Some Cohomological Properties of Banach Algebras

M. Shams Kojanaghi
Science and Research Branch, Islamic Azad University
K. Haghnejad Azar*
University of Mohaghegh Ardabili
\section*{M. R. Mardanbeigi}
Science and Research Branch, Islamic Azad University

Abstract

In this manuscript, we investigate and study some cohomological properties of Banach algebras. Let A be a Banach algebra with a bounded left approximate identity, and let B be a Banach A-bimodule. We show that if $A B^{* *}$ and $B^{* *} A$ are subset of B, then $H^{1}\left(A, B^{(2 n+1)}\right)=0$ for all $n \geq 0$, whenever $H^{1}\left(A, B^{*}\right)=0$.

AMS Subject Classification: Primary 46L06; 46L07; 46L10; Secondary 47L25
Keywords and Phrases: Amenability, weak amenability, cohomological groups.

[^0]
1 Introduction

Let B be a Banach A - bimodule. A derivation from A into B is a bounded linear mapping $D: A \rightarrow B$ such that,

$$
D(x y)=x D(y)+D(x) y, \quad(x, y \in A) .
$$

The space of continuous derivations from A into B is denoted by $Z^{1}(A, B)$. Easy example of derivations are the inner derivations, which are given for each $b \in B$ by

$$
\delta_{b}(a)=a b-b a, \quad(a \in A) .
$$

The space of inner derivations from A into B is denoted by $N^{1}(A, B)$. The first cohomology group of A with coefficients in B is defined to be the quotient space $H^{1}(A, B)=Z^{1}(A, B) / N^{1}(A, B)$. Thus $H^{1}(A, B)=\{0\}$ if and only if each continuous derivation from A into B is inner. According to the classical definition, a Banach algebra A is amenable if and only if for each Banach A-bimodule B, every derivation from A into B^{*} is inner i.e. A is amenable if and only if $H^{1}\left(A, B^{*}\right)=\{0\}$, for every Banach A-bimodule B. The concept of amenability for a Banach algebra A, was introduced by Johnson in 1972, has proved to be of enormous importance problems in Banach algebra theory, see [4].
Let X, Y, Z be normed spaces and let $m: X \times Y \rightarrow Z$ be a bounded bilinear mapping. Arens [1] offers two natural extensions $m^{* * *}$ and $m^{t * * * t}$ from $X^{* *} \times Y^{* *}$ into $Z^{* *}$ that he called m is Arens regular whenever $m^{* * *}=m^{t * * * t}$, for more information see [1] or [7]. Regarding A as a Banach A-bimodule, the operation $\pi: A \times A \rightarrow A$ extends to $\pi^{* * *}$ and $\pi^{t * * * t}$ defined on $A^{* *} \times A^{* *}$. These extensions are known, respectively, as the first (left) and the second (right) Arens products, and with each of them, the second dual space $A^{* *}$ becomes a Banach algebra. The regularity of a normed algebra A is defined to be the regularity of its algebra multiplication when considered as a bilinear mapping. Suppose that A is a Banach algebra and B is a Banach A-bimodule. Since $B^{* *}$ is a Banach $A^{* *}$ - bimodule, where $A^{* *}$ is equipped with the first Arens product, we define the topological center of the right module action of $A^{* *}$ on $B^{* *}$ as follows:

$$
\begin{aligned}
Z_{A^{* *}}^{\ell}\left(B^{* *}\right) & =Z\left(\pi_{r}\right)=\left\{b^{\prime \prime} \in B^{* *}: \text { the map } a^{\prime \prime} \rightarrow \pi_{r}^{* * *}\left(b^{\prime \prime}, a^{\prime \prime}\right):\right. \\
A^{* *} & \left.\rightarrow B^{* *} \text { is } \text { weak }^{*}-\text { weak }^{*} \text { continuous }\right\} .
\end{aligned}
$$

In this way, we write $Z_{B^{* *}}^{\ell}\left(A^{* *}\right)=Z\left(\pi_{\ell}\right), Z_{A^{* *}}^{r}\left(B^{* *}\right)=Z\left(\pi_{\ell}^{t}\right)$ and $Z_{B^{* *}}^{r}\left(A^{* *}\right)=Z\left(\pi_{r}^{t}\right)$, where $\pi_{\ell}: A \times B \rightarrow B, \pi_{r}: B \times A \rightarrow B$ are the left and right module actions of A on B, for more information, see [3]. If we set $B=A$, we write $Z_{A^{* *}}^{\ell}\left(A^{* *}\right)=Z_{1}\left(A^{* *}\right)=Z_{1}^{\ell}\left(A^{* *}\right)$ and $Z_{A^{* *}}^{r}\left(A^{* *}\right)=Z_{2}\left(A^{* *}\right)=Z_{2}^{r}\left(A^{* *}\right)$, for more information, see [5]. Let B be a Banach A-bimodule and $n \geq 1$. Suppose that $B^{(n)}$ is an $n-t h$ dual of B. Then $B^{(n)}$ is also Banach A-bimodule, that is, for every $a \in A$, $b^{(n)} \in B^{(n)}$ and $b^{(n-1)} \in B^{(n-1)}$, we define

$$
\begin{aligned}
& \left\langle b^{(n)} a, b^{(n-1)}\right\rangle=\left\langle b^{(n)}, a b^{(n-1)}\right\rangle, \\
& \left\langle a b^{(n)}, b^{(n-1)}\right\rangle=\left\langle b^{(n)}, b^{(n-1)} a\right\rangle
\end{aligned}
$$

Let $A^{(n)}$ and $B^{(n)}$ be n-th dual of A and B, respectively. By [8], for an even number $n \geq 0, B^{(n)}$ is a Banach $A^{(n)}$ - bimodule. Then for $n \geq 2$, we define $B^{(n)} B^{(n-1)}$ as a subspace of $A^{(n-1)}$, that is, for all $b^{(n)} \in B^{(n)}$, $b^{(n-1)} \in B^{(n-1)}$ and $a^{(n-2)} \in A^{(n-2)}$ we define

$$
\left\langle b^{(n)} b^{(n-1)}, a^{(n-2)}\right\rangle=\left\langle b^{(n)}, b^{(n-1)} a^{(n-2)}\right\rangle .
$$

If n is odd number, then for $n \geq 1$, we define $B^{(n)} B^{(n-1)}$ as a subspace of $A^{(n)}$, that is, for all $b^{(n)} \in B^{(n)}, b^{(n-1)} \in B^{(n-1)}$ and $a^{(n-1)} \in A^{(n-1)}$ we define

$$
\left\langle b^{(n)} b^{(n-1)}, a^{(n-1)}\right\rangle=\left\langle b^{(n)}, b^{(n-1)} a^{(n-1)}\right\rangle .
$$

and if $n=0$, we take $A^{(0)}=A$ and $B^{(0)}=B$.
So we can define the topological centers of module actions of $A^{(n)}$ on $B^{(n)}$ similarly.

2 Cohomological Properties of Banach Algebras

Let A be a Banach algebra and $n \geq 1$. Then A is called $n-$ weakly amenable if $H^{1}\left(A, A^{(n)}\right)=0$, and is called permanently weakly amenable when A is $n-$ weakly amenable for each $n \geq 1$. In [2] Dales, Ghahramani, and Gronbaek introduced the notion of n -weak amenability for Banach algebras. They established some relations between m - and n weak amenability. In particular, they proved that, for every $n,(n+2)$ weak amenability always implies n-weak amenability.

Theorem 2.1. Let B be a Banach A-bimodule and let $n \geq 1$. If $H^{1}\left(A, B^{(n+2)}\right)=0$, then $H^{1}\left(A, B^{(n)}\right)=0$.

Proof. Let $D \in Z^{1}\left(A, B^{(n)}\right)$ and $i: B^{(n)} \rightarrow B^{(n+2)}$ be the canonical linear mapping as A-bimodule homomorphism. Then $\widetilde{D}=i o D$ can be viewed as an element of $Z^{1}\left(A, B^{(n+2)}\right)$. Since $H^{1}\left(A, B^{(n+2)}\right)=0$, there exists a $b^{(n+2)} \in B^{(n+2)}$ such that

$$
\widetilde{D}(a)=a b^{(n+2)}-b^{(n+2)} a, \quad(a \in A) .
$$

Set a A - linear mapping P from $B^{(n+2)}$ into $B^{(n)}$ such that Poi $=$ $I_{B^{(n)}}$. Then we have $P o \widetilde{D}=($ Poi $) o D=D$, and so $D(a)=P o \widetilde{D}(a)=$ $a P\left(b^{(n+2)}\right)-P\left(b^{(n+2)}\right) a$, for all $a \in A$. It follows that $D \in N^{1}\left(A, B^{(n)}\right)$. Consequently $H^{1}\left(A, B^{(n)}\right)=0$.

Theorem 2.2. Let B be a Banach A-bimodule and $D: A \rightarrow B^{(2 n)}$ be a continuous derivation. Assume that $Z_{A^{(2 n)}}^{\ell}\left(B^{(2 n)}\right)=B^{(2 n)}$. Then there is a continuous derivation $\widetilde{D}: A^{(2 n)} \rightarrow B^{(2 n)}$ such that $\widetilde{D}(a)=D(a)$ for all $a \in A$.

Proof. By [[2], Proposition 1.7], the linear mapping $D^{\prime \prime}: A^{* *} \rightarrow B^{(2 n+2)}$ is a continuous derivation. Take $X=B^{(2 n-2)}$. Since $Z_{A^{(2 n)}}\left(X^{* *}\right)=$ $Z_{A^{(2 n)}}\left(B^{(2 n)}\right)=B^{(2 n)}=X^{* *}$, by [[2], Proposition 1.8], the canonical projection $P: X^{(4)} \rightarrow X^{* *}$ is a $A^{* *}$ - bimodule morphism. Set $\widetilde{D}=$ $P_{o} D^{\prime \prime}$. Then \widetilde{D} is a continuous derivation from $A^{* *}$ into $B^{(2 n)}$, satisfying $\widetilde{D}(a)=D(a),(a \in A)$.

Corollary 2.3. Let B be a Banach A-bimodule and $n \geq 1$. If $Z_{A^{(2 n)}}^{\ell}\left(B^{(2 n)}\right)=B^{(2 n)}$ and $H^{1}\left(A^{(2 n+2)}, B^{(2 n+2)}\right)=0$, then $H^{1}\left(A, B^{(2 n)}\right)=$ 0 .

Proof. By [[2], Proposition 1.7] and preceding theorem the result follows.

Corollary 2.4. [2]. Let A be a Banach algebra such that $A^{(2 n)}$ is Arens regular and $\left.H^{1}\left(A^{(2 n+2)}\right), A^{(2 n+2)}\right)=0$ for each $n \geq 1$. Then A is $2 n-$ weakly amenable.

Assume that A is Banach algebra and $n \geq 1$. We define $A^{[n]}$ as the linear span of

$$
\left\{a_{1} a_{2} \ldots a_{n}: a_{1}, a_{2}, \ldots, a_{n} \in A\right\}
$$

in A.
Theorem 2.5. Let A be a Banach algebra and $n \geq 0$. Let $A^{[2 n]}$ be dense in A and suppose that B is a Banach A-bimodule. Assume that $A B^{* *}$ and $B^{* *} A$ are subsets of B. If $H^{1}\left(A, B^{*}\right)=0$, then $H^{1}\left(A, B^{(2 n+1)}\right)=0$.
Proof. For $n=0$ the result is clear. Let B^{\perp} be the space of functionals in $B^{(2 n+1)}$ which annihilate $i(B)$ where $i: B \rightarrow B^{(2 n)}$ is the canonical mapping. Its easily verified that,

$$
B^{(2 n+1)}=i(B)^{*} \oplus B^{\perp}
$$

It follows that

$$
H^{1}\left(A, B^{(2 n+1)}\right)=H^{1}\left(A, i(B)^{*}\right) \oplus H^{1}\left(A, B^{\perp}\right)
$$

Since $i(B)^{*} \cong B^{*}$ and by assumption $H^{1}\left(A, B^{*}\right)=0$, it is enough to show that $H^{1}\left(A, B^{\perp}\right)=0$.
Now, take the linear mappings L_{a} and R_{a} from B into itself by $L_{a}(b)=$ $a b$ and $R_{a}(b)=b a$ for all $a \in A$. Since $A B^{* *} \subseteq B$ and $B^{* *} A \subseteq B$, $L_{a}^{* *}\left(b^{\prime \prime}\right)=a b^{\prime \prime}$ and $R_{a}^{* *}\left(b^{\prime \prime}\right)=b^{\prime \prime} a$ for every $a \in A$, respectively. Consequently, L_{a} and R_{a} are weakly compact. It follows that for each $a \in A$ the linear mappings $L_{a}^{(2 n)}$ and $R_{a}^{(2 n)}$ from $B^{(n)}$ into $B^{(n)}$ are weakly compact and for every $b^{(2 n)} \in B^{(2 n)}$, we have $L_{a}^{(2 n)}\left(b^{(2 n)}\right)=a b^{(2 n)} \in B^{(2 n-2)}$ and $R_{a}^{(2 n)}\left(b^{(2 n)}\right)=b^{(2 n)} a \in B^{(2 n-2)}$. Set $a_{1}, a_{2}, \ldots, a_{n} \in A$ and $b^{(2 n)} \in$ $B^{(2 n)}$. Then $a_{1} a_{2} \ldots a_{n} b^{(2 n)}$ and $b^{(2 n)} a_{1} a_{2} \ldots a_{n}$ are belong to B. Suppose that $D \in Z^{1}\left(A, B^{\perp}\right)$ and let $a, x \in A^{[n]}$. Then for every $b^{(2 n)} \in B^{(2 n)}$, since $x b^{(2 n)}, b^{(2 n)} a \in B$, we have the following equality

$$
\begin{aligned}
\left\langle D(a x), b^{(2 n)}\right\rangle & =\left\langle a D(x), b^{(2 n)}\right\rangle+\left\langle D(a) x, b^{(2 n)}\right\rangle \\
& =\left\langle D(x), b^{(2 n)} a\right\rangle+\left\langle D(a), x b^{(2 n)}\right\rangle \\
& =0 .
\end{aligned}
$$

It follows that $\left.D\right|_{A^{[2 n]}}=0$. Since $A^{[2 n]}$ dense in A, it follows that $D=0$. Hence $H^{1}\left(A, B^{\perp}\right)=0$ and the result follows.

6 M. SHAMS, K. HAGHNEJAD AZAR AND M. R. MARDANBEIGI

Corollary 2.6. 1. Let A be a Banach algebra with a bounded left approximate identity, and let B be a Banach A-bimodule. Suppose that $A B^{* *}$ and $B^{* *} A$ are subset of B. Then $H^{1}\left(A, B^{(2 n+1)}\right)=0$ for all $n \geq 0$, whenever $H^{1}\left(A, B^{*}\right)=0$.
2. Let A be an amenable Banach algebra and B be a Banach $A-$ bimodule. If $A B^{* *}$ and $B^{* *} A$ are subset of B, then $H^{1}\left(A, B^{(2 n+1)}\right)=$ 0 .

Example 2.7. Suppose that G is a compact group. We know that $L^{1}(G)$ is $M(G)$ - bimodule and $L^{1}(G)$ is an ideal in the second dual $M(G)^{* *}$ of $M(G)$. By [[6], corollary 1.2], we have $H^{1}\left(L^{1}(G), M(G)^{*}\right)=$ 0 . Then by corollary 2.6 , for every $n \geq 1$, we have

$$
H^{1}\left(L^{1}(G), M(G)^{(2 n+1)}\right)=0 .
$$

Corollary 2.8. Let A be a Banach algebra and let $A^{[2 n]}$ be dense in A. Suppose that $A B^{* *}$ and $B^{* *} A$ are subset of B. Then the following are equivalent.

1. $H^{1}\left(A, B^{*}\right)=0$.
2. $H^{1}\left(A, B^{(2 n+1)}\right)=0$ for some $n \geq 0$.
3. $H^{1}\left(A, B^{(2 n+1)}\right)=0$ for each $n \geq 0$.

Proof. $3 \Rightarrow 1 \Rightarrow 2$ is trivial by Theorem 2.5 .
$2 \Rightarrow 3$: Suppose that $H^{1}\left(A, B^{\left(2 n_{0}+1\right)}\right)=0$ for some $n_{0} \geq 0$. Let $D \in$ $Z^{1}\left(A, B^{*}\right)$. By considering the injective linear mapping

$$
\iota: B^{*} \rightarrow\left(B^{*}\right)^{\left(2 n_{0}\right)}=B^{\left(2 n_{0}+1\right)},
$$

with

$$
\left\langle\iota\left(b^{\prime}\right), b^{\left(2 n_{0}\right)}\right\rangle=\left\langle b^{\left(2 n_{0}\right)}, b^{\prime}\right\rangle=b^{\left(2 n_{0}\right)}\left(b^{\prime}\right),
$$

so $B^{*} \cong \iota\left(B^{*}\right) \subseteq B^{\left(2 n_{0}+1\right)}$ and D can be viewed as an element of $Z^{1}\left(A, B^{\left(2 n_{0}+1\right)}\right)$. By assumption, there is a $f \in B^{\left(2 n_{0}+1\right)}$ such that $D(a)=\delta_{f}(a)$, for each $a \in A$. Since $B \cong \tau(B) \subseteq B^{\left(2 n_{0}\right)}$. Where τ is the canonical embedding. We define $f_{0}=\left.f\right|_{B}$. Then $f_{0} \in B^{*}$ and

$$
D(a)=\left.D(a)\right|_{B}=\left.\delta_{f}(a)\right|_{B}=\delta_{f_{0}}(a),
$$

holds for each $a \in A$. It follows that $H^{1}\left(A, B^{*}\right)=0$, and so by using Theorem 2.5, the result follows.

Corollary 2.9. [2]. Let A be a weakly amenable Banach algebra such that A is an ideal in $A^{* *}$. Then A is $(2 n+1)$ - weakly amenable for each $n \geq 0$.

Proof. It follows by [[2], Proposition 1.3] and corollary 2.8.

References

[1] R. Arens, The adjoint of a bilinear operation, Proc. Amer. Math. Soc. 2 (1951), 839-848.
[2] H. G. Dales, F. Ghahramani, N. Grønbæk, Derivation into iterated duals of Banach algebras, Studia Math. 128 (1) (1998), 19-53.
[3] H. G. Dales, A. Rodrigues-Palacios and M. V. Velasco, The second transpose of a derivation, J. London. Math. Soc. 64 (3) (2001) 707721.
[4] B. E. Johoson, Cohomology in Banach Algebra, Mem. Amer. Math. Soc. 127, 1972.
[5] A. T. Lau, and A. Ülger, Topological center of certain dual algebras, Trans. Amer. Math. Soc. 348 (1996), 1191-1212.
[6] V. Losert, The derivation problem for group algebra, Annals of Mathematics. 168 (2008), 221-246.
[7] S. Mohamadzadeh, H. R. E. Vishki, Arens regularity of module actions and the second adjoint of a derivation, Bull. Austral. Math. Soc. 77 (2008), 465-476.
[8] Y. Zhang, Weak amenability of module extentions of Banach algebras, Trans. Amer. Math. Soc. 354 (10) (2002), 4131-4151.

Mostafa Shams Kojanaghi
PhD Student of Mathematics,
Department of Mathematics,

8 M. SHAMS, K. HAGHNEJAD AZAR AND M. R. MARDANBEIGI

Science and Research Branch, Islamic Azad University
Tehran, Iran
E-mail: mstafa.shams99@yahoo.com
Kazem Haghnejad Azar
Professor of Mathematics,
Department of Mathematics,
University of Mohaghegh Ardabili,
Ardabil, Iran
E-mail: haghnejad@uma.ac.ir
Mohammad Reza Mardanbeigi
Associate Professor of Mathematics,
Department of Mathematics,
Science and Research Branch, Islamic Azad University
Tehran, Iran
E-mail:mmardanbeigi@yahoo.com

[^0]: Received: September 2019; Accepted: June 2020

 * Corresponding Author

