∈ A is associative and monotone, i.e., for
every a, b, c, d ∈ A, a ≤ b and c ≤ d imply a� c ≤ b� d.

Definition 2.6. [9] Let (A,∧,∨,�,→, 0, 1) be a BL-algebra and I
be a nonempty subset of A. I is called an ideal of A if it satisfies:
(i) for every x, y ∈ I, x� y ∈ I;
(ii) for every x, y ∈ A, if x ≤ y and y ∈ I then x ∈ I.

It is easy to see that 0 ∈ I for every ideal I, and for every x ∈ A,
x ∈ I if and only if x−− ∈ I. The intersection of any family of ideals of
a BL-algebra A is again an ideal of A [7].

Proposition 2.7 [9] A nonempty subset {0} ⊆ I of a BL-algebra A
is an ideal if and only if for every s, t ∈ A, if s− � t ∈ I and s ∈ I then
t ∈ I.

Definition 2.8. [2,14] Let A be a BL-algebra with topology P. Then
(A,P) is called a topological BL-algebra, if all binary operations of A
and its lattice structure are continuous.

For example, if we consider the BL-algebra A = (I,∧,∨,�,→, 0, 1)
(Product structure) with a topology P, on the real unit interval I =
[0, 1], where for every x, y ∈ I, x�y = x∧y =min{x, y}, x∨y =max{x, y}

and

x→ y =

{
1 x ≤ y
y

x
o.w

Then (A, {∧,∨},P) with the basis S = {[x, y) ∩ I : x, y ∈ R} is a topo-
logical BL-algebra [2,9].
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If A is a BL-algebra we denote for every x, y ∈ A and U, V ⊆ A:
U ⊕ V = {u ⊕ v|u ∈ U, v ∈ V }, U 	 V = {u 	 v|u ∈ U, v ∈ V },
x⊕ V = {x⊕ v|v ∈ V }, U ⊕ y = {u⊕ y|u ∈ U}, x	 V = {x	 v|v ∈ V },
U 	 y = {u 	 y|u ∈ U}, U � V = {u � v|u ∈ U, v ∈ V }, x � V =
{x� v|v ∈ V }, U � y = {u� y|u ∈ U} and U− = {u− | u ∈ U}.

Definition 2.9. [1] Let A be a BL-algebra. Then, the operation �
is semi-continuous, if for each open set U with x � y ∈ U , there exist
two open sets V, W such that x ∈ V , y ∈W , V �y ⊆ U and x�W ⊆ U .

In a similar way semi-continuity is defined for any binary operation
on a BL-algebra.

3 On (para, quasi) topological BL-algebras

In this section, we define the para and quasi-topological BL-algebras
and derive some results.

Definition 3.1. Let A be a BL-algebra with a topology P, then
(i) (A,P) is called a para-topological BL-algebra if the operation ”⊕ ”
is continuous, or equivalently, if for any x, y ∈ A and any open neigh-
borhood W of x⊕ y, there exist two open neighborhoods U and V of x
and y, respectively, such that U ⊕ V ⊆W .
(ii) (A,P) is called a quasi-topological BL-algebra if the operation ”�”
be semi-continuous and ”− ” is continuous.

Example 3.2. We consider the BL-algebra A = (I,∧,∨,�,→, 0, 1)
(Gödel structure) on the real unit interval I = [0, 1], where for every
x, y ∈ I, x� y = x ∧ y =min{x, y}, x ∨ y =max{x, y} and

x→ y =

{
1 x ≤ y
y o.w

Let P be a topology on A induced by the base B = {[x, y]∩I : x, y ∈ R}.

Then (A,P) is a quasi-topological BL-algebra, since the operation ”�”
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is semi-continuous and the operation ”− ” is continuous [2,11].

Example 3.3. Consider the BL-algebra S3 = {0, 13 ,
2
3 , 1} with the fol-

lowing operations and topology P = {∅, {0}, {0, 13}, S3}. Then S3 with
the topology P is a para-topological BL-algebra.

Table 1: Product operation

� 0 1
3

2
3 1

0 0 0 0 0
1
3 0 1

3
1
3

1
3

2
3 0 1

3
2
3

2
3

1 0 1
3

2
3 1

Table 2: Implication operation

→ 0 1
3

2
3 1

0 1 1 1 1
1
3 0 1 1 1
2
3 0 2

3 1 1

1 0 1
3

2
3 1

Proof. It is easy to see that S3 is a BL-algebra. Let a, b ∈ A,
then for an open neighborhood D of a ⊕ b, if a ⊕ b > 1

3 , the only open
neighborhood of a⊕ b is S3. Thus, S3 is the open neighborhood of both
a and b with S3 ⊕ S3 ⊆ S3.
For a = b = 0, since a ⊕ b = 0, so D is {0, 13}, {0} or S3. We choose,
G1 = {0} and G2 = {0}, then G1 ⊕G2 = {0} ⊆ D.
Finally, for a = 0 and b = 1

3 , we deduce a ⊕ b = 1
3 , hence D will

be {0, 13} or S3. In this case, we set G1 = {0} and G2 = {0, 13}, so
G1⊕G2 = {0, 13} ⊆ D. Therefore, the map ⊕ is continuous, and S3 is a
para-topological BL-algebra.
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Theorem 3.4. Let (A,P) be a topological BL-algebra, then the fol-
lowing hold:
(i) (A,P) is a quasi-topological BL-algebra;
(ii) (A,P) is a para-topological BL-algebra.
Proof. (i) Let (A,P) be a topological BL-algebra, then the operations
∨,∧,�,→ are continuous. We consider − : A −→ A by −(x) = x−

and →: A × A −→ A by → (x, y) = x → y. From the continuity of
the →, we set the restriction of the g on the A× {0} ⊆ A × A to A
with g(x, 0) = x− = −(x), then the continuity of g is concluded. By
the continuity of the �, this binary operation is semi-continuous and
the operation − as the restriction g on the A× {0} ⊆ A × A to A is
continuous. Therefore A is a quasi-topological BL-algebra.
(ii) If A is a topological BL-algebra, then A is a para-topological BL-
algebra. Consider x⊕y = (x−�y−)−. From hypothesis, ”�” and ”−”
are continuous, thus ⊕ is continuous.

Proposition 3.5. Let A be a BL-algebra endowed by a topology P.
Consider the following assertions on the operations (�, −, 	) :
(i) (A,P) is a topological BL-algebra;
(ii) � and − are continuous operations;
(iii) 	 and − are continuous operations;
Then (i) implies (ii) and (ii) implies (iii).
Proof. (i) ⇒ (ii) Since the binary operation ”→” :A×A −→ A is con-
tinuous, so by the continuity of the restriction h : A×{0} ⊆ A×A −→ A
by h(x, 0) = x→ 0 = x−, we conclude that the operation − is continu-
ous.
(ii) ⇒ (iii) We consider the continuous function h : A × A −→ A × A
by h(x, y) = (x, y−) ( both components are continuous), therefore, the
function 	 = � ◦ h is also continuous.

Corollary 3.6. Let (A,P) be a topological BL-algebra, then the func-
tion g : A×A −→ A with g(s, t) = s� t− is continuous.
proof. Since (A,P) is a topological BL-algebra, so ”� ” and ”− ” are
continuous, therefore g(s, t) = s�t− = s	t is continuous by Proposition
3.5 (iii).
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The converse of Corollary 3.6, holds for MV (A) = {x ∈ A | x−− =
x}. Indeed, If we consider the function p as the restriction of g to {1}×A
by p(1, s) = 1 � s− = s− is a continuous function. It is trivial that the
map q : A −→ A × A by q(s) = (1, s) is continuous therefore, for every
s ∈ A, (p ◦ q)(s) = p(1, s) = 1� s− = s− is continuous. This means that
− is continuous. Since each component of the map l : A×A −→ A×A
by l(s, t) = (s, t−) are continuous, so l is a continuous function. Hence,
for every (s, t) ∈ A2, we have

(g ◦ l)(s, t) = g(s, t−)

= s� t−−

= s� t (in MV (A))

This means that � is continuous.

Proposition 3.7. If (A,P) is a topological BL-algebra. Then the
following statements hold:
(i) There exists a continuous function h : A ↪→ A by h(x) = y for every
x, y ∈ A.
(ii) If La− or Ra is an open map, for a ∈ MV (A), then Ta, is an open
map, where Ta : A ↪→ A, Ta(x) = a ⊕ x = (a− � x−)−, La : A ↪→ A,
La(x) = a	 x = a� x− and Ra : A ↪→ A, Ra(x) = x	 a = x� a−.
proof.(i) Let (A,P) be a topological BL-algebra. Then by Theorem
3.4, (A,P) is quasi and para-topological BL-algebra. So we conclude the
continuity of the −,�,⊕ and functions Ra and La. Thus, h = Ly ◦ Rx
is a continuous map. We now have

h(x) = Ly ◦Rx(x)

= Ly(x	 x)

= Ly(x� x−)

= Ly(0)

= y 	 0

= y

(ii) We know that if (A,P) is a topological BL-algebra, then we conclude
(MV (A),MV (A) ∩ P) is a topological BL-algebra. Since x−− = x, for
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every x ∈MV (A), so the map − : MV (A) ↪→MV (A) is invertible and
its inverse is equal to itself. By the continuity of ” − ”, we conclude
the map ” − ” is homeomorphism. Suppose that a ∈ MV (A) and U ∈
MV (A)∩P. First, let us assume that Ra is an open map, P is a topology
on MV (A) such that (MV (A),P) is a topological BL-algebra. Since
”− ” is homeomorphism, so U− ∈ MV (A) ∩ P. Therefore, U− � a− =
Ra(U

−) ∈ MV (A) ∩ P, Ta(U) = a ⊕ U = (a− � U−)− ∈ MV (A) ∩ P,
where Ta and Ra : MV (A) ↪→ MV (A). Now let a ∈ MV (A) and
La− : MV (A) ↪→MV (A) be an open map, then

La−(x) = a− 	 x
= a− � x−.

Let U ∈MV (A)∩P, then U− ∈MV (A)∩P and a−�U− = La−(U−) ∈
MV (A) ∩ P.

Proposition 3.8. Let A be a BL-algebra which is endowed by a topol-
ogy P. Consider the following assertions :
(i) The topological space (A,P) is a quasi-topological BL-algebra;
(ii) � and − are semi-continuous and continuous, respectively;
(iii) 	 and − are semi-continuous and continuous, respectively;
(iv) → and − are semi-continuous and continuous, respectively.
Then (i) implies (ii), (ii) implies (iii) and for MV (A), (iii) implies (iv).
proof. (i)⇒(ii) By Definition 3.1, it becomes clear.
(ii)⇒(iii) Let W1 be an open set such that x 	 y ∈ W1 ∈ P, for
x, y ∈ A. Then x 	 y = x � y− ∈ W1. By (ii), since � is semi-
continuous, so there exist open neighborhoods U1 of x and U2 of y−

with x � U2 ⊆ W1 and U1 � y− ⊆ W1. From (ii), ”−” is contin-
uous, thus y ∈ W2 and W2

− ⊆ U2, for some W2 ∈ P. For any
k ∈ U1 and l ∈ W2, we have k 	 y = k � y− ∈ U1 � y− ⊆ W1 and
x 	 l = x � l− ∈ x �W2

− ⊆ x � U2 ⊆ W1. Hence, U1 	 y ⊆ W1 and
x	W2 ⊆W1, this means that ”	” is semi-continuous.
(iii)⇒(iv) We consider (MV (A),P), where P is a topology on MV (A)
and ”	” is a semi-continuous and ”−” is a continuous mapping and
suppose that x → y ∈ W1 ∈ P. Then x → y = (x 	 y)− ∈ W1. Since
”−” is continuous, so there exists U ∈ P, x 	 y ∈ U and U− ⊆ W1.
From (iii), ”	” is semi-continuous, then there exist open neighborhoods
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U1 and W2 of x and y, with U1 	 y ⊆ U and x 	W2 ⊆ U . For any
k ∈ U1 and l ∈ W2, k → y = (k 	 y)− ∈ (U1 	 y)− ⊆ U− ⊆ W1 and
x → l = (x 	 l)− ∈ (x 	W2)

− ⊆ U− ⊆ W1, then U1 → y ⊆ W1 and
x→W2 ⊆W1. Therefore, ”→” is semi-continuous.

From [1], a family ξ of nonempty subsets of a set X is called a
pre-filter on X if X ∈ ξ and for each finite collection {Ai}ki=1 of ele-
ments of ξ, there exists B ∈ ξ such that B ⊆ ∩ki=1Ai.

Definition 3.9. [10] Let A be a BL-algebra, a ∈ A and ∅ 6= U ⊆ A.
We define U(a) = {x ∈ A | Ra(x) ∈ U and La(x) ∈ U}, (La(x) and
Ra(x) are defined in Proposition 3.7).
It is trivial that if U ⊆W ⊆ A, then U(a) ⊆W (a).

Remark 3.10. Let A be a BL-algebra. From [13], we recall that, for
every x, y, z ∈ A, z ≤ x� y iff z	x ≤ y; since, z ≤ x� y iff z ≤ x− → y
iff z � x− ≤ y iff z 	 x ≤ y. We also have x 	 z ≤ (y 	 z) � (x 	 y);
because, (x	z)	 (y	z) = (x�z−)	 (y�z−) = (x�z−)� (y�z−)− =
(x � z−) � (y → z−−) ≤ (x � z−) � (z−−− → y−) = x � z− � (z− →
y−) ≤ x� y− = x	 y. This means that (x	 z)	 (y	 z) ≤ (x	 y), i.e.,
x	 z ≤ (y 	 z)� (x	 y).

Theorem 3.11. [9] Let A be a BL-algebra and U be an ideal of A.
Then relation ”∼U” on A defined by:
for every x, y ∈ A, ”x ∼U y iff x	y ∈ U and y	x ∈ U” is a congruence
on A.

Corollary 3.12. Let A be a BL-algebra and U be an ideal of A. If for
every x, y, z, t ∈ A; x	y, y	x, z	t, t	z ∈ U , then ((x�z)	(y�t)) ∈ U
and ((y � t)	 (x� z)) ∈ U .

Theorem 3.13. Let A be a BL-algebra and ξ a pre-filter on A such
that for every U ∈ ξ and t, s ∈ U :
(i) 0 ∈ ∩ξ;
(ii) Rs ◦Rt(x) = 0 implies that x ∈ U .
Then, the following statements hold:
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(1) The set P = {W ⊆ A | for every a ∈W, U(a) ⊆W for some U ∈ ξ}
is a topology on A;
(2) ξ is a fundamental system of 0;
(3) U ∈ ξ is an ideal of A;
(4) U(s) is an open set, for s ∈ A and U ∈ ξ;
(5) ”�” is a continuous operation on (A,P), where P is defined in (1).
proof. (1): We set P = {W ⊆ A | for every a ∈ W, U(a) ⊆ W for
some U ∈ ξ}. Obviously, P contains A and ∅. We suppose that {Wα}
is a sub-collection of P, and a be an element of ∪Wα. Then a ∈ Wα

for some α and there exists U ∈ ξ such that U(a) ⊆ Wα ⊆ ∪Wα. So,
∪Wα ∈ P. Let Wα, Wβ ∈ P, W = Wα ∩ Wβ and a ∈ Wα ∩ Wβ.
Then, there exist U1 ∈ ξ and U2 ∈ ξ such that U1(a) ⊆ Wα and
U2(a) ⊆ Wβ. Since ξ is a pre-filter, there exists U ∈ ξ, U ⊆ U1 ∩ U2.
Now, U(a) ⊆ (U1 ∩U2)(a) ⊆ U1(a)∩U2(a) ⊆Wα ∩Wβ, this means that
Wα ∩Wβ ∈ P.
(2): Let t ∈ U ∈ ξ. Since 0 ∈ ∩ξ, so 0 ∈ U . We assume that z is
an element of U(t), then, z 	 t and t 	 z ∈ U . It is easy to see that
Rz	t ◦ Rt(z) = 0, therefore by (ii), z ∈ U , i.e., U(t) ⊆ U and U ∈ P.
Hence U is an open neighborhood of 0. If W is an open neighborhood
of 0, then there is V ∈ P such that 0 ∈ V ⊆ W . From definition of P
we get that U(0) ⊆ V for some U ∈ ξ. It is evident that for every t ∈ U ,
t	 0 and 0	 t ∈ U , then 0 ∈ U ⊆ U(0) ⊆ V ⊆W , i.e., (2) holds.
(3): We show that U is an ideal of A, for an arbitrary element U ∈ ξ.
Let z ∈ U and t ≤ z. Since 0, z ∈ U , we have R0 ◦ Rz(t) = R0(t	 z) =
R0(t � z−) = (t � z−) � 0− = (t � z−) � 1 = (t � z−). From the fact
that t ≤ z, we conclude t� z− ≤ z� z− = 0, i.e., t� z− = 0. Therefore,
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by (ii), t ∈ U . Let x, y ∈ U , then

Rx ◦Ry(x� y) = Rx ◦Ry(x− → y)

= Rx((x− → y)	 y)

= Rx((x− → y)� y−)

= ((x− → y)� y−)	 x
= ((x− → y)� y−)� x−

= (x− � (x− → y)� y−)

= (x− ∧ y)� y−

≤ y � y−

= 0.

This means that, (x� y) ∈ U and U is an ideal of A.
(4): We claim that U(s) is an open set, for s ∈ A and U ∈ ξ. Let
t ∈ U(s). It is enough to show that U(t) ⊆ U(s). Let z ∈ U(t), then
Rs(t), Ls(t), Rt(z) and Lt(z) ∈ U , i.e., t 	 s, s 	 t, z 	 t and t 	 z ∈ U .
Since U is an ideal, so it is closed under ”�”, therefore, (t	 z)� (s	 t)
and (t	s)�(z	t) ∈ U . By Remark 3.10, we have (s	z) ≤ (t	z)�(s	t)
and (z 	 s) ≤ (t	 s)� (z 	 t). Since U is an ideal, we conclude (s	 z)
and (z 	 s) ∈ U . This means that z ∈ U(s), i.e., U(t) ⊆ U(s).
(5): We prove the continuity of ”�”. Suppose that K is an open neigh-
borhood of s � t. Then, there exists U ∈ ξ such that U(s � t) ⊆ K.
Clearly, Ls(s) = Rs(s) = Lt(t) = Rt(t) = 0 ∈ U , i.e., s ∈ U(s)
and t ∈ U(t). Now, we show that U(s) � U(t) ⊆ U(s � t). Let
i � j ∈ U(s) � U(t), with i ∈ U(s) and j ∈ U(t), i.e., Ls(i) = s 	 i,
Rs(i) = i	s, Rt(j) = j	t and Lt(j) = t	j ∈ U . By Corollary 3.12, since
U is an ideal, we conclude ((s�t)	(i�j)) ∈ U and ((i�j)	(s�t)) ∈ U .
This means that L(s�t)(i � j) ∈ U and R(s�t)(i � j) ∈ U . Therefore,
(i� j) ∈ U(s� t).

In Theorem 3.13, if we consider the MV (A) (as an MV -algebra
which is a BL-algebra), then (MV (A),P) is a quasi-topological BL-
algebra. Indeed, we only need to prove the continuity of the unary op-
eration ”−”. Suppose that t ∈MV (A) and N is an open neighborhood
of t−, then Q(t−) ⊆ N , for some Q ∈ ξ. We show that (Q(t))− ⊆ Q(t−).
Let i ∈ (Q(t))−, then i = j−, for some j ∈ Q(t). This means that j 	 t
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and t	 j ∈ Q. Since j−− = j ∈ Q(t) ⊆MV (A), so

t− 	 j− = t− � j−−

= t− � j
= j � t−

= j 	 t ∈ Q.

We also have

j− 	 t− = j− � t−−

= t−− � j−

= t� j−

= t	 j ∈ Q.

Therefore, i = j− ∈ Q(t−), i.e., (Q(t))− ⊆ Q(t−). This means that
(Q(t))− ⊆ N , hence the continuity of ”−” holds.

Definition 3.14. [10] Let A be a BL-algebra and M be a collection
of subsets of A. Then M is a system of 1 if ∩M contains 1 and the
following conditions hold:
(i) for every x ∈ U ∈M, there exists V ∈M such that x� V ⊆ U ;
(ii) for every U ∈M, there exists V ∈M such that V � V ⊆ U ;
(iii) for U, V ∈M, there exists W ∈M such that W ⊆ U ∩ V .

Proposition 3.15. If M is a fundamental system of open neighbor-
hoods of 1 in a topological BL-algebra (A,P). Then M is a system of
1 in A.
proof. Since M is a fundamental system of open neighborhoods of 1,
so 1 ∈ ∩M. Let x ∈W ∈M. Since � is continuous and x�1 = x ∈W ,
there is an open neighborhood K of 1 such that x � K ⊆ W . There
exists U ∈ M such that 1 ∈ U ⊆ K, since M is a fundamental sys-
tem of open neighborhoods of 1, thus x � U ⊆ x � K ⊆ W . Now, let
W ∈ M, then 1 � 1 = 1 ∈ W and the mapping ”�” is continuous, so
there exist open neighborhoods K0 and K1 of 1 such that K0�K1 ⊆W .
We set K = K0 ∩K1. Since M is a fundamental system of open neigh-
borhoods of 1, there is U ∈ M such that 1 ∈ U ⊆ K. Therefore
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U � U ⊆ K0 �K1 ⊆ W , (ii) holds. Since M is closed under the finite
intersection, so (iii) holds.

Theorem 3.16. If A be a BL-algebra and M is a system of 1 in
A, then the following statements hold:
(i) The set P = {K ⊆ A | for all t ∈ K, there exists Q ∈M; t�Q ⊆ K},
is a topology on A;
(ii)M is a fundamental system of open neighborhoods of 1 with respect
to P;
(iii) (A,�,P) is a quasi-topological BL-algebra.
proof. We set P = {K ⊆ A | for all t ∈ K, there exists Q ∈M; t�Q ⊆
K} and show that for every t ∈ A and Q ∈ M, t � Q ∈ P. Obviously,
∅, A ∈ P. Assume that s ∈ t � Q, then there exists q ∈ Q; s = t � q.
By the properties of M, q � D ⊆ Q, for some D ∈ M. Therefore,
s�D = (t� q)�D ⊆ t�Q. This means that t�Q ∈ P.
We suppose that {Kj | j ∈ I} is a sub-collection of P. From the fact
that t ∈ ∪Kj , there exists Ki; t ∈ Ki . This means that t�Q ⊆ Ki, for
some Q ∈M therefore, t�Q ⊆ ∪Kj , i.e., ∪Kj ∈ P.
Let K1,K2 ∈ P, and K = K1 ∩K2. We show that K ∈ P. Let t ∈ K,
then there exist Q1 and Q2 ∈M such that t�Q1 ⊆ K1 and t�Q2 ⊆ K2.
Since M is a system of 1, so there is Q ∈ M, Q ⊆ Q1 ∩ Q2. From the
fact that t�Q ⊆ t� (Q1∩Q2) ⊆ (t�Q1)∩ (t�Q2) ⊆ K1∩K2 = K, we
have K ∈ P. Thus being P on A as a topology is now deduced. From
Definitions 2.3 and 3.14, it is trivial thatM is a fundamental system of
open neighborhoods of 1.
Since every continuous operation is semi-continuous, so for the proof of
(iii), it is enough to show that the continuity of the binary operation ”�”.
We assume that t = s1 � s2 and K is an open neighborhood of t. Then
t �D ⊆ K, for some D ∈ M. Since D ∈ M, so P � P ⊆ D, for some
P ∈M. Hence there exist open neighborhoods s1�P of s1 and s2�P of
s2, with (s1�P )�(s2�P ) = (s1�s2)�P�P ⊆ (s1�s2)�D = t�D ⊆ K,
which indicate the continuity of the ”�”.

Proposition 3.17. If A, J , G and P are a BL-algebra, an ideal of
A, a filter of A and a topology on A respectively, such that (A,P) be a
topological BL-algebra. Then the following hold:



16F. ALINAGHIAN, F. KHAKSAR HAGHANI AND SH. HEIDARIAN

(i) If 0 is an interior point of J (0 ∈ J◦), then J is an open set;
(ii) If 1 is an interior point of G, then G is a closed set.
proof. (i) Suppose that J is an ideal of A, t ∈ J and 0 ∈ J◦. Then
0 ∈ K ⊆ J , for some K ∈ P. From the continuity of ”	” (Proposition
3.5) and the fact that 0 = t�t− = t	t ∈ J , we conclude Q	Q ⊆ K ⊆ J ,
for some open neighborhood Q of t. We claim that Q ⊆ J . Since for
any such Q there is an open set Ut ∈ P such that t ∈ Ut ⊆ Q ⊆ J . We
get that J = ∪t∈JUt ∈ P. Therefore, J is an open set.
(ii) Let G be filter of A and 1 ∈ G◦. It is enough to show that the com-
plement of G (Gc = A−G) is an open set. We assume that a ∈ A−G.
Since 1 ∈ G◦, so K ⊆ G, for some open neighborhood K of 1. By the
continuity of ”→” (Definition 2.8) and a→ a = 1, (Proposition 2.4), we
have E → E ⊆ K ⊆ G, for some open neighborhood E of a. We claim
that E ⊆ A − G, otherwise, there exists t ∈ E; t /∈ A − G, i.e., t ∈ E
and t ∈ G. Since for every b ∈ E, t → b ∈ E → E ⊆ G, and t ∈ G, so
according to the paragraph after the Definition 2.5, we conclude b ∈ G,
i.e., E ⊆ G, which is a contradiction with the fact that a ∈ E, but a /∈ G
(a ∈ A − G). This means that, a ∈ E ⊆ A − G and A − G is an open
set.

Proposition 3.18. Let (A,P), G ⊆ A and H ⊆ A be a topological
BL-algebra, compact subset of A and closed subset of A respectively. If
G and H are disjoint, then there exists an open neighborhood U of 1
such that (G� U) ∩H = ∅.
proof. Since G ∩ H = ∅ and H is closed, so A − H is an open set
containing t, for every t ∈ G (t /∈ H, i.e., t ∈ A−H). Thus, there exists
an open neighborhood Kt of t such that Kt ⊆ G ⊆ A−H. Since (A,P)
is a topological BL-algebra and t � 1 = t ∈ Kt, there exists an open
neighborhood Qt of 1 such that t�Qt ⊆ Kt (H).
We consider St � St ⊆ Qt, (�) for some open neighborhood St of 1 (It
exists, from the fact that 1 = 1 � 1 and � is a continuous mapping).
If C = {t � St|t ∈ G}, then G ⊆

⋃
c∈C c, i.e., the collection C of open

neighborhoods is covers G, with (t� St) ∩H = ∅. Since G is compact,
so G ⊆

⋃
cα∈C cα, for some finite sub-collection Cα ⊆ C. This means

that G ⊆ ∪t∈B(t� St), for some finite subset B ⊂ G. Let Q = ∩t∈BSt.
Then Q is an open neighborhood of 1. We show that (G�Q) ∩G = ∅.
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Suppose that r is an arbitrary element of G. Since r ∈ G ⊆ ∪t∈B(t�St),
there exists b ∈ B, r ∈ b� Sb. Thus

r �Q ⊆ b� Sb �Q
⊆ b� Sb � Sb by (Q = ∩t∈BSt)
⊆ b�Qb by (�)

⊆ Kb by (H)

⊆ A−H.

Therefore for every r ∈ G, (r �Q) ∩H = ∅, i.e., (G�Q) ∩H = ∅.
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ment), Kluwer, Boston, 1994.

[9] C. Lele and J.B. Nganou, MV -algebra derived from ideals in BL-
algebras, Fuzzy Sets Syst., 218, (2013), 103-313.

[10] M. Najafi, G.R. Rezaei and N. Kouhestani, On (para, quasi) topo-
logical MV -algebras, Fuzzy Sets Syst., 313, (2017), 93-104.

[11] E. Turunen, Mathematics behind fuzzy logic, Physica-Verlag, Hei-
delberg, (1999).

[12] A. Walendziak, On implicative and maximal ideals of BL-algebras,
Commentationes Mathematicae, 54, No. 2 (2014), 247-258.

[13] Y. Yang and X. Xin, On characterizations of BL-algebras via im-
plicative ideals, Italian Journal of Pure and Applied Mathematics,
37, (2017), 497-506.

[14] O. Zahiri and R.A. Borzooei, Topology on BL-algebras, Fuzzy Sets
Syst., 289, (2016), 137-150.

Fateme Alinaghian
Ph.D Student of Mathematics,
Department of Mathematics,
Shahrekord Branch,
Islamic Azad University,
Shahrekord,
Iran.
E-mail: f.alinaghian1354@gmail.com
Farhad Khaksar Haghani (Corresponding Author)
Associate Professor of Mathematics,
Department of Mathematics,
Shahrekord Branch,
Islamic Azad University,
Shahrekord,



SOME RESULTS ON TOPOLOGICAL BL-ALGEBRAS 19

Iran.
E-mail: Haghani1351@yahoo.com
Shahram Heidarian
Assistant Professor of Mathematics,
Department of Mathematics,
Shahrekord Branch,
Islamic Azad University,
Shahrekord,
Iran.

E-mail: Heidarianshm@gmail.com


	1 Introduction
	2 Preliminaries
	3 On (para, quasi) topological BL-algebras
	References

