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Abstract.In this paper, we study coposinormal composition operators
and posinormal weighted composition operators on the Hardy space
H2(D). We show that if Wψ,ϕ is coposinormal on H2(D), then ψ never
vanishes on D also we prove that ϕ is univalent. Moreover, we study
the commutant of a coposinormal weighted composition operator.

AMS Subject Classification: MSC 47B20; 47B33; 47B38.
Keywords and Phrases: posinormal operator, composition operator,
cyclic operator, Toeplitz operator, Hardy space.

1 Introduction and Preliminaries

Let B(H) denote the algebra of all bounded linear operators on a com-
plex Hilbert space H. An operator T ∈ B(H) is said to be hyponormal if
T ∗T ≥ TT ∗. An operator T ∈ B(H) is said to be posinormal if there ex-
ists a positive operator P ∈ B(H) such that TT ∗ = T ∗PT , equivalently
T is posinormal if TT ∗ ≤ λ2T ∗T for some λ ≥ 0 [14]. An operator T is
coposinormal if T ∗ is posinormal. Hyponormal operators are necessarily
posinormal, although they need not be coposinormal, e.g., the unilat-
eral shift U ∈ B(l2) is hyponormal but not coposinormal(see [15, 16]).
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2 T. PRASAD

In a recent paper, Le and Rhaly [13] studied coposinormality of Cesàro
matrices.

Let D denote the open unit disk in the complex plane C. The Hardy
space H2(D) (also written H2) consists of all analytic functions on D
having power series representations with square summable coefficients.
The spaceH∞(D) (also writtenH∞) consists of all analytic and bounded
functions on D. If ϕ is an analytic map of D into itself, the composition
operator Cϕ on H2 is defined by Cϕf = f ◦ϕ where f ∈ H2. The bound-
edness of Cϕ for any analytic map ϕ of D into itself is a consequence of
the Littlewood Subordination Theorem (see [5]).

Let ϕ be an holomorphic self map on the unit disc D, and let ψ be
an holomorphic map on D. The weighted composition operator Wψ,ϕ on
Hardy space H2 induced by ϕ with weight ψ is given by

Wψ,ϕf = ψ(f ◦ ϕ),
where f ∈ H2. If ψ is bounded, then Wψ,ϕ is bounded. For ψ ∈ H∞,
the multiplication operator on H2 is given by Mψf = ψf for all f ∈ H2.
Remark that Wψ,ϕ can be written by Wψ,ϕ = MψCϕ. We refer [11] and
[7] for more details of weighted composition operators.

For z0 ∈ D, the function Kz0 defined by Kz0(z) = 1
1−z̄0z is called the

reproducing kernel for z0 in H2. It is well known that the linear span of
the reproducing kernels {Kz0 : z0 ∈ D} is dense in H2. Cowen [4] gave
an adjoint formula of a composition operator whose symbol is a linear
fractional selfmap of D. If ϕ(z) = az+b

cz+d is a linear fractional selfmap

of D, then C∗ϕ = MgCσM
∗
h , where g(z) = 1

−bz+d , σ(z) = az−c
−bz+d , and

h(z) = cz + d. The function σ is called the Krein adjoint of ϕ, while g,
h are called the Cowen auxillary functions of ϕ. It follows from [4] that
σ is a self-map of D and g ∈ H∞. Note that

W ∗ψ,ϕKz = ψ(z)Kϕ(z) (1)

when Wψ,ϕ is bounded on H2 and z ∈ D .

Let ϕ be an automorphism of D and let ∂D denote the unit cir-

cle. Then ϕ is of the form ϕ(z) = az+b
bz+a for all z ∈ D, where a and

b in C with |a|2 − |b|2 = 1. When b 6= 0, it is easy to calculate that
iIm(a)±

√
|b|2−(Im(a))2

b are the fixed points of ϕ. If |Im(a)| = |b|, then ϕ
is called parabolic, and we say that ϕ is hyperbolic if |Im(a)| < |b|. If
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|Im(a)| > |b|, then ϕ is said to be elliptic. We note that ϕ is elliptic if
and only if one of its fixed points is inside D and another is outside D.
In this sense, this type also includes the case when b = 0, i.e., when 0
and ∞ are the fixed points of ϕ. Remark that ϕ is parabolic if and only
if it has only one fixed point lying on ∂D, while ϕ is hyperbolic if and
only if it has two fixed points lying on ∂D.

Let ϕ be an analytic selfmap of D. For each positive integer n, we
write ϕ1 := ϕ and ϕn+1 := ϕ ◦ϕn, which is called the iterate of ϕ for n.
If ϕ is not an elliptic automorphism of D, then for each z ∈ D there is a
(unique) point w in the closure of D such that

w = lim
n→∞

ϕn(z).

The point w called the Denjoy-Wolff point of ϕ and characterized as
follows: if |w| < 1, then ϕ(w) = w and |ϕ′(w)| < 1; if w ∈ ∂D, then
ϕ(w) = w and 0 < ϕ′(w) ≤ 1.

Let dθ denote the usual arc length measure on the unit circle ∂D.
For h ∈ L∞(∂D, dθ), the Toeplitz operator with symbol h, denoted Th,
is the operator on H2 defined by Th(f) = P (hf), where P denotes the
orthogonal projection of L2(∂D, dθ) onto H2.

In [7], Cowen and Ko characterized weighted composition operators
on H2. In [1], Bourdan and Narayan studied several properties of nor-
mal weighted composition operators on H2. Normal and cohyponormal
weighted composition studied in [6] by Cowen, Jung and Ko. In [10],
Fatehi, Shaabani and Thompson has been studied quasinormal and hy-
ponormal weighted composition operators on H2 and Bergman space
A2
α with linear fractional compositional symbol. In this note, we focus

on coposinormality of weighted composition operators on H2.

2 Main Results

Throughout this section, R(T ) and ker(T ) denote range and null space
of T ∈ B(H), respectively. Sadraoui [17, 18] studied hyponormality and
cohyponormality of composition operators by using [8, Theorem 1]. The
following result is due to [14].
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Proposition 2.1. ([14, Theorem 2.1]) For T ∈ B(H) the following
statements are equivalent:
(1) T is posinormal;
(2) R(T ) ⊆ R(T ∗);
(3) TT ∗ ≤ λ2T ∗T for some λ ≥ 0 ; and
(4) there exists a A ∈ B(H) such that T = T ∗A.

Let Th denotes the Toeplitz operator on H2 with symbol h. Let
ϕ is a linear fractional transformation that maps the disk into the
disk with ϕ(1) = 1, ϕ′(1) = s. Sadraoui [17, 18] proved that ϕ(z) =
(1+r+s)z+1−r−s
(1+r−s)z+1+s−r , where Re(r) ≤ 0 and 0 < s < 1.

If ϕ(z) = (1+r+s/2
√
s)z+(1−r−s)/2

√
s

(1+r−s/2
√
s)z+(1+s−r)/2

√
s

= az+b
cz+d and ψ(z) = az−c

−bz+d , then

A = Cψ−1◦ϕT−bz+dTzTaz−c is an operator on H2( see [17, Page 27]).

Theorem 2.2. Let ϕ(z) = az+b
cz+d and ψ(z) = az−c

−bz+d are as above. Then

Cϕ is coposinormal.

Proof. By [18, Theorem 2.4.3], Cϕ = AC∗ϕ. Then by a similar argument
as in the proof of [8, Theorem 1], we obtain that C∗ϕCϕ = CϕA

∗AC∗ϕ =
||A||2CϕC∗ϕ−Cϕ(||A||2−A∗A)C∗ϕ ≤ ||A||2CϕC∗ϕ. Hence the operator Cϕ
is coposinormal. �

The following example considered by Fatehi, Shaabani and Thomp-
son [10] to prove hyponormality TψCϕ. This is a narrowed example of
what Sadraoui [18] proved in section 2.5. Now we consider this example
for the study posinormality of weighted composition operator Wψ,ϕ on
H2.

Example 2.3. For 0 < s < 1, let
ψ(z) = 1

1−(1−s)z ,

ϕ(z) = sz
1−(1−s)z ,

τ(z) = sz+1−s
sz(1−s)+1−s+s2 ,

σ(z) = sz + 1− s,
and η(z) = s

sz(1−s)+1−s+s2 (see Example 3.6 of [10]). From [10], we

have Cσ = (TψCϕ)∗ and Cσ = TηCτTψCϕ. Let A = (TηCτ )∗. Then,
W ∗ψ,ϕ = (TψCϕ)∗ = Cσ = TηCτTψCϕ = A∗Wψ,ϕ. Hence by Proposition

2.1, it follows that Wψ,ϕ is posinormal on H2.
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Now we expand on Sadraoui’s example to construct weights f so that
Wfψ,ϕ is posinormal on H2.

Theorem 2.4. Suppose ϕ(z), ψ(z), τ(z), σ(z), and η(z) are as in Ex-
ample 2.3. Let f be such that f, 1

f ∈ H
∞. Suppose further that there

exist g ∈ H∞ such that g ◦ σ = f . Then Wfψ,ϕ is posinormal on H2.

Proof. Suppose ψ(z) = 1
1−(1−s)z , ϕ(z) = sz

1−(1−s)z , τ(z) = sz+1−s
sz(1−s)+1−s+s2 ,

σ(z) = sz + 1 − s, and η(z) = s
sz(1−s)+1−s+s2 . If A = (TηCτT

∗
g T 1

f
)∗,

then A∗Wfψ,ϕ = TηCτT
∗
g T 1

f
TfTψCϕ. Since g ◦ σ = f and C∗σ = (TψCϕ),

it follows that A∗Wfψ,ϕ = CσT
∗
f = (TfC

∗
σ)∗ = W ∗fψ,ϕ. Therefore, Wfψ,ϕ

is posinormal by Proposition 2.1. �

Example 2.5. Let ϕ(z), ψ(z), τ(z), σ(z), and η(z) are as in Example
2.3 with s = 1

2 . Take f(z) = 1
z+2 and g(z) = 1

2z+1 . Then Wfψ,ϕ is
posinormal. The inequality ||f(z)|| ≥ ||g(z)|| not true for all z ∈ D and
so Wfψ,ϕ is not hyponormal by [10, Theorem 3.7].

Let ϕ be an analytic self-map of D and ψ = Ka for some a ∈ D. If
Wψ,ϕ is hyponormal, then |ϕ(0)| ≤ |a| (see, [9, Proposition 3.4.]). Now
we prove the following result in a similar manner for posinormal operator
Wψ,ϕ.

Theorem 2.6. Let ϕ be an analytic self-map of D and ψ = Kz0 for
some z0 ∈ D. If Wψ,ϕ is posinormal, then λ2 − λ2|ϕ(0)|2 + |z0|2 − 1 ≥ 0
for some λ ≥ 0 .

Proof. Suppose Wψ,ϕ is posinormal. Since K0 ≡ 1, it follows that

1

1− |ϕ(0)|2
= 〈ψ(0)Kϕ(0), ψ(0)Kϕ(0)〉

= 〈Wψ,ϕW
∗
ψ,ϕK0,K0〉

≤ λ2〈W ∗ψ,ϕWψ,ϕK0,K0〉
= λ2〈ψ,ψ〉

=
λ2

1− |z0|2
.

This completes the proof. �
The following result is immediate.
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Corollary 2.7. Let ϕ be an analytic self-map of D and ψ = Kz0 for
some z0 ∈ D. If Wψ,ϕ is coposinormal, then λ2−λ2|z0|2 + |ϕ(0)|2−1 ≥ 0
for some λ ≥ 0.

Let ϕ be a nonconstant analytic function on D such that ϕ(D) ⊂ D
and let ψ ∈ H∞ be not identically zero on D. If Wψ,ϕ is cohyponormal
on H2, then ψ never vanishes on D and also ϕ is univalent(see [6]). Now
we will prove similar result for coposinormal operators by the method
of [1, Proposition 3],[6].

Lemma 2.8. Let ϕ be a nonconstant analytic function on D such that
ϕ(D) ⊂ D and let ψ ∈ H∞ be not identically zero on D. If Wψ,ϕ is
coposinormal on H2, then ψ never vanishes on D.

Proof. Suppose that Wψ,ϕ is coposinormal. Then from [14], we have
ker(W ∗ψ,ϕ) ⊆ ker(Wψ,ϕ). If f ∈ ker(Wψ,ϕ), then ψ.f ◦ ϕ ≡ 0 on D. Since
ψ is not identically zero on D and ϕ is nonconstant analytic function
on D, by the open mapping theorem, we have f ≡ 0 on D. Thus,
ker(Wψ,ϕ) = {0}. Since ker(W ∗ψ,ϕ) ⊆ ker(Wψ,ϕ) = {0} and ker(M∗ψ) ⊆
ker(W ∗ψ,ϕ), we have

ker(M∗ψ) = {0}.

Therefore by [2, Theorem 2.19] and [2, Corollary 2.10], R(Mψ) = H2.
Hence it follows that ψ is cyclic on H2 and hence ψ is an outer function
by [12, Corollary 1.5]. In particular, ψ never vanishes on D. �

Theorem 2.9. Let ϕ be a nonconstant analytic function on D such that
ϕ(D) ⊂ D and let ψ ∈ H∞ be not identically zero on D. If Wψ,ϕ is
coposinormal on H2, then ϕ is univalent.

Proof. Suppose that Wψ,ϕ is coposinormal. Assume that there are
distinct points z1 and z2 in D such that ϕ(z1) = ϕ(z2). From Lemma

2.8, we obtain that ψ(z1) 6= 0 and ψ(z2) 6= 0. Set h =
Kz1
ψ(z1)

− Kz2
ψ(z2)

.

Then h is a nonzero vector on H2(D). By equation (1), we obtain that
W ∗ψ,ϕh ≡ 0. Since W ∗ψ,ϕ is posinormal on H2(D), it holds Wψ,ϕh = 0.
That is ψ(z)h(ϕ(z)) = 0 for each z ∈ D. Since ψ never vanish on D and
since ϕ is nonconstant analytic function on D such that ϕ(D) ⊂ D, by
the open mapping theorem h ≡ 0 on D, which is a contradiction. This
completes the proof. �
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Cowen, Jung, and Ko[6] has been studed cyclic and commutant of
cohyponormal weighted composition operators. Now we extend these
results to coposinormal weighted composition operators by the method
of [6].

Theorem 2.10. Let ϕ be a nonconstant analytic function on D such
that ϕ(D) ⊂ D, not an elliptic automorphism of D, with ϕ(w) = w for
some w ∈ D, and let ψ ∈ H∞ \ {0}. If Wψ,ϕ is coposinormal on H2(D),
then W ∗ψ,ϕ is cyclic.

Proof. Let f ∈ H2 such that f⊥
∨∞
n=0(W ∗ψ,ϕ)nKz0 for an arbitrary

point z0 ∈ D not equal to w. By [20, Lemma 1] and [19, Section 5.2,
Proposition 1], notice that the sequence {ϕn(z0)}∞n=0 consists of points
in D which converges to w. We have

0 = 〈f, (W ∗ψ,ϕ)nKz0〉 = 〈(Wψ,ϕ)nf,Kz0〉.

Since the equality Wn
ψ,ϕ = Wψ.(ψ◦ϕ).(ψ◦ϕ2)...(ψ◦ϕn−1),ϕn holds for any pos-

itive integer n, the following equality

ψ(z0)ψ(ϕ(z0))ψ(ϕ2(z0))....ψ(ϕn−1(z0))f(ϕn(z0)) = 0

holds for any positive integer n. Since Wψ,ϕ is coposinormal, ψ never
vanishes on D by Lemma 2.8. Hence we have f(ϕn(z0)) = 0 for any
positive integer n. Then by identity theorem we have f ≡ 0 and so
H2 =

∨∞
n=0(W ∗ψ,ϕ)nKz0 . This completes the proof. �

Set of all operators which commute with a fixed operator T forms a
weakly closed algebra which is called the commutant of T . Commutant
of T ∈ B(H) is denoted by {T}′. Next we study the commutant of a
coposinormal weighted composition operators.

Theorem 2.11. Let ϕ be a nonconstant analytic function on D such
that ϕ(D) ⊂ D with the Denjoy-Wolff point w ∈ D and let ψ ∈ H∞ be
not identically zero on D. Suppose that Wψ,ϕ is coposinormal on H2(D).
If φ is an analytic self map of D and τ ∈ H∞ such that τ(w) 6= 0 and
Wτ,φ ∈ {Wψ,ϕ}′, then w is a fixed point of φ.

Proof. Suppose that Wτ,φ ∈ {Wψ,ϕ}′. From the equalities W ∗τ,φW
∗
ψ,ϕKw

= ψ(w)τ(ϕ(w))Kφ(ϕ(w)) and W ∗ψ,ϕW
∗
τ,φKw = τ(w)ψ(φ(w))Kϕ(φ(w)), it
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follows that

ψ(w)τ(ϕ(w))Kφ(ϕ(w)) = τ(w)ψ(φ(w))Kϕ(φ(w)).

Since ϕ(w) = w and τ(w) 6= 0 for w ∈ D, we obtain that

ψ(w)Kφ(w) = ψ(φ(w))Kϕ(φ(w)).

Thus, for all z ∈ D, we have

ψ(w)− ψ(w)ϕ(φ(w))z = ψ(φ(w))− ψ(φ(w))φ(w)z.

Thus, ψ(w) = ψ(φ(w)) and ψ(w)ϕ(φ(w)) = ψ(φ(w))ϕ(φ(w)). From
these equalities, we have ψ(w)ϕ(φ(w)) = ψ(w)φ(w). Since Wψ,ϕ is
coposinormal on H2(D), ψ never vanishes on D by Lemma 2.8. Hence,
ϕ(φ(w)) = φ(w) ∈ D. Now the iterates ϕn converges uniformly to w
and ϕn converges uniformly to φ(w) by the Denjoy-Wolff Theorem and
hence w is a fixed point of φ. �

Corollary 2.12. Let ϕ be a nonconstant analytic function on D such
that ϕ(D) ⊂ D with the Denjoy Wolff point w ∈ D and let ψ ∈ H∞ be
not identically zero on D. Suppose that Wψ,ϕ is coposinormal on H2(D).
If φ is an analytic self map of D and τ ∈ H∞ such that τ(z) 6= 0 and
Wτ,φ ∈ {Wψ,ϕ}′, then {f ∈ H2 : f(w) = 0} is an invariant subspace for
Wτ,φ.

Proof. From Theorem 2.11, we have φ(w) = w. Thus for all f ∈ H2,
(Wτ,φf)(w) = τ(w)f(w). Hence, {f ∈ H2 : f(w) = 0} is a invariant
subspace for Wτ,φ. �

Acknowledgements
The author would like to express sincere thanks to the referee for the
helpful comments and suggestions.

References

[1] P. Bourdan and S. K. Narayan, Normal weighted composition op-
erator on the Hardy space H2(D), J. Math. Anal. Appl., 367(2010),
278-286.



COPOSINORMAL WEIGHTED COMPOSITION OPERATORS.... 9

[2] J. B. Conway, A Course in Functional Analysis,, Second Edition,
Springer-Verlag, New York, 1990.

[3] C.C. Cowen, Composition operators on H2, J. Operator Theory.,
9(1983), 77-106.

[4] C.C. Cowen, Linear fractional composition operator on H2, Integral
Equations Operator Theory., 11(1988), 151-160.

[5] C.C. Cowen, B.D. MacCluer, Composition operators on spaces of
analytic functions, CRC Press, 1995.

[6] C. C. Cowen, S. Jung, and E. Ko, Normal and cohyponormal
weighted composition operators, Operator Theory: Adv and Appl.,
240(2014), 69-85.

[7] C.C. Cowen and E. Ko, Hermitian weighted composition operators
on H2, Trans. Amer. Math. Soc., 362(2010), 5771-5805.

[8] R. G. Douglas, On Majorization, Factorization, and Range Inclu-
sion of Operators on Hilbert Spaces, Proc. Amer. Math. Soc., 17
(1966), 413-415.

[9] M. Fatehi, M. Shaabani, Normal, cohyponormal and normaloid
weighted composition operators on the Hardy and weighted
Bergman spaces, J. Korean Math. Soc., 54 (2017), 599-612.

[10] M. Fatehi, M. Shaabani and D.Thompson, Quasinormal and hy-
ponormal weighted composition operators on H2 and A2

α a with
linear fractional compositional symbol, Complex Anal. Oper. The-
ory., 12(2018), 1767-1778 .

[11] G. Gunatillake , Weighted composition operators, Ph. D Thesis,
Purde Univ, 1992.

[12] A. Hanine, Cyclic vectors in some spaces of analytic functions, PhD
diss., Aix-Marseille, 2013.

[13] T. Le and H. C. Rhaly, Coposinormality of the Cesàro matrices,
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