Journal of Mathematical Extension
Vol. 15, No. 2, (2021) (12)1-11
URL: https://doi.org/10.30495/JME.2021.1403
ISSN: 1735-8299
Original Research Paper

On (n, m)-Jordan Homomorphisms on Algebras

M. Neghabi
Islamic Azad University of South Tehran

A. Bodaghi ${ }^{*}$

Islamic Azad University of Garmsar

A. Zivari-Kazempour

Ayatollah Borujerdi University

Abstract

In this paper, it is shown that every (n, m)-Jordan homomorphism between two commutative algebras is an (n, m)-homomorphism. For the non-commutative case, it is proved that every surjective $(2, m)$ Jordan homomorphism from an algebra \mathcal{A} into a semiprime commutative algebra \mathcal{B} is a $(2, m)$-homomorphism.

AMS Subject Classification: Primary 47B48; Secondary 46L05, 46H25 Keywords and Phrases: n-homomorphism, n-Jordan homomorphism, (n, m)-Jordan homomorphism, semisimple.

1 Introduction and Preliminaries

Let \mathcal{A} and \mathcal{B} be complex algebras and $\varphi: \mathcal{A} \longrightarrow \mathcal{B}$ be a linear map. Then, φ is called an n-homomorphism if for all $a_{1}, a_{2}, \ldots, a_{n} \in \mathcal{A}$,

$$
\varphi\left(a_{1} a_{2} \cdots a_{n}\right)=\varphi\left(a_{1}\right) \varphi\left(a_{2}\right) \cdots \varphi\left(a_{n}\right) .
$$

[^0]The concept of an n-homomorphism was introduced and studied for complex algebras in [5] and [7]. Moreover, φ is called an n-Jordan homomorphism if

$$
\varphi\left(a^{n}\right)=\varphi(a)^{n}, \quad(a \in \mathcal{A})
$$

This notion was introduced by Herstein in [8]. A 2-homomorphism (resp. 2 -Jordan homomorphism) is called simply a homomorphism (resp. Jordan homomorphism). Obviously, every n-homomorphism is an n-Jordan homomorphism, but the converse is not valid in general. It is shown in [9] that some Jordan homomorphism on the polynomial rings can not be homomorphism. For Jordan homomorphisms on Banach algebras, Zelazko in [13] presented the following result (see also [11] for an alternative proof).

Theorem 1.1. Suppose that \mathcal{A} is a Banach algebra, which need not be commutative, and suppose that \mathcal{B} is a semisimple commutative Banach algebra. Then, each Jordan homomorphism $\varphi: \mathcal{A} \longrightarrow \mathcal{B}$ is a homomorphism.

Next, the above result has been proved by the third author in [14] for 3-Jordan homomorphism with the extra condition that the Banach algebra \mathcal{A} is unital. Recently, the second author and İnceboz extended Theorem 1.1 for $n \in\{3,4\}$ in [4] without the condition that \mathcal{A} is unital by considering an alternative condition on n-Jordan homomorphisms. For the general case, G. An [1] extended the mentioned results for all $n \in \mathbb{N}$ and showed that for a unital ring \mathcal{A} and a $\operatorname{ring} \mathcal{B}$ with $\operatorname{char}(\mathcal{B})>n$, every n-Jordan homomorphism from \mathcal{A} into \mathcal{B} is an n-homomorphism provided that every Jordan homomorphism from \mathcal{A} into \mathcal{B} is a homomorphism. For different proofs of the case that \mathcal{A} and \mathcal{B} are commutative algebras, we refer to [3], [6] and [10]. We also refer to [12] for characterization of mixed n-Jordan homomorphisms and pseudo n-Jordan homomorphisms.

In this paper, we show that every (n, m)-Jordan homomorphism φ : $\mathcal{A} \longrightarrow \mathcal{B}$ between two commutative algebras is an (n, m)-homomorphism. In addition, we prove that every unital $(n+1, m)$-Jordan homomorphism $\varphi: \mathcal{A} \longrightarrow \mathcal{B}$ is an (n, m)-Jordan homomorphism. As a result, every uni$\operatorname{tal}(2, m)$-Jordan homomorphism $\varphi: \mathcal{A} \longrightarrow \mathcal{B}$ is a $\left(2, m^{n-1}\right)$-Jordan homomorphism, for $n \geq 2$. Furthermore, for an algebra \mathcal{A} and a semiprime
commutative algebra \mathcal{B} we show that each surjective ($2, m$)-Jordan homomorphism $\varphi: \mathcal{A} \longrightarrow \mathcal{B}$ can be a $(2, m)$-homomorphism.

2 (n, m)-Jordan homomorphisms

Let $m \in \mathbb{Z} \backslash\{0\}$ be fixed, \mathcal{A} and \mathcal{B} be complex algebras and $\varphi: \mathcal{A} \longrightarrow \mathcal{B}$ be a linear map. Then, φ is called an (n, m)-homomorphism if for all $a_{1}, a_{2}, \ldots, a_{n} \in \mathcal{A}$,

$$
\varphi\left(a_{1} a_{2} \cdots a_{n}\right)=m \varphi\left(a_{1}\right) \varphi\left(a_{2}\right) \cdots \varphi\left(a_{n}\right) .
$$

Moreover, the mapping φ is said to be an (n, m)-Jordan homomorphism if

$$
\varphi\left(a^{n}\right)=m \varphi(a)^{n}, \quad a \in \mathcal{A} .
$$

The concept of (n, m)-Jordan homomorphism was recently introduced by the third author in [15]. Clearly, $(n, 1)$-homomorphism and ($n, 1$)-Jordan homomorphism coincide with the classical definitions of n-homomorphism and n-Jordan homomorphism, respectively.

Note that every n-Jordan homomorphism is not necessarily (n, m)Jordan homomorphism for $m \neq 1$ and vice versa in general. For example, define $\varphi: \mathbb{R} \longrightarrow \mathbb{R}$ by $\varphi(x)=\frac{1}{2} x$. Then, φ is not n-Jordan homomorphism, but for $m=2^{(n-1)}$ it is (n, m)-Jordan homomorphism. We bring the next example which is presented in [15].

Example 2.1. Let

$$
\mathcal{A}=\left\{\left[\begin{array}{cc}
X & 0 \\
0 & Y
\end{array}\right]: \quad X, Y \in M_{2}(\mathbb{C})\right\}
$$

and consider the mapping $\varphi: \mathcal{A} \longrightarrow \mathcal{A}$ defined through

$$
\varphi\left(\left[\begin{array}{cc}
X & 0 \\
0 & Y
\end{array}\right]\right)=\frac{1}{k}\left[\begin{array}{cc}
X & 0 \\
0 & Y^{T}
\end{array}\right]
$$

for each $k \in \mathbb{N}$, where Y^{T} is the transpose of matrix Y. For all $U \in \mathcal{A}$, we have
$\varphi\left(U^{n}\right)-k^{(n-1)} \varphi(U)^{n}=\frac{1}{k}\left[\begin{array}{cc}X^{n} & 0 \\ 0 & \left(Y^{n}\right)^{T}\end{array}\right]-k^{(n-1)} \frac{1}{k^{n}}\left[\begin{array}{cc}X^{n} & 0 \\ 0 & \left(Y^{T}\right)^{n}\end{array}\right]=0$.

Thus, φ is (n, m)-Jordan homomorphism for $m=k^{(n-1)}$ but not (n, m) homomorphism.

In the sequel, $\binom{n}{k}$ is the binomial coefficient defined for all $n, k \in$ \mathbb{N} with $n \geq k$ by $n!/(k!(n-k)!)$.

To achieve some main results in this section, we need the following lemma which is proved in [3, Lemma 2.1].

Lemma 2.2. If $x_{1}, x_{2}, \cdots, x_{n} \in \mathbb{R}$, then

$$
\operatorname{det}\left(\left[\begin{array}{cccc}
x_{1} & x_{1}^{2} & \cdots & x_{1}^{n} \\
x_{2} & x_{2}^{2} & \cdots & x_{2}^{n} \\
\vdots & \vdots & \ddots & \vdots \\
x_{n} & x_{n}^{2} & \cdots & x_{n}^{n}
\end{array}\right]\right)=(-1)^{\frac{n(n-1)}{2}} \prod_{k=1}^{n} x_{k} \prod_{i<j}\left(x_{i}-x_{j}\right)
$$

For $m=1$, the next result is Theorem 2.7 of [16]. Here, we generalize it for all $m \in \mathbb{Z} \backslash\{0\}$.

Theorem 2.3. Every unital $(n+1, m)$-Jordan homomorphism $\varphi: \mathcal{A} \longrightarrow$ \mathcal{B} is an (n, m)-Jordan homomorphism.

Proof. We firstly have

$$
\begin{equation*}
\varphi\left((a+l e)^{n+1}\right)=m(\varphi(a+l e))^{n+1} \tag{1}
\end{equation*}
$$

for all $a \in \mathcal{A}$, where l is an integer with $1 \leq l \leq n$ and e is the identity of \mathcal{A}. It follows from equality (1) and assumption that

$$
\begin{equation*}
\sum_{i=1}^{n} l^{n+1-i}\binom{n+1}{i}\left[\varphi\left(a^{i}\right)-m \varphi(a)^{i}\right]=0, \quad(1 \leq l \leq n) \tag{2}
\end{equation*}
$$

for all $a \in \mathcal{A}$. We can represent the equalities in (2) as the matrix form

$$
\left[\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
2^{n} & 2^{n-1} & \cdots & 2 \\
3^{n} & 3^{n-1} & \cdots & 3 \\
\vdots & \vdots & \ddots & \vdots \\
n^{n} & n^{n-1} & \cdots & n
\end{array}\right]\left[\begin{array}{c}
\Gamma_{1}(a) \\
\Gamma_{2}(a) \\
\Gamma_{3}(a) \\
\vdots \\
\Gamma_{n}(a)
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
0 \\
\vdots \\
0
\end{array}\right]
$$

where $\Gamma_{i}(a)=\binom{n+1}{i}\left[\varphi\left(a^{i}\right)-m \varphi(a)^{i}\right]$ for all $1 \leq i \leq n$ and $a \in \mathcal{A}$. Since the above square matrix is invertible (Lemma 2.2), $\Gamma_{i}(a)$ should be zero for all $1 \leq i \leq n$ and all $a \in \mathcal{A}$. In particular, $\Gamma_{n}(a)=0$. This means that φ is a (n, m)-Jordan homomorphism.

The proof technique of the following theorem is taken from [3, Theorem 2.2]. We include some parts for the sake of completeness.

Theorem 2.4. Every (n, m)-Jordan homomorphism between two commutative algebras \mathcal{A} and \mathcal{B} is an (n, m)-homomorphism.

Proof. Assume that $\varphi: \mathcal{A} \longrightarrow \mathcal{B}$ is an (n, m)-Jordan homomorphism. By assumption, we have $\varphi\left((x+k y)^{n}\right)=m(\varphi(x+k y))^{n}$ for all $x, y \in \mathcal{A}$, where k is an integer with $2 \leq k \leq n$. Thus

$$
\varphi\left(\sum_{j=0}^{n}\binom{n}{k} k^{j} x^{n-j} y^{j}\right)=\sum_{j=0}^{n}\binom{n}{k} k^{j} m \varphi(x)^{n-j} \varphi(y)^{j}
$$

for all $x, y \in \mathcal{A}$. Similar to the proof of $[3$, Theorem 2.2], one can show that $F_{j}(x, y)=0$ for all $1 \leq j \leq n-1$ and all $x, y \in \mathcal{A}$, where $F_{j}(x, y)=$ $\binom{n}{j}\left[\varphi\left(x^{n-j} y^{j}\right)-m(\varphi(x))^{n-j}(\varphi(y))^{j}\right]$. In particular, $F_{n-1}(x, y)=0$ for all $x, y \in \mathcal{A}$. Hence,

$$
\varphi\left(x y^{n-1}\right)=m \varphi(x)(\varphi(y))^{n-1}
$$

for all $x, y \in \mathcal{A}$. Moreover, similar to the second part of mentioned proof, one can conclude that

$$
\varphi\left(x_{1} x_{2} \cdots x_{l} x_{l+1}^{n-l}\right)=m \varphi\left(x_{1}\right) \varphi\left(x_{2}\right) \cdots \varphi\left(x_{l}\right) \varphi\left(x_{l+1}^{n-l}\right)
$$

for all $1 \leq l \leq n-1$ and all $x_{1}, x_{2}, \ldots, x_{l}, x_{l+1} \in \mathcal{A}$. This means that φ is an (n, m)-homomorphism.

Proposition 2.5. Every $(2, m)$-Jordan homomorphism φ between algebras \mathcal{A} and \mathcal{B} is $\left(n, m^{n-1}\right)$-Jordan homomorphism, for $n \geq 2$.

Proof. We argue by induction on n. In other words, we suppose that φ is $\left(k, m^{k-1}\right)$-Jordan homomorphism, for $k \geq 2$ and then prove that it is
$\left(k+1, m^{k}\right)$-Jordan homomorphism. By assumption, we have $\varphi\left(a^{2}\right)=$ $m \varphi(a)^{2}$, for all $a \in \mathcal{A}$. Replacing a by $a+b$, we get

$$
\begin{equation*}
\varphi(a b+b a)=m(\varphi(a) \varphi(b)+\varphi(b) \varphi(a)) . \tag{3}
\end{equation*}
$$

Interchanging b by a^{2} in (3), gives

$$
\varphi\left(a^{3}\right)=m^{2} \varphi(a)^{3}
$$

for all $a \in \mathcal{A}$, and so φ is ($3, m^{2}$)-Jordan homomorphism. Substituting b by a^{k} in (3), we find

$$
\begin{equation*}
2 \varphi\left(a^{k+1}\right)=m\left(\varphi(a) \varphi\left(a^{k}\right)+\varphi\left(a^{k}\right) \varphi(a)\right), \quad(a \in \mathcal{A}) \tag{4}
\end{equation*}
$$

On the other hand, we have

$$
\begin{equation*}
\varphi\left(a^{k}\right)=m^{k-1} \varphi(a)^{k} \tag{5}
\end{equation*}
$$

for all $a \in \mathcal{A}$. By (4) and (5), we obtain $\varphi\left(a^{k+1}\right)=m^{k} \varphi(a)^{k+1}$.
The next corollary is a direct consequence of Theorem 2.3 and Proposition 2.5 and so we include it without proof.

Corollary 2.6. Every unital ($2, m$)-Jordan homomorphism $\varphi: \mathcal{A} \longrightarrow \mathcal{B}$ is a $\left(2, m^{n-1}\right)$-Jordan homomorphism, for $n \geq 2$.

The upcoming lemma help us to show that each surjective $(2, m)$ Jordan homomorphism is a $(2, m)$-homomorphism under some mild conditions on algebras.

Lemma 2.7. Suppose that $\varphi: \mathcal{A} \longrightarrow \mathcal{B}$ is a (2,m)-Jordan homomorphism. Then
(1) $\varphi(a b a)=m^{2} \varphi(a) \varphi(b) \varphi(a)$;
(2) $\varphi(a b c+c b a)=m^{2}(\varphi(a) \varphi(b) \varphi(c)+\varphi(c) \varphi(b) \varphi(a))$,
for all $a, b, c \in \mathcal{A}$.

Proof. Let φ be a $(2, m)$-Jordan homomorphism. Then, $\varphi\left(a^{2}\right)=$ $m \varphi(a)^{2}$, for all $a \in \mathcal{A}$. Replacing a by $a+b$, we get

$$
\begin{equation*}
\varphi(a b+b a)=m(\varphi(a) \varphi(b)+\varphi(b) \varphi(a)), \tag{6}
\end{equation*}
$$

for all $a, b \in \mathcal{A}$. Interchanging a by a^{2} in (6), we have

$$
\begin{equation*}
\varphi\left(a^{2} b+b a^{2}\right)=m^{2}\left(\varphi(a)^{2} \varphi(b)+\varphi(b) \varphi(a)^{2}\right), \tag{7}
\end{equation*}
$$

for all $a, b \in \mathcal{A}$. Once more, by switching b into $a b+b a$ in (6), we obtain

$$
\varphi(a(a b+b a)+(a b+b a) a)=m(\varphi(a) \varphi(a b+b a)+\varphi(a b+b a) \varphi(a))
$$

and hence by (6), we arrive at

$$
\begin{equation*}
\varphi\left(a^{2} b+2 a b a+b a^{2}\right)=m^{2}\left(\varphi(a)^{2} \varphi(b)+\varphi(b) \varphi(a)^{2}\right)+2 m^{2} \varphi(a) \varphi(b) \varphi(a), \tag{8}
\end{equation*}
$$

for all $a, b \in \mathcal{A}$. Subtraction (7) from (8), gives

$$
\begin{equation*}
\varphi(a b a)=m^{2} \varphi(a) \varphi(b) \varphi(a) . \tag{9}
\end{equation*}
$$

Therefore, part (1) is shown. Now, let $a, b, c \in \mathcal{A}$ be arbitrary. We have

$$
a b c+c b a=(a+c) b(a+c)-a b a-c b c,
$$

and so by (9), we find

$$
\begin{aligned}
\varphi(& (a b c+c b a) \\
= & \varphi((a+c) b(a+c))-\varphi(a b a)-\varphi(c b c) \\
= & m^{2}(\varphi(a+c) \varphi(b) \varphi(a+c)-\varphi(a) \varphi(b) \varphi(a)-\varphi(c) \varphi(b) \varphi(c)) \\
= & m^{2}([\varphi(a) \varphi(b)+\varphi(c) \varphi(b)] \varphi(a+c)-\varphi(a) \varphi(b) \varphi(a)-\varphi(c) \varphi(b) \varphi(c)) \\
= & m^{2}(\varphi(a) \varphi(b) \varphi(a)+\varphi(a) \varphi(b) \varphi(c)+\varphi(c) \varphi(b) \varphi(a)+\varphi(c) \varphi(b) \varphi(c) \\
& \quad-\varphi(a) \varphi(b) \varphi(a)-\varphi(c) \varphi(b) \varphi(c)) \\
= & m^{2}(\varphi(a) \varphi(b) \varphi(c)+\varphi(c) \varphi(b) \varphi(a)) .
\end{aligned}
$$

Thus, $\varphi(a b c+c b a)=m^{2}(\varphi(a) \varphi(b) \varphi(c)+\varphi(c) \varphi(b) \varphi(a))$, for all $a, b, c \in$ \mathcal{A}, which completes the proof.

For a commutative ring \mathcal{R}, a proper ideal \mathcal{I} is a semiprime ideal if \mathcal{I} satisfies either of the following equivalent conditions:

- If x^{k} is in \mathcal{I} for some positive integer k and element x of \mathcal{R}, then x is in \mathcal{I}.
- If y is in \mathcal{R} but not in \mathcal{I}, all positive integer powers of y are not in \mathcal{I}.

A ring \mathcal{R} is called semiprime if the zero ideal is a semiprime ideal. A left ideal \mathcal{I} of an algebra \mathcal{A} is a modular left ideal if there exists $u \in \mathcal{A}$ such that $\mathcal{A}\left(e_{\mathcal{A}}-u\right) \subseteq \mathcal{I}$, where $\mathcal{A}\left(e_{\mathcal{A}}-u\right)=\{x-x u: x \in \mathcal{A}\}$. The Jacobson radical $\operatorname{Rad}(\mathcal{A})$ of \mathcal{A} is the intersection of all maximal modular left ideals of \mathcal{A}. An algebra \mathcal{A} is called semisimple whenever its Jacobson radical $\operatorname{Rad}(\mathcal{A})$ is trivial.

It is known that every semisimple algebra is semiprime [2], but the converse is not generally true. For a semiprime algebra \mathcal{B}, the next result characterizes $(2, m)$-Jordan homomorphisms.

Theorem 2.8. Let \mathcal{A} be an algebra, and \mathcal{B} be a semiprime commutative algebra. Then, each surjective (2,m)-Jordan homomorphism $\varphi: \mathcal{A} \longrightarrow$ \mathcal{B} is a $(2, m)$-homomorphism.

Proof. Suppose that $t=\varphi(a b)-m \varphi(a) \varphi(b)$. By assumption, for any $y \in \mathcal{B}$ there exists $x \in \mathcal{A}$ such that $y=\varphi(x)$. By Lemma 2.7, we have

$$
\begin{align*}
t y t= & \varphi(a b) \varphi(x) \varphi(a b)+m^{2} \varphi(a) \varphi(b) \varphi(x) \varphi(a) \varphi(b) \\
& -2 m \varphi(a b) \varphi(x) \varphi(a) \varphi(b) \\
= & \frac{1}{m^{2}} \varphi(a b x a b)+\varphi(a) \varphi(b x b) \varphi(a)-2 m \varphi(a b) \varphi(x) \varphi(a) \varphi(b) \\
= & \frac{1}{m^{2}} \varphi(a b x a b)+\frac{1}{m^{2}} \varphi(a b x b a)-2 m \varphi(a b) \varphi(x) \varphi(a) \varphi(b) . \tag{10}
\end{align*}
$$

Similarly,

$$
\begin{equation*}
t y t=\frac{1}{m^{2}} \varphi(a b x a b)+\frac{1}{m^{2}} \varphi(b a x a b)-2 m \varphi(a b) \varphi(x) \varphi(a) \varphi(b) . \tag{11}
\end{equation*}
$$

Plugging (10) into (11), we conclude that

$$
\begin{aligned}
2 t y t= & t y t+t y t \\
= & \frac{2}{m^{2}} \varphi(a b x a b)+\frac{1}{m^{2}} \varphi(a b x b a)+\frac{1}{m^{2}} \varphi(b a x a b) \\
& -m[(\varphi(a) \varphi(b)+\varphi(b) \varphi(a)) \varphi(x) \varphi(a b) \\
& +\varphi(a b) \varphi(x)(\varphi(a) \varphi(b)+\varphi(b) \varphi(a))] \\
= & \frac{2}{m^{2}} \varphi(a b x a b)+\frac{1}{m^{2}} \varphi(a b x b a)+\frac{1}{m^{2}} \varphi(b a x a b) \\
& -\frac{1}{m^{2}} \varphi[(a b+b a) x(a b)+(a b) x(a b+b a)] \\
= & 0
\end{aligned}
$$

Therefore, tyt $=0$. Since \mathcal{B} is semiprime, we have $t=0$ and so $\varphi(a b)=$ $m \varphi(a) \varphi(b)$ which finishes the proof.

Corollary 2.9. Let \mathcal{A} be a unital algebra, and \mathcal{B} be a semiprime commutative algebra. If $\varphi: \mathcal{A} \longrightarrow \mathcal{B}$ is a surjective $\left(3, m^{2}\right)$-Jordan homomorphism, then φ is either $(2, m)$-homomorphism or $(2,-m)$-homomorphism.

Proof. The result follows immediately from Theorem 2.8 and Lemma 2.4 of [15].

As a consequence of the preceding corollary, we have the next result.
Corollary 2.10. Suppose that \mathcal{A} is a unital algebra and \mathcal{B} is a semiprime commutative algebra. Then, each surjective $\left(3, m^{2}\right)$-Jordan homomorphism $\varphi: \mathcal{A} \longrightarrow \mathcal{B}$ is a $\left(3, m^{2}\right)$-homomorphism.

Acknowledgments

The authors would like to thank the reviewers for careful reading of the paper and giving some useful comments.

References

[1] G. An, Characterization of n-Jordan homomorphism, Linear Multilinear Algebra, 66 (4) (2018), 671-680.
[2] F. F. Bonsall and J. Duncan, Complete normed algebra, SpringerVerlag, New York, (1973).
[3] A. Bodaghi and H. İnceboz, n-Jordan homomorphisms on commutative algebras, Acta. Math. Univ. Comenianae., 87 (1), (2018), 141-146 .
[4] A. Bodaghi and H. İnceboz, Extension of Zelazko's theorem to nJordan homomorphisms, Adv. Pure Appl. Math., 10 (2019), no. 2, 165-170.
[5] J. Brac̆ič and M. S. Moslehian, On automatic continuity of 3homomorphisms on Banach algebras, Bull. Malaysian Math. Sci. Soc., 30 (2), (2007), 195-200.
[6] E. Gselmann, On approximate n-Jordan homomorphisms, Annales Math. Silesianae., 28 (2014), 47-58.
[7] Sh. Hejazian, M. Mirzavaziri and M. S. Moslehian, nhomomorphisms, Bull. Iranian Math. Soc., 31 (1), (2005), 13-23.
[8] I. N. Herstein, Jordan homomorphisms, Trans. Amer. Math. Soc., 81 (1), (1956), 331-341.
[9] N. Jacobson and C. E. Rickart, Jordan homomorphisms of rings, Trans. Amer. Math. Soc., 69 (3), (1950), 479-502.
[10] Y. H. Lee, Stability of n-Jordan homomorphisms from a normed algebra to a Banach algebra, Abst. Appli. Anal., 2013, Article ID 691025, (2013), 5 pages.
[11] T. Miura, S. E. Takahasi, and G. Hirasawa, Hyers-Ulam-Rassias stability of Jordan homomorphisms on Banach algebras, J. Ineq. Appl., 2005 (4), (2005), 435-441.
[12] M. Neghabi, A. Bodaghi and A. Zivari-Kazempour, Characterization of mixed n-Jordan homomorphisms and pseudo n-Jordan homomorphisms, Filomat, 34 (2020), no. 6, 1989-2002.
[13] W. Zelazko, A characterization of multiplicative linear functionals in complex Banach algebras, Studia Math., 30 (1968), 83-85.
[14] A. Zivari-Kazempour, A characterization of 3-Jordan homomorphism on Banach algebras, Bull. Aust. Math. Soc., 93 (2), (2016), 301-306.
[15] A. Zivari-Kazempour, Characterization of (n, m)-Jordan homomorphisms, Bull. TICMI, 23 (1), (2019), 25-33.
[16] A. Zivari-Kazempour, Automatic continuity of n-Jordan homomorphisms on Banach algebras, Commun. Korean Math. Soc., 33 (1), (2018), 165-170.

Masoumeh Neghabi

Ph.D Student of Mathematics
Department of Mathematics
South Tehran Branch, Islamic Azad University
Tehran, Iran
E-mail: m.neghabi114@gmail.com

Abasalt Bodaghi

Professor of Mathematics
Department of Mathematics
Garmsar Branch, Islamic Azad University
Garmsar, Iran
E-mail: abasalt.bodaghi@gmail.com

Abbas Zivari-Kazempour

Assistant Professor of Mathematics
Department of Mathematics
Ayatollah Borujerdi University
Borujerd, Iran
E-mail: zivari@abru.ac.ir

[^0]: Received: September 2019; Accepted: February 2020
 *Corresponding Author

