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Abstract. Recently, absolute value equations (AVEs) are lied in the
consideration center of some researchers since they are very suitable al-
ternatives for many frequently occurring optimization problems. There-
fore, finding a fast solution method for these type of problems is very
significant. In this paper, based on the mixed-type splitting (MTS) idea
for solving linear system of equations, a new fast algorithm for solving
AVEs is presented. This algorithm has two auxiliary matrices which
are limited to be nonnegative strictly lower triangular and nonnega-
tive diagonal matrices. The convergence of the algorithm is discussed
via some theorems. In addition, it is shown that by suitable choice of
the auxiliary matrices, the convergence rate of this algorithm is faster
than that of the SOR, AOR, Generalized Newton, Picard and SOR-
like methods. Eventually, some numerical results for different size of
problem dimensionality are presented which admit the credibility of the
proposed algorithm.
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1 Introduction and background

In this note, we consider the following system of the absolute value
equations (AVEs):

Ax−B | x |= b. (1)

where A,B ∈ Rn×n, b ∈ Rn, and | . | denotes the absolute value.

The general form of (1) first was presented by Rohn [30] and then
Mangasarian [21, 22, 23] checked it in a more general context. Recently,
the AVE (1) has been investigated by numerous researchers; one main
reason for the recent interest in this new subject, is the fact that some op-
timization problems, for example convex quadratic programming, linear
complementarity problem (LCP), or linear programming can be equiv-
alently overwritten in the form (1) [32]. Mangasarian expressed the
NP-hard n-dimensional knapsack feasibility problem as an equivalent
AVE [24]. Lately, in order to solve (1), some numerical methods have
been developed, like the Newton-type method [23, 6, 14, 16, 42], the sign
accord (SA) method [31] and the AOR method [20] (for other numer-
ical methods, one can see the works done by Noor et al. [27, 28]). In
[22] it was shown that determining the existence of a solution for AVEs
is NP-hard. Mangasarian and Meyer in [25] proved that the equation
Ax−|x| = b is uniquely solvable for each b ∈ Rn, if the singular values of
A exceed 1. In [29] it was demonstrated that we can not provide a poly-
nomially comutable necessary and sufficient criteria on unique solvability
of the AVE (1). Prokopyev [29] discussed that AVE (1) is equivalent to
LCP, which is one of the most important problems in the applied sci-
ences and engineering, see [2, 8, 9]. Also, he presented equivalent linear
mixed 0-1 reformulations of AVE (1), which do not require introduc-
tion of large data dependent constants. Mangasarian in [23] proposed
a semismooth Newton method for solving AVEs. Yong introduced a
particle swarm optimization (PSO) to AVE based on aggregate function
[39]. Moreover, he considered the Harmony Search (HS) algorithm for
solving AVE in [40]. Moosaei et al. [26] introduced and analyzed two
methods for solving the NP-hard absolute value equations, in the case
that singular values of A exceed 1. Wu and Li in [38] proposed a spe-
cial SS iteration method, based on the shift splitting (SS) technique, for
solving the absolute value equation, which is resulted using reformulat-
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ing equivalently the AVE as a two-by-two block nonlinear equation. In
[23], Mangasarian presented a generalized Newton method for solving
AVE (1) and studied its convergence properties. This method can be
presented as

x(i+1) = (A−D(x(i)))−1b, i = 0, 1, 2, ..., (2)

that x(0) denotes the initial guess and D(x(i)) = diag(sign(x(i))) [23]. In
implementation of this method a linear equations system with coefficient
matrix A−D(x(i)) should be solved in each iteration. Since the coeffi-
cient matrices in (2) are changed, in each iteration, the computations of
the generalized Newton can be very expensive. In this regard, Rohn et
al. in [33] suggested another method to solve AVE (1); in practice their
method is reduced to the Picard iteration method

x(i+1) = A−1(|x(i)|+ b), i = 0, 1, 2, ...,

so that x(0) = A−1b denotes an initial value. Actually, in Picard method
iterations, a linear system of equations with A as the coefficient matrix
(that is constant), have to be solved. Here the basic problem is that, if
A is ill-conditioned, in each iteration of the Picard method we are faced
with an ill-conditioned linear system of equations. In [12], the SOR-like
method is extended for solving the absolute value equation Ax−|x| = b.
More precisely, the following iterative scheme is developed{

x(k+1) = (1− ω)x(k) + ωA−1
(
y(k) + b

)
y(k+1) = (1− ω)y(k) + ω

∣∣x(k+1)
∣∣ (3)

which can be regarded as an iterative scheme corresponding to the fol-
lowing SOR-like block splitting:

A =
1

ω

[
A 0

−ωD(x) I

]
− 1

ω

[
(1− ω)A ωI

0 (1− ω)I

]
.

The established convergence results for the above method rely on the
spectrum of D(x(k+1))A−1. In fact, it is proved that if the eigenvalues
of D(x(k+1))A−1 are real then iterative scheme (3) is convergent for
0 < ω ≤ 1. In case that all eigenvalues of D(x(k+1))A−1 are positive
then the method is convergent for 0 < ω < 2.
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In [6] a smoothing Newton algorithm to solve the AVE was pre-
sented. Caccetta proved that this algorithm is globally convergent and
its convergence rate is quadratic under the condition that the singular
values of A exceed 1. Recently, Yong [41] has proposed an iterative
method for absolute value equation Ax − |x| = b, where A is an arbi-
trary square matrix whose singular values exceed 1. He showed that the
method converges to the solution of AVE after finite iterations. He also
used this method to solve two-point boundary value problem. Further-
more, infeasible AVEs have been investigated by Saeed Ketabchi et al.
[15, 16, 17].

In recent years, a lot of efforts have been made in expanding itera-
tive methods for solving (1). For example, Rohn et al. [33] proposed a
general preconditioned Richardson iterative method to solve (1). Based
on Hermitian and skew-Hermitian splitting of the coefficient matrix A
in (1), the Picard-HSS iterative method for AVEs with B = I, where
I is the identity matrix, has been presented by Salkuyeh [35]. Clearly,
the Picard-HSS method falls into category of stationary matrix split-
ting iteration methods. Whereas, based on our knowledge, little heed
has been paid to the classical matrix-splitting iterative methods (such
as Gauss-Seidel (GS), Jacobi, Successive Over Relaxation (SOR) and
Accelerated Over Relaxation (AOR) methods) for solving (1).

In the current article, we first review the mixed-type splitting (MTS)
iterative method and then design it for solving (1). Thereafter, we prove
that the MTS algorithm can converges faster than some famous meth-
ods by opting appropriate auxiliary matrices. In this regard, the rest of
article is organize as follows:
In section 2, we recall some definitions and theorems which will be uti-
lized in the next sections. In Section 3 we review the MTS iterative
method for solving linear system Ax = b. In section 4, based on mixed-
type splitting (MTS) idea, a new iterative algorithm for solving AVEs
is presented. Then, in section 5, its convergence analysis is investigated.
In order to display the efficacy of the established results, some numerical
experiments and comparisons on test examples are presented in section
6 which one of them is related to the real world. Finally, the paper is
terminated with some conclusion remarks in section 7.
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2 Preliminaries

Suppose A ∈ Rn×m, is an arbitrary matrix. We say A ≥ 0 (A > 0) when
all entries of A are nonnegative (positive). For two matrices A and B in
Rn×m, A ≥ B (A > B) means that A−B ≥ 0 (A−B > 0). For square
matrix A, the maximum modulus of the eigenvalues is called spectral
radius and is denoted by ρ(A). Let A = [aij ] ∈ Rn×m be an arbitrary
matrix then |A| ∈ Rn×m such that |A|ij = |aij | for i = 1, 2, ..., n and
j = 1, 2, ...,m. For A ∈ Rn×n, the decomposition A = M −N is named
a splitting if M,N ∈ Rn×n and M is nonsingular. In the following, we
recall some definitions and results which are utilized throughout this
paper.
We remind that f(n) = O(g(n)), if there exists a positive constant k so
that f(n) ≤ kg(n), for all n ∈ R + +.

Definition 2.1. [5] A ∈ Rn×n is named a Z−matrix if aij ≤ 0 for
i, j = 1, 2, 3, ..., n (i 6= j); a Z−matrix having positive diagonal elements
is called an L-matrix.

Definition 2.2. [5] Assume that A is an L−matrix; the matrix A is
called an M−matrix if A is nonsingular and A−1 ≥ 0.

Definition 2.3. A splitting A = M −N is named an M−splitting of A
if M is an M−matrix and N ≥ 0.

Definition 2.4. [36] A matrix A is called irreducible if there is no per-
mutation matrix P such that PAP T is a block upper triangular matrix.
Otherwise, it is reducible.

The following theorem prepares another way to check whether a
matrix is irreducible or not.

Theorem 2.5. Let A ≥ 0 be an n× n irreducible matrix; then,

i) A has a positive eigenvalue which is equal to its spectral radius.
ii) There exists an eigenvector x > 0 corresponding to the spectral
radius of A.
iii) ρ(A) is a simple eigenvalue of A.

Proof. See [36]. �
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Theorem 2.6. Suppose that A is a nonnegative matrix; then,
a) If αx ≤ Ax for some nonnegative vector x 6= 0, then α ≤ ρ(A).
b) If Ax ≤ βx for some nonnegative vector x 6= 0, then ρ(A) ≤ β.
Furthermore, if A is irreducible and 0 6= αx ≤ Ax ≤ βx, αx 6= Ax and
Ax 6= βx for some nonnegative vector x, then α < ρ(A) < β and x is a
positive vector.

Proof. See [5]. �

Definition 2.7. ([37]) The splitting A = M −N is named

• a regular splitting of A if M−1 ≥ 0 and N ≥ 0,

• a nonnegative splitting of A if M−1 ≥ 0, M−1N ≥ 0 and NM−1 ≥
0,

• a weak nonnegative splitting of A if M−1 ≥ 0 and either M−1N ≥
0 (the first type) or NM−1 ≥ 0 (the second type),

• a convergent splitting of A if ρ(M−1N) < 1.

Theorem 2.8. [34] Suppose A ∈ Rn×n. Then for every natural norm
‖ . ‖ we have ρ(A) ≤‖ A ‖ .

Theorem 2.9. [34] Suppose A and B are two square matrices such that
0 ≤ A ≤ B. Then ρ(A) ≤ ρ(B).

For the choice of optimum parameter of SOR-like method, the fol-
lowing theorem is established.

Theorem 2.10. [12, Theorem 3.2] Let A ∈ Rn×n, ‖A−1‖ < 1 and
ρ = ρ(D(x(k+1))A−1). Suppose that all eigenvalues of D(x(k+1))A−1 are
positive. Then the optimal parameter ωo is given by

ωo =
2

1 +
√

1− ρ
. (4)
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3 Brief description of MTS method for linear
algebraic systems

In [18, 19], MTS method has been introduced for solving the linear
system Ax = b. Under the assumption that aii 6= 0 for i = 1, 2, ..., n, we
can consider the following splitting for A:

A = M −N, (5)

with

M = (D +D1 + L1 − L), N = (D1 + L1 + U),

where D = diag(A), −L and −U are strictly lower and upper triangular
matrices gained from A, respectively, D1 ≥ 0 is an auxiliary diagonal ma-
trix, L1 is an auxiliary strictly lower triangular matrix and 0 ≤ L1 ≤ L.
The MTS iterative algorithm to solve Ax = b is given as follows:

Algorithm 1: Given an initial guess x(0) ∈ Rn, then for i = 0, 1, 2...,
until {x(i)}∞i=0 converges, compute

(D +D1 + L1 − L)x(i+1) = (D1 + L1 + U)x(i) + b.

In this regard, the iteration matrix of the MTS method is expounded by

T = (D +D1 + L1 − L)−1(D1 + L1 + U);

hence, the above algorithm is a stationary iterative algorithm for solving
linear system of equations Ax = b. Hadjidimos in [13] showed that
when the coefficient matrix A is an M-matrix, the Mixed-Type Splitting
iterative method is convergent.

4 New MTS algorithm for solving AVE

As noted above, the main idea of MTS for solving linear systems of
algebraic equations, is the decomposition of coefficient matrix into suit-
able matrices. Based on this idea and by assumption that aii 6= 0 for



8 A. FAKHARZADEH J. AND N. N. SHAMS

i = 1, 2, ..., n, we consider the splitting (5) for A in (1). Substituting (5)
in (1) gives :

(D +D1 + L1 − L)x = (D1 + L1 + U)x+B | x | +b,

where D, −L and −U are diagonal, strictly lower triangular and strictly
upper triangular parts of A, respectively, D1 is an nonnegative auxiliary
diagonal matrix, L1 is an auxiliary strictly lower triangular matrix and
0 ≤ L1 ≤ L. Hence, the iterative form of the method is as follows:

(D+D1+L1−L)x(i+1) = (D1+L1+U)x(i)+B | x(i) | +b, i = 0, 1, 2, ....
(6)

Since A = M −N is a splitting for matrix A, M = (D +D1 + L1 − L)
is nonsingular; hence (6) is equivalent to

x(i+1) = (D +D1 + L1 − L)−1(D1 + L1 + U)x(i) (7)

+ (D +D1 + L1 − L)−1B | x(i) |
+ (D +D1 + L1 − L)−1b.

The MTS iterative algorithm to solve (1) can be summarized as follow-
ing:

Algorithm2: Given an initial guess x(0) ∈ Rn. for i = 0, 1, 2..., un-
til {x(i)}∞i=0 converges, compute

(D +D1 + L1 − L)x(i+1) = (D1 + L1 + U)x(i) +B | x(i) | +b.

It is necessary to mention that our MTS algorithm can covers SOR and
AOR methods for solving AVEs, by special selection of matrices D1 and
L1 in (5). If we choose

D1 =
1

ω
(1− ω)D and L1 = 0,

we are faced with SOR method and if we select

D1 =
1

ω
(1− ω)D and L1 =

1

ω
(ω − r)L,

we are faced with AOR method ([20]), where ω and r are positive real
parameters with ω 6= 0. The convergence of the new algorithm and some
of its related advantages will be investigated in the following section.
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5 Convergence analysis and theoretical compar-
isons

In this section we will investigate the convergence of the algorithm for
different acceptable situation of matrix A in (1); we will show that the
algorithm can convergent to unique solution of (1) for any initial guess
x(0) ∈ Rn which is a very important feature of this algorithm. This facts
are shown by proving some lemmas and theorems as follow.

Lemma 5.1. [7] Let A ∈ Rn×n be an L−matrix. Consider the splitting
(5) for the matrix A, where 0 ≤ L1 ≤ L. Then the matrix M−1N =
(D +D1 + L1 − L)−1(D1 + L1 + U) is nonnegative.

Lemma 5.2. [20] Suppose that A = M−N with det(M) 6= 0 and x(0) ∈
Rn be an arbitrary initial guess. Then for ρ(|M−1N | + |M−1B |) < 1,
the iterative sequence x(i) given by

x(i+1) = M−1Nx(i) +M−1B | x(i) | +M−1b, i = 1, 2, 3, ..., (8)

converges to the unique solution x∗ of AVE (1).

Corollary 5.3. Suppose that A = M −N with det(M) 6= 0 and x(0) ∈
Rn is an arbitrary initial guess. If ‖|M−1N |‖ + ‖|M−1B |‖< 1, where
‖ . ‖ is an consistent matrix norm, then the given iterative sequence x(i)

by (8) converges to the unique solution x∗ of (1).

Proof. Using triangle inequality, we have:

‖|M−1N | + |M−1B |‖≤‖|M−1N |‖ + ‖|M−1B |‖< 1 (9)

From (9) and Theorem 2.8, we have

ρ(|M−1N | + |M−1B |) ≤‖|M−1N | + |M−1B |‖< 1 (10)

Now based on (10), the sequence (8) converges to unique solution of (1)
by Lemma 5.2. �

Corollary 5.4. Suppose that A = M −N is an M−splitting and x(0) ∈
Rn is an arbitrary initial guess. Then for ρ(M−1N + M−1 | B |) < 1,
the iterative sequence x(i) given by (8) converges to the unique solution
of (1).
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Proof. Since A is an M−splitting, M−1 ≥ 0 and N ≥ 0. Hence
M−1N ≥ 0 and M−1N +M−1 | B |≥ 0. Besides

0 ≤|M−1N | + |M−1B |≤M−1N +M−1 | B | . (11)

From (11) and Theorem 2.9 we have

ρ(|M−1N | + |M−1B |) ≤ ρ(M−1N +M−1 | B |).

Now by assumption we have

ρ(|M−1N | + |M−1B |) ≤ ρ(M−1N +M−1 | B |) < 1. (12)

Therefore using (12) and Lemma 5.2, the result is obtained. �
To present the next theorems we define

T ≡ (D +D1 + L1 − L)−1(D1 + L1 + U) + (D +D1 + L1 − L)−1 | B | .
(13)

Note that for AOR and SOR iterative methods, T changes to Tr,ω and
Tω respectively as mentioned in the following:

Tr,ω ≡ (D − rL)−1[(1− ω)D + (ω − r)L+ ωU ] + ω(D − rL)−1 | B |;

Tω ≡ (D − ωL)−1[(1− ω)D + ωU ] + ω(D − ωL)−1 | B |.

Theorem 5.5. Let A = M −N = D−L−U be an M−matrix, D1 ≥ 0
and 0 ≤ L1 ≤ L, where D, −L and −U are diagonal, strictly lower trian-
gular and strictly upper triangular parts of A, respectively. If ρ(T ) < 1,
then the mixed-type splitting iterative method defined by (7) converges
to the unique solution of (1) for an arbitrary initial guess x(0) ∈ Rn.

Proof. Let us first remind that

M = D +D1 + L1 − L, N = D1 + L1 + L.

Since A is an M−matrix and 0 ≤ L1 ≤ L, we obtain
M−1 = (D +D1 + L1 − L)−1 = [(D +D1)− (L− L1)]

−1 ≥ 0,
N = D1 + L1 + L ≥ 0.
Furthermore, diagonal part of M , (i.e. D +D1) is nonnegative, strictly
lower triangular part of M , (i.e. L1 − L) is negative, and strictly upper
triangular parts of M is zero. Therefore M is M−matrix. Hence A is an
M−splitting. By using (13) and Corollary 5.4, the proof is completed.
�
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Remark 5.6. Suppose that AVE (1) is consistent and the iterative
sequence generated by Algorithm 2 is converged in k iterations to a
solution of (1) with the given error. It can be shown that the complex-
ity of one iteration of Algorithm 2 is bounded from above by f(n) =
1
2(n3 + 5n2 + 7n). So we can easily see that the complexity of Algorithm
2 is above bounded by O(kn3). Therefore the proposed algorithm is
tractable.

5.1 Theoretically convergence comparison with AOR and
SOR

First we remind that (asymptotic) rate of the convergence is defined
by R∞ = −Ln(ρ) (see [36]). The convergence analysis of an iterative
method is based on the spectral radius of the iteration matrix. For
large number of iterations, the corresponding error remarkably decreases
using the spectral radius factor of the iteration matrix; that is, when
the spectral radius is smaller, the convergence is faster. The following
theorems demonstrate that, when the matrix A in (1) is an irreducible
M−matrix, then by appropriate choices of the auxiliary matrices D1 and
L1, the Algorithm 2, converges faster than the AOR and SOR methods.

Theorem 5.7. Let A be an irreducible M−matrix. Also assume that

0 ≤ D1 ≤ (
1

ω
− 1)D, 0 ≤ L1 ≤ (1− r

ω
)L

where 0 ≤ r < ω ≤ 1. If T and Tr,ω are irreducible, then

i) ρ(T ) < ρ(Tr,ω), if ρ(Tr,ω) < 1,
ii) ρ(T ) = ρ(Tr,ω), if ρ(Tr,ω) = 1,
iii) ρ(T ) > ρ(Tr,ω), if ρ(Tr,ω) > 1.

Proof. Since A is an M−matrix, U ≥ 0; therefore by assumption,
N = D1 + L1 + U ≥ 0. On the other hand, from Lemma 5.1 we have,
M−1N = (D+D1 +L1−L)−1(D1 +L1 +U) ≥ 0. Hence (D+D1 +L1−
L)−1 is nonnegative. Therefore, it is easy to conclude that T ≥ 0. Also
it is clear that Tr,ω is nonnegative; hence, by Theorem 2.5 there exists a
positive vector x such that Tr,ωx = ρ(Tr,ω)x, or equivalently,

((D−rL)−1[(1−ω)D+(ω−r)L+ωU ]+ω(D−rL)−1 | B |)x = ρ(Tr,ω)x;
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ω(D − rL)−1[ 1ω [(1− ω)D + (ω − r)L+ ωU ]+ | B |]x = ρ(Tr,ω)x;

[ 1ω [(1− ω)D + (ω − r)L+ ωU ]+ | B |]x = 1
ωρ(Tr,ω)(D − rL)x.

Thus we have

Ux =
1

ω
ρ(Tr,ω)(D − rL)x+ (1− 1

ω
)Dx− (1− r

ω
)Lx− | B | x. (14)

By applying (14), we have

Tx− Tr,ωx = (D +D1 + L1 − L)−1[(D1 + L1 + U)x

+ | B | x− ρ(Tr,ω)(D +D1 + L1 − L)x]

= (D +D1 + L1 − L)−1[(D1 + L1)x+
1

ω
ρ(Tr,ω)(D − rL)x

+ (1− 1

ω
)Dx− (1− r

ω
)Lx− | B | x+ | B | x

− ρ(Tr,ω)(D +D1 + L1 − L)x]

= (1− ρ(Tr,ω))(D +D1 + L1 − L)−1[D1 + (1− 1

ω
)D

+ L1 − (1− r

ω
)L]x. (15)

From the assumptions of the theorem, we have

[D1 + (1− 1

ω
)D + L1 − (1− r

ω
)L] ≤ 0;

therefore

(D +D1 + L1 − L)−1[D1 + (1− 1

ω
)D + L1 − (1− r

ω
)L] ≤ 0. (16)

i) If 0 < ρ(Tr,ω) < 1, since Tr,ωx = ρ(Tr,ω)x, then by (15) and (16) we
have Tx ≤ ρ(Tr,ω)x. By Theorem 2.6, we get ρ(T ) < ρ(Tr,ω).
ii) If ρ(Tr,ω) = 1, then Tx = ρ(Tr,ω)x. By Theorem 2.6, we have
ρ(T ) = ρ(Tr,ω).
iii) If ρ(Tr,ω) > 1, then Tx ≥ ρ(Tr,ω)x. By Theorem 2.6, we obtain
ρ(T ) > ρ(Tr,ω).

�
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Theorem 5.8. Suppose A is an irreducible M−matrix. Also assume
that

0 ≤ D1 ≤ (
1

ω
− 1)D, L1 = 0

where 0 < ω < 1. If T and Tω are irreducible, then

i) ρ(T ) < ρ(Tω), if ρ(Tω) < 1,
ii) ρ(T ) = ρ(Tω), if ρ(Tω) = 1,
iii) ρ(T ) > ρ(Tω), if ρ(Tω) > 1.

Proof. It is enough to choose r = ω in Theorem 5.7. �
One of our motivations for using this method is that it covers the famous
AOR and SOR methods and by comparing this method with both men-
tioned methods, we find that under some assumptions, the MTS method
converges to unique solution of AVE with less number of iterations and
less CPU time.

6 Numerical experiments and comparisons

In this section, we report some numerical experiments to prove the per-
formance and efficiency of the proposed algorithm for solving the AVE
(1). In Examples 6.1, 6.2 and 6.3, the initial guess is supposed to be
x(0) = (1, 0, 1, 0, ..., 1, 0, ...)T ∈ Rn, while in Example 6.4 the initial guess
is taken to be zero vector and all the iterations are terminated as soon
as we reach to

δi =
‖ Ax(i) −B | x(i) | −b ‖2

‖ b ‖2
≤ 10−6, (17)

where x(i) is the obtained solution by each of the methods at iterate i. It
is also assumed that the maximum number of iterations for all methods
is 2000. Notation † in tables means the iterations have been stopped
after 2000 iterations while the computed approximate solution does not
hold in (17). In all of the following examples, the auxiliary matrices are
selected from [3] as follow:

D1 = 0.9(1− ω)D and L1 = 0.8(1− r
ω )L.
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Table 1: Randomly calculated parameters r and ω for Examples 6.1 and 6.2.

n 25 100 400 900 1600 4900 10000

r 0.7 0.7 0.6 0.4 0.2 0.7 0.5
ω 0.8 0.8 0.7 0.6 0.4 0.8 0.6

All computations were carried out on a computer with an Intel(R)
Core(TM) i5-4200U CPU @ 1.60GHz processor and Memory 4GB using
MATLAB R2014a. For the act of the inverse of an matrix in the im-
plementation of iterative methods, we always used the LU factorization.

In this regard, here, four numerical examples are presented and are
solved which previously have been examined in literature. Their results
are shown in Tables 1,...,7, in which they report the number of iterations
(denoted with Iter), the error value (denoted with Err) and CPU times
for the convergence (denoted with CPU). It should be noted that the
calculated time is in seconds.

Example 6.1. [4] Consider the Poisson equation in two dimensions,

−∆u = f in Ω = (0, 1)× (0, 1),

u = 0 on Γ = ∂Ω.

Using a finite difference discretization with mesh-width h = 1
m+1 , we

arrive at a linear system Cx = d where C ∈ Rn×n and n = m2. It can
be observed that the matrix C is in the form C = Im⊗M+T⊗Im, where
M = trid(−14 , 1,

−1
4 ) and T = trid(−14 , 0,

−1
4 ) are m×m matrices and⊗ is

the symbol of the Kronecker product. We have take the right-hand side
vector of AVE (1), such that the vector x∗ = (1, 2, 1, 2, ..., 1, 2, ...)T ∈ Rn

is the exact solution, this ensures that the mentioned AVE is consistent.
For AVE (1) with B = I when A = C, we report the numerical results
for various values of n in Tables 1 and 2. As the numerical results show,
both methods Picard and the generalized Newton fail in convergence.
However, we observe that the MTS method gives quite proper results.

Example 6.2. [10] Assume that m be a specified positive integer and
n = m2. Let AVE (1) is given, in which A ∈ Rn×n is presented by
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Table 2: Numerical results of Example 6.1 for different values of n.

MTS Gen. Newton Picard
n Iter (CPU) Err Iter (CPU) Err Iter (CPU) Err

25 41(0.0057) 7.708e-07 † †
100 47(0.0068) 6.057e-07 † †
400 39(0.0079) 9.988e-07 † †
900 34(0.0122) 8.520e-07 † †
1600 18(0.0099) 6.005e-07 † †
4900 64(0.0602) 8.612e-07 † †
10000 27(0.0482) 9.272e-07 † †

A = M + µI, where

M =



S −I 0 . . . 0 0
−I S −I . . . 0 0
0 −I S . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . S −I
0 0 0 . . . −I S


∈ Rn×n,

with

S =



4 −1 0 . . . 0 0
−1 4 −1 . . . 0 0
0 −1 4 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 4 −1
0 0 0 . . . −1 4


∈ Rm×m,

where 0 ∈ Rm×m and I ∈ Rm×m are the zero matrix and the identity ma-
trix, respectively. This problem is due to the finite difference discretiza-
tion on equidistant grid of a free boundary value problem about the flow
of water via a porous dam [11]. Let B = I and the right-hand side of (1)
is constructed such that x∗ = (1, 2, 1, 2, ..., 1, 2, ...)T ∈ Rn satisfies Ax∗−
|x∗| = b. In Table 3, we report the numerical results for various values
of µ (µ = 0,−0.5,−0.9) and n (n = 25, 100, 400, 900, 1600, 4900, 10000).
As the numerical results show, the Picard and the generalized Newton
methods fail in several cases, but the MTS algorithm converges appro-
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Table 3: Numerical results of Example 6.2 for different values of n, µ.

MTS Gen. Newton Picard
µ n Iter (CPU) Err Iter (CPU) Err Iter (CPU) Err

0 25 50(0.0048) 9.217e-07 2(0.0193) 3.624e-16 †
100 41(0.0053) 8.589e-07 14(0.0219) 8.145e-16 †
400 44(0.0070) 8.364e-07 † †
900 51(0.0126) 9.089e-07 † †
1600 63(0.0225) 9.979e-07 † †
4900 35(0.0373) 8.439e-07 † †
10000 45(0.0851) 9.673e-07 † †

-0.5 25 26(0.0030) 8.616e-07 2(0.0030) 2.825e-16 †
100 42(0.0047) 8.988e-07 † †
400 61(0.0093) 8.985e-07 1066(6.5646) 1.129e-15 †
900 80(0.0183) 9.811e-07 † †
1600 106(0.0359) 9.130e-07 † †
4900 57(0.0595) 8.756e-07 † †
10000 76(0.1467) 9.775e-07 † †

-0.9 25 36(0.0032) 9.639e-07 2(0.0032) 3.103e-16 †
100 93(0.0090) 9.124e-07 † †
400 199(0.0276) 9.520e-07 † †
900 305(0.0669) 9.858e-07 † †
1600 430(0.1414) 9.743e-07 † †
4900 237(0.2446) 9.738e-07 † †
10000 325(0.6126) 9.857e-07 † †

priately to the solution of problem. Furthermore, the MTS algorithm
has the least CPU time among other methods.

Example 6.3. [1] Assume that m be a predetermined positive integer
and n = m2; plus, suppose that B = I, A = M̂ + I, where

M̂ =



S −0.5I 0 . . . 0 0
−1.5I S −0.5I . . . 0 0

0 −1.5I S . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . S −0.5I
0 0 0 . . . −1.5I S


∈ Rn×n,
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with

S =



4 −0.5 0 . . . 0 0
−1.5 4 −0.5 . . . 0 0

0 −1.5 4 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 4 −0.5
0 0 0 . . . −1.5 4


∈ Rm×m,

and b = Ax∗− |x∗|, in which x∗ = (1, 2, 1, 2, ..., 1, 2, ...)T . One can easily
see that A is an irreducible M−matrix. In Tables 4 and 5, we com-
pare the obtained results by the new MTS algorithm with the obtained
one from AOR and SOR iterative methods from the point of view the
spectral radius, the error, the number of iterations and CPU times for
Example 6.3. The numerical results confirm that the mixed-type split-
ting method has a faster asymptotic rate of convergence. As Table 5
states, the number of iterations and CPU-time in our proposed method
is far less than AOR and SOR iterative methods.

Table 4: Comparison results of spectral radius for Example 6.3.

n r ω ρ(Tω) ρ(Tr, ω) ρ(T )

25 0.7 0.8 0.7854 0.7948 0.7765
100 0.7 0.8 0.8504 0.8576 0.8445
400 0.6 0.7 0.8932 0.8981 0.8801
900 0.4 0.6 0.9158 0.9228 0.8996
1600 0.2 0.4 0.9490 0.9527 0.9178
4900 0.7 0.8 0.8967 0.9043 0.8916
10000 0.5 0.6 0.9468 0.9513 0.9303

Example 6.4. Let m be a prescribed positive integer and n = m2.
Consider AVE (1) with A = tridiag(−I, S,−I) ∈ Rn×n where S =
tridiag(−1, 8,−1) and B = I. The numerical results for Example 6.4
are presented in Tables 6 and 7. In Table 6, r and ω parameters are cal-
culated randomly and the value of ω0 for SOR-like method, is obtained
from (4). The results in Table 7 are reported to illustrate the behav-
ior of SOR-like method in comparison with the other methods. To this
end, we only work with the dimensions used in [12, Example 2] and the
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Table 5: Comparison results for Example 6.3

SOR AOR MTS
n Iter (CPU) Err Iter (CPU) Err Iter (CPU) Err

25 53(0.0081) 9.762e-07 57(0.0086) 8.197e-07 51(0.0061) 9.257e-07
100 91(0.0160) 9.384e-07 97(0.0159) 9.804e-07 88(0.0087) 8.919e-07
400 178(0.0414) 9.117e-07 190(0.0484) 9.611e-07 157(0.0235) 9.658e-07
900 296(0.1067) 9.484e-07 336(0.1364) 9.739e-07 250(0.0541) 9.180e-07
1600 630(0.3477) 9.645e-07 706(0.4536) 9.847e-07 386(0.1391) 9.566e-07
4900 351(0.5382) 9.954e-07 384(0.7058) 9.361e-07 342(0.3797) 9.897e-07
10000 745(2.1390) 9.603e-07 803(2.6923) 9.791e-07 587(1.1907) 9.661e-07

right-hand side b is constructed such that x∗ = (−1, 1,−1, 1, ...,−1, 1)T

satisfies in Eq. (1). As the Table 7 show, all of examined iterative meth-
ods are convergent and proposed iterative method outperforms other
approaches.

Thus according to the numerical results in Tables 1-7, the new MTS
algorithm is more powerful and efficient than the generalized Newton,
Picard, SOR, AOR and SOR-like methods.

Table 6: The value of parameters for Example 6.4.

n 64 256 1024 4096

r 0.9239 0.9185 0.9007 0.2670
ω 0.9575 0.9729 0.9421 0.5688
ω0 1.0671 1.0704 1.0714 1.0717

7 conclusion

In this paper, we presented a new algorithm for iteratively solving the
AVE (1), in which the coefficient matrix A is an M−matrix. This
method utilizes two auxiliary matrices and includes the AOR and SOR
methods as special cases. Some sufficient conditions for the convergence
of the method have been provided. The numerical results show the va-
lidity of the theoretical results and the efficiency of the new method.
Moreover, it is concluded that by choosing appropriate auxiliary matri-
ces, the new MTS method converges faster than the famous SOR, AOR,
SOR-like, Generalized Newton and Picard methods.
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Table 7: Numerical results of Example 6.4 for different values of n.

Method n 64 256 1024 4096

Gen. Newton IT 2 2 2 2
CPU time 0.0035 0.0102 0.0538 0.4631

Err 2.218e-16 3.370e-16 3.166e-16 3.379e-16

Picard IT 8 8 8 8
CPU time 0.0021 0.0027 0.0054 0.0307

Err 6.920e-07 8.228e-07 8.882e-07 9.209e-07

SOR IT 14 14 15 32
CPU time 0.0032 0.0040 0.0071 0.0498

Err 4.386e-07 4.753e-07 5.336e-07 9.808e-07

AOR IT 14 14 15 35
CPU time 0.0032 0.0048 0.0084 0.0608

Err 5.215e-07 6.293e-07 6.548e-07 8.741e-07

SOR-like (ω0) IT 12 12 12 12
CPU time 0.0038 0.0048 0.0095 0.0502

Err 5.032e-07 7.585e-07 8.774e-07 9.282e-07

MTS IT 14 14 15 25
CPU time 0.0025 0.0027 0.0051 0.0212

Err 4.310e-07 5.468e-07 5.069e-07 9.384e-07
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