Journal of Mathematical Extension Vol. 16, No. 7, (2022) (1)1-8 URL: https://doi.org/10.30495/JME.2022.1395 ISSN: 1735-8299 Original Research Paper

Some Cohomological Properties of Banach Algebras

M. Shams Kojanaghi

Science and Research Branch, Islamic Azad University

K. Haghnejad Azar^{*}

University of Mohaghegh Ardabili

M. R. Mardanbeigi

Science and Research Branch, Islamic Azad University

Abstract. In this manuscript, we investigate and study some cohomological properties of Banach algebras. Let A be a Banach algebra with a bounded left approximate identity, and let B be a Banach A – bimodule. We show that if AB^{**} and $B^{**}A$ are subset of B, then $H^1(A, B^{(2n+1)}) = 0$ for all $n \ge 0$, whenever $H^1(A, B^*) = 0$.

AMS Subject Classification: Primary 46L06; 46L07; 46L10; Secondary 47L25

Keywords and Phrases: Amenability, weak amenability, cohomological groups.

Received: September 2019; Accepted: June 2020 *Corresponding Author

1 Introduction

Let B be a Banach A - bimodule. A derivation from A into B is a bounded linear mapping $D: A \to B$ such that,

$$D(xy) = xD(y) + D(x)y, \ (x, y \in A).$$

The space of continuous derivations from A into B is denoted by $Z^1(A, B)$. Easy example of derivations are the inner derivations, which are given for each $b \in B$ by

$$\delta_b(a) = ab - ba, \ (a \in A).$$

The space of inner derivations from A into B is denoted by $N^1(A, B)$. The first cohomology group of A with coefficients in B is defined to be the quotient space $H^1(A, B) = Z^1(A, B)/N^1(A, B)$. Thus $H^1(A, B) = \{0\}$ if and only if each continuous derivation from A into B is inner. According to the classical definition, a Banach algebra A is amenable if and only if for each Banach A-bimodule B, every derivation from A into B^* is inner i.e. A is amenable if and only if $H^1(A, B^*) = \{0\}$, for every Banach A-bimodule B. The concept of amenability for a Banach algebra A, was introduced by Johnson in 1972, has proved to be of enormous importance problems in Banach algebra theory, see [4].

Let X, Y, Z be normed spaces and let $m : X \times Y \to Z$ be a bounded bilinear mapping. Arens [1] offers two natural extensions m^{***} and m^{t***t} from $X^{**} \times Y^{**}$ into Z^{**} that he called m is Arens regular whenever $m^{***} = m^{t***t}$, for more information see [1] or [7]. Regarding A as a Banach A - bimodule, the operation $\pi : A \times A \to A$ extends to π^{***} and π^{t***t} defined on $A^{**} \times A^{**}$. These extensions are known, respectively, as the first (left) and the second (right) Arens products, and with each of them, the second dual space A^{**} becomes a Banach algebra. The regularity of a normed algebra A is defined to be the regularity of its algebra multiplication when considered as a bilinear mapping. Suppose that A is a Banach algebra and B is a Banach A - bimodule. Since B^{**} is a Banach $A^{**} - bimodule$, where A^{**} is equipped with the first Arens product, we define the topological center of the right module action of A^{**} on B^{**} as follows:

$$Z_{A^{**}}^{\ell}(B^{**}) = Z(\pi_r) = \{b'' \in B^{**} : \text{ the map } a'' \to \pi_r^{***}(b'', a'') : A^{**} \to B^{**} \text{ is weak}^* - \text{weak}^* \text{ continuous}\}.$$

In this way, we write $Z_{B^{**}}^{\ell}(A^{**}) = Z(\pi_{\ell}), Z_{A^{**}}^{r}(B^{**}) = Z(\pi_{\ell}^{t})$ and $Z_{B^{**}}^{r}(A^{**}) = Z(\pi_{r}^{t})$, where $\pi_{\ell} : A \times B \to B, \pi_{r} : B \times A \to B$ are the left and right module actions of A on B, for more information, see [3]. If we set B = A, we write $Z_{A^{**}}^{\ell}(A^{**}) = Z_{1}(A^{**}) = Z_{1}^{\ell}(A^{**})$ and $Z_{A^{**}}^{r}(A^{**}) = Z_{2}(A^{**}) = Z_{2}^{r}(A^{**})$, for more information, see [5]. Let B be a Banach A-bimodule and $n \geq 1$. Suppose that $B^{(n)}$ is an n-th dual of B. Then $B^{(n)}$ is also Banach A-bimodule, that is, for every $a \in A$, $b^{(n)} \in B^{(n)}$ and $b^{(n-1)} \in B^{(n-1)}$, we define

$$\langle b^{(n)}a, b^{(n-1)} \rangle = \langle b^{(n)}, ab^{(n-1)} \rangle,$$

$$\langle ab^{(n)}, b^{(n-1)} \rangle = \langle b^{(n)}, b^{(n-1)}a \rangle.$$

Let $A^{(n)}$ and $B^{(n)}$ be n-th dual of A and B, respectively. By [8], for an even number $n \ge 0$, $B^{(n)}$ is a Banach $A^{(n)} - bimodule$. Then for $n \ge 2$, we define $B^{(n)}B^{(n-1)}$ as a subspace of $A^{(n-1)}$, that is, for all $b^{(n)} \in B^{(n)}$, $b^{(n-1)} \in B^{(n-1)}$ and $a^{(n-2)} \in A^{(n-2)}$ we define

$$\langle b^{(n)}b^{(n-1)}, a^{(n-2)} \rangle = \langle b^{(n)}, b^{(n-1)}a^{(n-2)} \rangle$$

If n is odd number, then for $n \ge 1$, we define $B^{(n)}B^{(n-1)}$ as a subspace of $A^{(n)}$, that is, for all $b^{(n)} \in B^{(n)}$, $b^{(n-1)} \in B^{(n-1)}$ and $a^{(n-1)} \in A^{(n-1)}$ we define

$$\langle b^{(n)}b^{(n-1)},a^{(n-1)}\rangle = \langle b^{(n)},b^{(n-1)}a^{(n-1)}\rangle.$$

and if n = 0, we take $A^{(0)} = A$ and $B^{(0)} = B$. So we can define the topological centers of module actions of $A^{(n)}$ on $B^{(n)}$ similarly.

2 Cohomological Properties of Banach Algebras

Let A be a Banach algebra and $n \ge 1$. Then A is called n - weaklyamenable if $H^1(A, A^{(n)}) = 0$, and is called permanently weakly amenable when A is n - weakly amenable for each $n \ge 1$. In [2] Dales, Ghahramani, and Gronback introduced the notion of n-weak amenability for Banach algebras. They established some relations between m- and nweak amenability. In particular, they proved that, for every n, (n + 2)weak amenability always implies n-weak amenability.

4 M. SHAMS, K. HAGHNEJAD AZAR AND M. R. MARDANBEIGI

Theorem 2.1. Let *B* be a Banach *A* – bimodule and let $n \ge 1$. If $H^{1}(A, B^{(n+2)}) = 0$, then $H^{1}(A, B^{(n)}) = 0$.

Proof. Let $D \in Z^1(A, B^{(n)})$ and $i : B^{(n)} \to B^{(n+2)}$ be the canonical linear mapping as A - bimodule homomorphism. Then $\widetilde{D} = ioD$ can be viewed as an element of $Z^1(A, B^{(n+2)})$. Since $H^1(A, B^{(n+2)}) = 0$, there exists a $b^{(n+2)} \in B^{(n+2)}$ such that

$$\widetilde{D}(a) = ab^{(n+2)} - b^{(n+2)}a, \ (a \in A).$$

Set a A - linear mapping P from $B^{(n+2)}$ into $B^{(n)}$ such that $Poi = I_{B^{(n)}}$. Then we have $Po\widetilde{D} = (Poi)oD = D$, and so $D(a) = Po\widetilde{D}(a) = aP(b^{(n+2)}) - P(b^{(n+2)})a$, for all $a \in A$. It follows that $D \in N^1(A, B^{(n)})$. Consequently $H^1(A, B^{(n)}) = 0$. \Box

Theorem 2.2. Let B be a Banach A-bimodule and $D: A \to B^{(2n)}$ be a continuous derivation. Assume that $Z^{\ell}_{A^{(2n)}}(B^{(2n)}) = B^{(2n)}$. Then there is a continuous derivation $\widetilde{D}: A^{(2n)} \to B^{(2n)}$ such that $\widetilde{D}(a) = D(a)$ for all $a \in A$.

Proof. By [[2], Proposition 1.7], the linear mapping $D'': A^{**} \to B^{(2n+2)}$ is a continuous derivation. Take $X = B^{(2n-2)}$. Since $Z_{A^{(2n)}}(X^{**}) = Z_{A^{(2n)}}(B^{(2n)}) = B^{(2n)} = X^{**}$, by [[2], Proposition 1.8], the canonical projection $P: X^{(4)} \to X^{**}$ is a $A^{**} - bimodule$ morphism. Set $\widetilde{D} = PoD''$. Then \widetilde{D} is a continuous derivation from A^{**} into $B^{(2n)}$, satisfying $\widetilde{D}(a) = D(a), \ (a \in A)$. \Box

Corollary 2.3. Let B be a Banach A – bimodule and $n \ge 1$. If $Z^{\ell}_{A^{(2n)}}(B^{(2n)}) = B^{(2n)}$ and $H^1(A^{(2n+2)}, B^{(2n+2)}) = 0$, then $H^1(A, B^{(2n)}) = 0$.

Proof. By [[2], Proposition 1.7] and preceding theorem the result follows. \Box

Corollary 2.4. [2]. Let A be a Banach algebra such that $A^{(2n)}$ is Arens regular and $H^1(A^{(2n+2)}), A^{(2n+2)}) = 0$ for each $n \ge 1$. Then A is 2n - weakly amenable.

Assume that A is Banach algebra and $n \ge 1$. We define $A^{[n]}$ as the linear span of

$$\{a_1a_2...a_n: a_1, a_2, ..., a_n \in A\},\$$

in A.

Theorem 2.5. Let A be a Banach algebra and $n \ge 0$. Let $A^{[2n]}$ be dense in A and suppose that B is a Banach A-bimodule. Assume that AB^{**} and $B^{**}A$ are subsets of B. If $H^1(A, B^*) = 0$, then $H^1(A, B^{(2n+1)}) = 0$.

Proof. For n = 0 the result is clear. Let B^{\perp} be the space of functionals in $B^{(2n+1)}$ which annihilate i(B) where $i: B \to B^{(2n)}$ is the canonical mapping. Its easily verified that,

$$B^{(2n+1)} = i(B)^* \oplus B^{\perp}.$$

It follows that

$$H^1(A, B^{(2n+1)}) = H^1(A, i(B)^*) \oplus H^1(A, B^{\perp}).$$

Since $i(B)^* \cong B^*$ and by assumption $H^1(A, B^*) = 0$, it is enough to show that $H^1(A, B^{\perp}) = 0$.

Now, take the linear mappings L_a and R_a from B into itself by $L_a(b) = ab$ and $R_a(b) = ba$ for all $a \in A$. Since $AB^{**} \subseteq B$ and $B^{**}A \subseteq B$, $L_a^{**}(b'') = ab''$ and $R_a^{**}(b'') = b''a$ for every $a \in A$, respectively. Consequently, L_a and R_a are weakly compact. It follows that for each $a \in A$ the linear mappings $L_a^{(2n)}$ and $R_a^{(2n)}$ from $B^{(n)}$ into $B^{(n)}$ are weakly compact and for every $b^{(2n)} \in B^{(2n)}$, we have $L_a^{(2n)}(b^{(2n)}) = ab^{(2n)} \in B^{(2n-2)}$ and $R_a^{(2n)}(b^{(2n)}) = b^{(2n)}a \in B^{(2n-2)}$. Set $a_1, a_2, ..., a_n \in A$ and $b^{(2n)} \in B^{(2n)}$. Then $a_1a_2...a_nb^{(2n)}$ and $b^{(2n)}a_1a_2...a_n$ are belong to B. Suppose that $D \in Z^1(A, B^{\perp})$ and let $a, x \in A^{[n]}$. Then for every $b^{(2n)} \in B^{(2n)}$, since $xb^{(2n)}, b^{(2n)}a \in B$, we have the following equality

$$\langle D(ax), b^{(2n)} \rangle = \langle aD(x), b^{(2n)} \rangle + \langle D(a)x, b^{(2n)} \rangle$$

= $\langle D(x), b^{(2n)}a \rangle + \langle D(a), xb^{(2n)} \rangle$
= 0.

It follows that $D \mid_{A^{[2n]}} = 0$. Since $A^{[2n]}$ dense in A, it follows that D = 0. Hence $H^1(A, B^{\perp}) = 0$ and the result follows. \Box

- **Corollary 2.6.** 1. Let A be a Banach algebra with a bounded left approximate identity, and let B be a Banach A bimodule. Suppose that AB^{**} and $B^{**}A$ are subset of B. Then $H^1(A, B^{(2n+1)}) = 0$ for all $n \ge 0$, whenever $H^1(A, B^*) = 0$.
 - 2. Let A be an amenable Banach algebra and B be a Banach A bimodule. If AB^{**} and $B^{**}A$ are subset of B, then $H^1(A, B^{(2n+1)}) = 0$.

Example 2.7. Suppose that G is a compact group. We know that $L^1(G)$ is M(G) - bimodule and $L^1(G)$ is an ideal in the second dual $M(G)^{**}$ of M(G). By [[6],corollary 1.2], we have $H^1(L^1(G), M(G)^*) = 0$. Then by corollary 2.6, for every $n \ge 1$, we have

$$H^{1}(L^{1}(G), M(G)^{(2n+1)}) = 0.$$

Corollary 2.8. Let A be a Banach algebra and let $A^{[2n]}$ be dense in A. Suppose that AB^{**} and $B^{**}A$ are subset of B. Then the following are equivalent.

- 1. $H^1(A, B^*) = 0.$
- 2. $H^1(A, B^{(2n+1)}) = 0$ for some $n \ge 0$.
- 3. $H^1(A, B^{(2n+1)}) = 0$ for each $n \ge 0$.

Proof. $3 \Rightarrow 1 \Rightarrow 2$ is trivial by Theorem 2.5. $2 \Rightarrow 3$: Suppose that $H^1(A, B^{(2n_0+1)}) = 0$ for some $n_0 \ge 0$. Let $D \in Z^1(A, B^*)$. By considering the injective linear mapping

$$\iota: B^* \to (B^*)^{(2n_0)} = B^{(2n_0+1)}$$

with

$$\langle \iota(b'), b^{(2n_0)} \rangle = \langle b^{(2n_0)}, b' \rangle = b^{(2n_0)}(b'),$$

so $B^* \cong \iota(B^*) \subseteq B^{(2n_0+1)}$ and D can be viewed as an element of $Z^1(A, B^{(2n_0+1)})$. By assumption, there is a $f \in B^{(2n_0+1)}$ such that $D(a) = \delta_f(a)$, for each $a \in A$. Since $B \cong \tau(B) \subseteq B^{(2n_0)}$. Where τ is the canonical embedding. We define $f_0 = f|_B$. Then $f_0 \in B^*$ and

$$D(a) = D(a)|_B = \delta_f(a)|_B = \delta_{f_0}(a),$$

holds for each $a \in A$. It follows that $H^1(A, B^*) = 0$, and so by using Theorem 2.5, the result follows. \Box

Corollary 2.9. [2]. Let A be a weakly amenable Banach algebra such that A is an ideal in A^{**} . Then A is (2n + 1) – weakly amenable for each $n \ge 0$.

Proof. It follows by [[2], Proposition 1.3] and corollary 2.8.

References

- R. Arens, The adjoint of a bilinear operation, Proc. Amer. Math. Soc. 2 (1951), 839-848.
- [2] H. G. Dales, F. Ghahramani, N. Grønbæk, Derivation into iterated duals of Banach algebras, *Studia Math.* **128** (1) (1998), 19-53.
- [3] H. G. Dales, A. Rodrigues-Palacios and M. V. Velasco, The second transpose of a derivation, J. London. Math. Soc. 64 (3) (2001) 707-721.
- [4] B. E. Johoson, Cohomology in Banach Algebra, Mem. Amer. Math. Soc. 127, 1972.
- [5] A. T. Lau, and A. Ülger, Topological center of certain dual algebras, *Trans. Amer. Math. Soc.* 348 (1996), 1191-1212.
- [6] V. Losert, The derivation problem for group algebra, Annals of Mathematics. 168 (2008), 221-246.
- [7] S. Mohamadzadeh, H. R. E. Vishki, Arens regularity of module actions and the second adjoint of a derivation, *Bull. Austral. Math. Soc.* 77 (2008), 465-476.
- [8] Y. Zhang, Weak amenability of module extentions of Banach algebras, Trans. Amer. Math. Soc. 354 (10) (2002), 4131-4151.

Mostafa Shams Kojanaghi

PhD Student of Mathematics, Department of Mathematics,

8 M. SHAMS, K. HAGHNEJAD AZAR AND M. R. MARDANBEIGI

Science and Research Branch, Islamic Azad University Tehran, Iran E-mail: mstafa.shams99@yahoo.com

Kazem Haghnejad Azar

Professor of Mathematics, Department of Mathematics, University of Mohaghegh Ardabili, Ardabil, Iran E-mail: haghnejad@uma.ac.ir

Mohammad Reza Mardanbeigi

Associate Professor of Mathematics, Department of Mathematics, Science and Research Branch, Islamic Azad University Tehran, Iran E-mail:mmardanbeigi@yahoo.com