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1 Introduction

Starting the twentieth century, the study of spatial estimates have been
received a lot of attention of researchers in mechanics and applied mathe-
matics. These studies are motivated by the Saint-Venant principle which
has been widely investigated in the study of asymptotic behavior of end
effects for partial differential equations and systems in semi-infinite do-
mains. Saint-Venant principle is initiated by Toupin [25] and developed
by Horgan and Knowles [15] and the updated articles by Horgan [13],
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[14]. The same kind of results can be found in the studies by Knowles
[16], [18], Oleinik [19], Flavin [7], Flavin et al. [9]-[11] and Horgan [12].
In recent years, many problems deal with spatial growth or decay end
effects for the solutions of initial-boundary value problems containing
hyperbolic equations. We may recall the studies by Flavin et.al [8]
and Chirita et.al [2]-[4] and the references cited in these works. Quin-
tanilla in [20] established spatial estimates for some classes of hyperbolic
heat equation and proved same results in nonlinear viscoelasticity (See
[21] and [22]). In linear viscoelasticity, Diaz and Quintanilla [5] proved
simillar results. In another work by Quintanilla and Saccomandi [23], a
dispersive wave equation in the form

utt − ε∆utt + but = a∆u,

has been considered. They proved a Phragmén-Lindelöf alternative of
exponential type in the presence of dissipative term ut. In the case b = 0,
while they showed that an exponential decay is possible, they obtained a
polynomial decay rate for solutions. In [26], Yilmaz obtained the spatial
behavior of solutions for the quasiliniear equation modelling dynamic
viscoelasticity

utt −∇.(W (|∇u|)∇u) + b|ut|p−2ut = α∆ut,

where b, α > 0, p > 1 and W (s) = a+sp−2, a > 0. In this regard, we may
also recall another work by Y. Liu et al. [17] in which authors studied
equations in the form

|u̇|εü− (|∇u|pu,i),i − γu̇,jj = 0,

where ε, p and γ are positive constants with p ≤ ε. They showed that
the solution grows at least exponentially or decays at least algebraically
with distance along the cylinder from the base. In this work, motivated
by the above studies, we investigate the equation:

utt −∆u+ (g ∗∆u)(t) + aut + ut|ut|m

= div(∇u|∇u|p) + div(∇ut|∇ut|p),
(1)
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in Ω× (0, T ) under the initial-boundary conditions

u(x′, 0, t) = h(x′, t), (x′, t) ∈ D0 × (0, T ), (2)

u(x, t) = 0, (x, t) ∈ S0 × (0, T ), (3)

u(x, 0) = ut(x, 0) = 0, x ∈ Ω, (4)

where a > 0, m ≥ 0, p > 0, ν is the outward normal to the boundary
and

(g ∗ v)(t) :=

∫ t

0
g(t− τ)v(τ)dτ.

Ω is the cylinder

Ω =
{
x ∈ Rn : xn ∈ R+, x′ ∈ Dxn , n ≥ 2

}
,

where the cross-sectionDz is a bounded simply-connected region inRn−1

and
Sz = {x ∈ Rn : x′ ∈ ∂Dxn , z ≤ xn <∞}.

Equations of the form (1) have their origin in the mathematical descrip-
tion of motion of viscoelastic materials. Viscoelastic materials exhibit
effects of both elasticity and viscosity. Such materials have memory. The
stress is a functional of the past history of the strain, instead of being a
function of the present strain value (elastic) or of the present value of the
time derivative of strain (viscous). The principal type of stress-strain
relation has either an explicit elastic term or an explicit viscous term,
plus an integral over the past history of some nonlinear function of the
strain. Existence theorems can be obtained by an extension of methods
used for pure partial differential equations, principally energy estimates
for hyperbolic equations. Mathematical analysis on the motions of ma-
terials with memory can be found in [6], [24] and references therein. In
our work, we assume the existence of classical solutions of the problem
(1)-(4).

In this article we study the spatial behavior of solutions for the prob-
lem (1)-(4) in the case m ≤ p. An essential ingredient of our proof is
based on construction a cross sectional energy function in order to ob-
tain linear differential inequalities to finally prove that the energy grows
or decays exponentially. Our method of proof follows closely the argu-
ments of [23] and [26] with modifications needed for our problem. It is
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worth noting that one can find similar results when m > p by defining
a suitable weighted energy function and employing similar arguments in
[17]. Finally, in the case of decay, an upper bound will be derived for
the total energy (the amplitude term) by means of the boundary datum.

The rest of the paper is organized as follows. In section 2 we state
some preliminaries and assumptions about the problem (1)-(4). Our
main result is obtained in Section 3.

2 Preliminaries

In this section, we present some material that will be needed throughout
the article. We denote by (u, v)D the usual L2 inner product on D and
for 1 ≤ s ≤ ∞ we denote the Ls norm on D by ‖u‖s,D. In the sequel we
use

Ωz = Ω ∩ {x ∈ Rn : 0 < xn < z}, Rz = Ω ∩ {x ∈ Rn : z < xn <∞}.

Lemma 2.1. (Sobolev-Poincaré inequality [1]) Let s be a number with
2 ≤ s ≤ ∞ (n = 1, 2, ..., r) or 2 ≤ s ≤ nr

n−r (n ≥ r+ 1), then there exists
a constant B = B(D, s) such that

‖u‖s,D ≤ B‖∇u‖r,D, for u ∈W 1,r
0 (D).

We will also use the embedding Lr(D) ↪→ Ls(D) for s < r with the
same embedding constant B in the above inequality. We also assume
that ∂Dz is sufficiently smooth to apply the divergence theorem such
that

0 < γ0 ≤ inf
z
|Dz| ≤ sup

z
|Dz| ≤ γ1 <∞,

and the prescribed function h vanishes on the lateral surface S0. For the
memory kernel, we assume that

g ∈ C1(R+) ∩ L1(R+), 1−
∫ ∞

0
g(s)ds = l > 0, (5)

and

g(s) ≥ 0, g′(s) ≤ 0, ∀s ∈ R+. (6)
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For nonlinear terms we assume that p ≥ m ≥ 0 and

0 ≤ m ≤ 4

n− 2
for n ≥ 3. (7)

Remark 2.2. There are many functions satisfying the conditions (5)-
(6), such as

g1(t) = α(1 + t)µ, µ < −1,

g2(t) = αe−β(1+t)p , 0 < p ≤ 1,

g3(t) =
αe−βt

(1 + t)n
, n = 0, 1, 2, ...,

g4(t) =
α

(2 + t)µ (ln(2 + t))β
, µ > 1,

where α and β are positive constants which are chosen properly.
Finally, we state the following lemma that will be needed throughout

our proofs.

Lemma 2.3. For ψ ∈ C1([0,+∞),R), we have

(g ∗ ψ)(t)ψt(t) = −1

2

d

dt
(g � ψ)(t) +

1

2

d

dt

{∫ t

0
g(τ)dτ |ψ(t)|2

}
+

1

2
(g′ � ψ)(t)− 1

2
g(t)|ψ(t)|2,

where

(g � ψ)(t) :=

∫ t

0
g(t− τ)|ψ(t)− ψ(τ)|2dτ.

Proof.We have

(g ∗ ψ)(t)ψt(t)

=

∫ t

0
g(t− τ)

(
ψ(τ)− ψ(t)

)
ψt(t)dτ +

1

2

∫ t

0
g(t− τ)

d

dt
|ψ(t)|2dτ

=− 1

2

d

dt

∫ t

0
g(t− τ)|ψ(τ)− ψ(t)|2dτ

+
1

2

∫ t

0
g′(t− τ)|ψ(τ)− ψ(t)|2dτ

+
1

2

d

dt

{∫ t

0
g(τ)dτ |ψ(t)|2

}
− 1

2
g(t)|ψ(t)|2. �
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3 Spatial estimates

In this section we will investigate the spatial behavior of solutions for
the problem (1)-(4). We begin with the following lemma.

Lemma 3.1. Suppose that m ≤ p and (7) holds, then there exists a
positive constant C > 0 such that∫

Dz

|u|m+2dx′ ≤ C
(
‖∇u‖22,Dz +

∫
Dz

|u|p+2dx′
)
.

Proof.If ‖u‖m+2,Dz ≤ 1, then by (7) we have

‖u‖m+2
m+2,Dz

≤ ‖u‖2m+2,Dz ≤ B
2
z‖∇u‖22,Dz .

where Bz is the best embedding constant on Dz. If ‖u‖m+2,Dz > 1, then

‖u‖m+2
m+2,Dz

≤ ‖u‖p+2
m+2,Dz

≤ Bp+2
z ‖u‖p+2

p+2,Dz
.

Taking C = supz Cz, with Cz = B2
z +Bp+2

z , completes the proof. �

For solutions of the problem (1)-(4), we introduce the energy function
φε(z, T ) given by

φε(z, T ) =

∫ T

0

∫
Dz

[
(ut + εu)

(
uxn + uxn |∇u|p

+ utxn |∇ut|p − (g ∗ uxn)(t)
)]
dx′dt,

(8)

where ε > 0 is a constant. By lemma 2.3 we have∫
Ωz

∫ t

0
g(t− τ)∇ut(t)∇u(τ)dτdx

=− 1

2

d

dt

[
(g ◦ ∇u)Ωz(t)

]
+

1

2

d

dt

[ ∫ t

0
g(τ)dτ‖∇u(t)‖22,Ωz

]
+

1

2
(g′ ◦ ∇u)Ωz(t)−

1

2
g(t)‖∇u‖22,Ωz ,

(9)

where

(g ◦ v)D(t) =

∫ t

0
g(t− τ)‖v(t)− v(τ)‖22,Ddτ.
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Using the divergence theorem, (8), (9) and the initial-boundary condi-
tions (3) and (4), we obtain

φε(z, T ) = φε(0, T )

+
1

2
‖ut‖22,Ωz +

aε

2
‖u‖22,Ωz + ε(u, ut)Ωz +

1

p+ 2

∫
Ωz

|∇u|p+2dx

+
1

2

(
1−

∫ T

0
g(τ)dτ

)
‖∇u‖22,Ωz +

1

2
(g ◦ ∇u)Ωz(T )

+ (a− ε)
∫ T

0
‖ut‖22,Ωzdt+

∫ T

0

(1

2
g(t) + ε

)
‖∇u‖22,Ωzdt

+

∫ T

0

∫
Ωz

|ut|m+2dxdt+ ε

∫ T

0

∫
Ωz

uut|ut|mdxdt

+ ε

∫ T

0

∫
Ωz

|∇u|p+2dxdt+

∫ T

0

∫
Ωz

|∇ut|p+2dxdt

+ ε

∫ T

0

∫
Ωz

∇u.∇ut|∇ut|pdxdt−
1

2

∫ T

0
(g′ ◦ ∇u)Ωz(t)dt

− ε
∫ T

0

∫
Ωz

∫ t

0
g(t− τ)∇u(t)∇u(τ)dτdxdt.

(10)

To get an upper bound for φε(z, T ) in (8), we use the Young’s inequality
to obtain∫

Dz

∫ t

0
g(t− τ)u(t)uxn(τ)dτdx′

≤ 1− l
2
‖u‖22,Dz

+
1

2

∫
Dz

∫ t

0
g(t− τ)|uxn(τ) − uxn(t) + uxn(t)|2dτdx′

≤ 1− l
2
‖u‖22,Dz + (g ◦ ∇u)Dz(t) + (1− l)‖∇u‖22,Dz .

(11)

Analogously,∫
Dz

∫ t

0
g(t− τ)ut(t)uxn(τ)dτdx′

≤ 1− l
2
‖ut‖22,Dz + (g ◦ ∇u)Dz(t) + (1− l)‖∇u‖22,Dz .

(12)
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Therefore, from (8),(11) and (12) one can write

φε(z, T )

≤
∫ T

0

∫
Dz

{
(ut + εu)

(
uxn + uxn |∇u|p + utxn |∇ut|p

) }
dx′dt

+ (1 + ε)

∫ T

0
(g ◦ ∇u)Dz(t)dt+ (1− l)(1 + ε)

∫ T

0
‖∇u‖22,Dzdt

+
1− l

2

∫ T

0
(‖ut‖22,Dz + ε‖u‖22,Dz)dt.

(13)

Using Young’s inequality and lemma 2.1 we obtain∫ T

0

∫
Dz

uuxn |∇u|pdx′dt

≤ 1

p+ 2

∫ T

0

∫
Dz

|u|p+2dx′dt

+
p+ 1

p+ 2

∫ T

0

∫
Dz

|∇u|p+2dx′dt

≤

(
Bp+2
z + p+ 1

p+ 2

)∫ T

0

∫
Dz

|∇u|p+2dx′dt.

(14)

Similarly, we have∫ T

0

∫
Dz

utuxn |∇u|pdx′dt ≤
Bp+2
z

p+ 2

∫ T

0

∫
Dz

|∇ut|p+2dx′dt

+
p+ 1

p+ 2

∫ T

0

∫
Dz

|∇u|p+2dx′dt,

(15)

∫ T

0

∫
Dz

uutxn |∇ut|pdx′dt ≤
Bp+2
z

p+ 2

∫ T

0

∫
Dz

|∇u|p+2dx′dt

+
p+ 1

p+ 2

∫ T

0

∫
Dz

|∇ut|p+2dx′dt,

(16)

∫ T

0

∫
Dz

ututxn |∇ut|pdx′dt

≤

(
Bp+2
z + p+ 1

p+ 2

)∫ T

0

∫
Dz

|∇ut|p+2dx′dt.

(17)
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Now, using the estimates (13)-(17), Poincaré and Young’s inequalities,
one can find

|φε(z, T )| ≤M1

∫ T

0

∫
Dz

|∇u|p+2dx′dt

+M2

∫ T

0

∫
Dz

|∇ut|p+2dx′ +M3

∫ T

0
‖∇u‖22,Dzdt

+ (1 + ε)

∫ T

0
(g ◦ ∇u)Dzdt+

(
1− l

2

)∫ T

0
‖ut‖22,Dzdt,

(18)

where

M1 =
1

p+ 2

[
(1 + ε)(1 + p) + 2εBp+2

]
,

M2 =
1

p+ 2

[
(1 + ε)(1 + p) + 2Bp+2

]
,

M3 =
1

2

[(
1 + ε(2− l)

)
B2 + (3− 2l)ε+ 2(1− l)

]
,

and B = supz Bz . On the other hand, a differentiation with respect to z
from (10), using the assumptions (5), (6) and the inequality ε(u, ut)D ≥
−1

4‖ut‖
2
2,D − ε2‖u‖22,D, for ε ≤ a

2 , we get

∂φε
∂z
≥(a− ε)

∫ T

0
‖ut‖22,Dzdt+ ε

∫ T

0
‖∇u‖22,Dzdt

+

∫ T

0

∫
Dz

|ut|m+2dx′dt+ ε

∫ T

0

∫
Dz

uut|ut|mdx′dt

+ ε

∫ T

0

∫
Dz

|∇u|p+2dx′dt+

∫ T

0

∫
Dz

|∇ut|p+2dx′dt

− ε
∫ T

0

∫
Dz

∫ t

0
g(t− τ)∇u(t).∇u(τ)dτdx′dt

+ ε

∫ T

0

∫
Dz

∇u.∇ut|∇ut|pdx′dt.

(19)

Using Young ’s inequality, lemma 3.1 and lemma 2.1, for any δ > 0, we
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obtain∫ T

0

∫
Dz

uut|ut|mdxdt

≥ −c(δ)
∫ T

0

∫
Dz

|ut|m+2dxdt− δ
∫ T

0

∫
Dz

| u|m+2dxdt

≥ −c(δ)
∫ T

0

∫
Dz

|ut|m+2dxdt

− δC
∫ T

0

(
‖∇u‖22,Dz + Bp+2

∫
Dz

|∇u|p+2dx

)
dt.

(20)

Then, from (20), using Young’s inequality for the last term in the right
hand side of (19) and∫

Dz

∫ t

0
g(t− τ)∇u(t).∇u(τ)dτdx =

1

2

(∫ t

0
g(τ)dτ

)
‖∇u‖2Dz

+
1

2

∫ t

0
g(t− τ)‖∇u(τ)‖2Dzdτ −

1

2
(g ◦ ∇u)Dz(t),

the estimate (19) can be rewritten in the form

∂φε
∂z
≥(a− ε)

∫ T

0
‖ut‖22,Dzdt

+
ε

2

∫ T

0

(
1−

∫ t

0
g(τ)dτ − 2δC

)
‖∇u‖22,Dzdt

+
(
1− εc(δ)

) ∫ T

0

∫
Dz

(
|ut|m+2 + |∇ut|p+2

)
dx′dt

+ ε
(
1− δ

(
1 + CBp+2

)) ∫ T

0

∫
Dz

|∇u|p+2dx′dt

+
ε

2

∫ T

0

(
‖∇u‖22,Dz −

∫ t

0
g(t− τ)‖∇u(τ)‖22,Dzdτ

)
dt

+
ε

2

∫ T

0
(g ◦ ∇u)Dz(t)dt.

The classical Young’s inequality for convolutions asserts that

‖f1 ∗ f2‖r ≤ ‖f1‖q‖f2‖s ,
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where 1 ≤ r, s, q ≤ ∞ and q−1 + s−1 = r−1 + 1. If r = 1 then, for
s = q = 1 we have∫ T

0

∫ t

0
g(t− τ)‖∇u(τ)‖22,Dzdτdt

= ‖g ∗ ‖∇u‖22,Dz‖1 ≤ ‖g‖1 · ‖‖∇u‖
2
2,Dz‖1

=

∫ T

0
g(t)dt

∫ T

0
‖∇u‖22,Dzdt

≤ (1− l)
∫ T

0
‖∇u‖22,Dzdt ≤

∫ T

0
‖∇u‖22,Dzdt.

Therefore,

∂φε
∂z
≥c
∫ T

0

∫
Dz

(
u2
t + |∇u|2 + |ut|m+2 + |∇u|p+2 + |∇ut|p+2

)
dt

+ c

∫ T

0
(g ◦ ∇u)Dz(t)dt,

(21)

where

c = min
{
a− ε, ε

2
(l − 2δC), 1− εc(δ), ε

(
1− δ(1 + CBp+2)

)}
,

in which, δ is chosen so small enough such that δ < min{ l
2C ,

1
1+CBp+2 }

and so whence δ is fixed, we choose ε > 0 sufficiently small such that
ε < min{a2 ,

1
c(δ)}. Upon exploiting the inequalities (18) and (21) we

arrive at
∂φε
∂z
− c

γ
φε ≥ 0, (22)

∂φε
∂z

+
c

γ
φε ≥ 0, (23)

where γ = max
{
M1,M2,M3, 1 + ε, 1− l

2

}
. Now, assume that for some

z0 ≥ 0, φε(z0, t) is positive, since ∂φε
∂z is positive, then φε(z, t) remains

positive for z ≥ z0. Then, from (22) we have

φε(z, T ) ≥ φε(z0, T ) exp

(
c

γ
(z − z0)

)
. (24)
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Next, we consider that for all z, φε(z, t) is negative. Then, we have form
(23) that the inequality

− φε(z, T ) ≤ −φε(0, T ) exp(− c
γ
z), (25)

is satisfied. In fact, if φε(z, t)→ 0 as z →∞, from (10) we have

−φε(z, T )

=
1

2
‖ut‖22,Rz +

aε

2
‖u‖22,Rz + ε(u, ut)Rz

+
1

p+ 2

∫
Rz

|∇u|p+2dx+
1

2

(
1−

∫ T

0
g(τ)dτ

)
‖∇u‖22,Rz

+
1

2
(g ◦ ∇u)Rz(T ) + (a− ε)

∫ T

0
‖ut‖22,Rzdt

+

∫ T

0

(
1

2
g(t) + ε

)
‖∇u‖22,Rzdt+

∫ T

0

∫
Rz

|ut|m+2dxdt

+ ε

∫ T

0

∫
Rz

uut|ut|mdxdt+ ε

∫ T

0

∫
Rz

|∇u|p+2dxdt

+

∫ T

0

∫
Rz

|∇ut|p+2dxdt+ ε

∫ T

0

∫
Rz

∇u.∇ut|∇ut|pdxdt

− ε
∫ T

0

∫
Rz

∫ t

0
g(t− τ)∇u(t)∇u(τ)dτdxdt

− 1

2

∫ T

0
(g′ ◦ ∇u)Rz(t)dt.

(26)

Summarily, we have proved the following theorem:

Theorem 3.2 Let u be a nontrivial solution of the initial boundary
value problem (1)-(4) which satisfies (5)-(6) such that

0 ≤ m ≤ min

{
p,

4

n− 2

}
, n ≥ 3.

Then, either the solution becomes exponentially unbounded in the form
(24) or it satisfies the spatial decay estimate (25).
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4 A bound for the total energy

To give an estimate for the amplitude term, −φε(0, t), let us consider
η(x, t) be a smooth function which satisfies the boundary conditions
(2)-(3) and decays uniformly to zero as xn tends to infinity. We have

−φε(0, T ) =

∫ T

0

∫
D0

(ηt + εη)
(
uxn + uxn |∇u|p

+ utxn |∇ut|p − (g ∗ uxn)(t)
)
dx′dt.

The divergence theorem gives

−φε(0, T ) =

∫
Ω

(ηt + εη)utdx+

∫ T

0

∫
Ω

[
ηttut + (a− ε)ηtut + aεηut

+ (∇ηt + ε∇η).
(
∇u+∇u|∇u|p

+∇ut|∇ut|p
)

+ (ηt + εη)ut|ut|m
]
dxdt

−
∫ T

0

∫
Ω

∫ t

0
g(t− τ)∇ηt(t).∇u(τ)dτdxdt

− ε
∫ T

0

∫
Ω

∫ t

0
g(t− τ)∇η(t).∇u(τ)dτdxdt.

Using Young’s inequality and the conditions (5), (6), for arbitrary posi-
tive constants εi, we obtain

−φε(0, T )

≤ ε1

2

∫
Ω
u2
tdx+

∫ T

0

∫
Ω

[ε2

2
u2
t +

(ε3

2
+ ε7(1− l)(1 + ε)

)
|∇u|2

+

(
1 + ε

p+ 2

)(
ε4|∇u|p+2 + ε5|∇ut|p+2

)
+

ε6

m+ 2
|ut|m+2

]
dxdt

+ ε7(1 + ε)(g ◦ ∇u)Ω(t)dt+ ψ(η),

(27)
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where

ψ(η) =
1

2ε1

∫
Ω

(ηt + εη)2dx+

∫ T

0

∫
Ω

[
1

2ε2

(
aεη + (a− ε)ηt − ηtt

)2

+

(
1

ε3
+

1− l
ε7

)
|∇ηt|2 +

(
ε2

ε3
+
ε(1− l)
ε7

)
|∇η|2

+

(
p+ 1

p+ 2

)(
ε
− 1
p+1

4 + ε
− 1
p+1

5

)(
|∇ηt|p+2 + ε|∇η|p+2

)
+ ε

− 1
m+1

6

(
m+ 1

m+ 2

)
(ηt + εη)m+2

]
dxdt.

In (27) we have used∫
Ω

∫ t

0
g(t− τ)∇η(t)∇u(τ)dτdx

≤ ε7(1− l)
∫

Ω
|∇u|2dx+ ε7(g ◦ ∇u)Ω(t) +

1− l
ε7

∫
Ω
|∇η|2dx,

and the same inequality when η is replaced by ηt. On the other hand
from (26) and the same way followed in Theorem 3.2, for ε ≤ a

2 , one can
see that

−φε(z, T ) ≥1

4
‖ut‖2Rz + c

∫ T

0
(g ◦ ∇u)Rz(t)dt

+ c

∫ T

0

∫
Rz

(
|ut|2 + |∇u|2

+ |ut|m+2 + |∇u|p+2 + |∇ut|p+2
)
dxdt.

(28)

Thus, by using (27), (28) and choosing ε1 = 1
4 , ε2 = ε3 = c, ε4 = ε5 =

c(p+2)
2(ε+1) , ε6 = c

2(m+ 2) and ε7 = c
2(1+ε) we find

− φε(0, T ) < 2ψ(η). (29)

Now, we select
η(x, t) = h(x′, t) exp(−κxn),

where the function h is defined in (2) and κ is an arbitrary positive
constant. By some simple calculations, we find

|∇η| = H exp(−κxn), |∇ηt| = Ht exp(−κxn), (30)
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where

H : = (|∇′h|2 + κ2h2)
1
2 , Ht : = (|∇′ht|2 + κ2h2

t )
1
2 ,

such that ∇′ denotes the gradient operator in Rn−1. Therefore, from
(29) and (30) we can write

−φε(0, T )

≤ 2

κ

∫
D0

(ht + εh)2dx′

+

∫ T

0

∫
D0

1

2κc

(
aεh+ (a− ε)ht − htt

)2
dx′dt

+

(
1 + 2(1− l)(1 + ε)

2κc

)∫ T

0

∫
D0

(
Ht
)2
dx′dt

+

(
ε2 + 2ε(1− l)(1 + ε)

2κc

)∫ T

0

∫
D0

(
H
)2
dx′dt

+K1

∫ T

0

∫
D0

((
Ht
)p+2

+ ε
(
H
)p+2

)
dx′dt

+K2

∫ T

0

∫
D0

(
ht + εh

)m+2
dx′dt.

(31)

where

K1 =
2

κ

(
p+ 1

(p+ 2)2

)(
c(p+ 2)

2(ε+ 1)

)− 1
p+1

,

and

K2 =
1

κ

(
m+ 1

(m+ 2)2

)( c
2

(m+ 2)
)− 1

m+1
.

The inequality (31) shows an upper bound for the total energy depending
on the boundary conditions and the positive constant κ which can be
chosen optimally.
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