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Abstract. Let RG be the gruop ring of the group G over ring R and U (RG) be its
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1 Introduction
Let RG be the group ring of group G over field F and U (FG) be its unit group, i.e.,
multiplicative subgroup containing all invertible elements. The study of unit group
is one of the classical topics in ring theory that started in 1940 with a famous paper
written by G. Higman [10]. In recent years many new results have been achived;
However, only few group rings have been computed. Unit groups are useful, for
instance in the investigation of Lie properties of group rings (for example see [2])
and isomorphism problem (for example see [3]).

Up to now, the structure of unit groups of some group rings has been found. For
instance, on integral group ring [11], on permutation group ring [19], on commutative
group ring [16], on linear group ring [13], on quaternion group ring [4], on modular
group ring [17] and on pauli group ring [8]. In [6], the authors proved which groups
can be unit groups, moreover, on properties of unit elements themselves instead of
their groups structure [1].

In this paper we’ll study the unit group of dihedral group ring. Till now some
cases have been studied. For instance, in [12], the authors obtained U (F2D2p), in
[7], Gildea calculated the order of U (Fpk D2pm) and in [9] determined the structure
of the unitary units of the group algebra F2k D8. In continue, the authors of [14]
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obtained the structure of unit groups of generalized dihedral group rings and recently
in [18], the authors determined the structure of the unitary subgroup of the group
algebra F2n(QD)16 where QD is a quasi dihedral group. In this paper we characterize
the unit group structure of dihedral group with order 14 over any finite field with
characteristic 2.

2 Preliminary and Notations

In this section, we bring some notations and lemma which we need for the proof of
our main results. We denote the order of an element g in the group G by OrdG(g),
the sum of all elements of subset X in ring R by X̂ , i.e.,

∑
r∈X r. Notice there

is no need for X to be a subring or subgroup, it defines for any arbitrary subset.
In group ring RG, when X be subset of all different powers of g (an element of
group G), we may simply write ĝ instead of X̂ . Also when X be right coset of
⟨g⟩ with respect to h, we may write ĝh for X̂ . Let f : X → Y be an arbitrary
function, then SuppX( f ) = {x ∈ X | f (x) ̸= 0}. Also, we use the following notations:
AnnR(a) = {r ∈ R | ra = ar = 0}, we denote a finite field of characteristic p with order
pn by Fpn . If E is a vector space over F , then DimF(E) is the dimension of E over F .
Let U (R) be the unit group of ring R, i.e., U (R) = {u ∈ R | u−1 ∈ R} and J(R) be
the jacobson radical of ring R. Now we state a useful definition and recall a lemma.

Definition 2.1. Let RG be group ring of ring R over the group G, p be a prime
number and Sp be subset of all p−elements including identity element of G, i.e.,
Sp = {g ∈ G | ∃n ∈ Z>0; OrdG(g) = pn }. We define a binary map T : G → R as
follows:

T (g) =
{

1 If g ∈ Sp

0 If g /∈ Sp

As we know that T on G is the base of RG, so we can linearly extend it to whole
RG, of course no more remains binary. Also if see elements of RG as functions from
G to R, that map every group element (g) to its coefficient (rg), then their supports
will be feasible. Now we can define Krn(T ) := {α ∈ RG | ∀g ∈ G; αg ∈ KerRG(T )}
and Spr(α) := SuppG(α). Also Anh(a) := AnnRG(a) and Dmn(S) := DimF(S).

Lemma 2.2. Let F be a finite field of characteristic p, G be a finite group, T be a
function defined as above and s = Ŝp. Then:

(1) J(FG) ⊆ Krn(T ).
(2) Krn(T ) = Anh(s).
(3) J(FG) ⊆ Anh(s).

Proof. [20, Lemma 2.2 on p. 151].
�

In the next section we bring our main result.
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3 Unit Group of F2nD14

Let D2n be Dihedral group of order 2n, Cn be cyclic group of order n and GLn(R) be
general linear group of order n on ring R. Our main result is:

Theorem 3.1. Let G be the Dihedral group of order 14 and F = F2n. Then the
structure of U (FG) can be obtained as follows:

1. If n = 3m, Then U (FG) = Cn
2 ×C2n−1 × GL2(F)3

2. If n ̸= 3m, Then U (FG) = Cn
2 ×C2n−1 × GL2(F3)

Let p = 2, xy be the conjugate of x by y that is xy = y−1xy, s be as defined in 2.2,
⟨x⟩ be the cyclic subgroup generated by x and ⟨x⟩y be right coset of ⟨x⟩ with respect to
y that is ⟨x⟩y = {xiy | −3 6 i 6 +3}, i.e., ⟨x⟩y = {x−3y, x−2y, x−1y, y, xy, x2y, x3y}. By x̂
definition, sum of different powers of x, that is x̂ = x−3 + x−2 + x−1 + 1 + x + x2 + x3

and x̂y = x−3y + x−2y + x−1y + y + xy + x2y + x3y, so we have:

Proposition 3.2. Let p = 2 and group G = D14, Dihedral group of order 14, that
is, D14 = ⟨x, y | x7 = y2 = 1, xy = x−1⟩. Then Anh(s) = ⟨Ĝ⟩.

Proof. It’s well known that the conjugacy classes of G are as follows:

C0 = {1}
C1 = {x1, x−1}
C2 = {x2, x−2}
C3 = {x3, x−3}
C4 = ⟨x⟩y

(1)

It is clear that D14 has three types of elements: Identity, elements of form
xiy with order 2 and elements of form xi(7 - i) with order 7. So S2 = C0 ∪ C4,
therefore Ŝ2 = Ĉ0 + Ĉ4 = 1 + x̂y, sum of 2− elements including identity. Let
α =

∑4
i=0 αi = α0 + α1 + α2 + α3 + α4 ∈ Anh(s) where Spr(αi) ⊆ Ci and s = Ŝ2.

Then we have:

0 = α.s = (
4∑

i=0

αi)(1 + x̂y)

= (α0 + α1 + α2 + α3 + α4)(1 + x̂y)

= (α4 + (α0 + α1 + α2 + α3))(1 + x̂y)

= ((α0 + α1 + α2 + α3) + α4x̂y)

+ (α4 + (α0 + α1 + α2 + α3)x̂y)

(2)

Notice that for every j, we know:

(x jy)(x̂y) = x̂ and (x j)(x̂y) = x̂y (3)
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So the conjugacy classes of two last parentheses of 2 are different, since left side
is zero, every parentheses should be zero separately. Hence:

(α0 + · · ·+ α3) + α4x̂y = 0 and α4 + (α0 + · · ·+ α3)x̂y = 0

Now again by using 3 we can conclude that:

(α0 + . . .α3) + ε(α4)x̂ = 0 and α4 + ε(α0 + · · ·+ α3)x̂y = 0 (4)

As mentioned above α =
∑4

i=0 αi = α0 + α1 + α2 + α3 + α4 where Spr(αi) ⊆ Ci

and by definition of Ci’s from 1, we can write:

α0 = a0
α1 = a1x1 + a−1x−1

α2 = a2x2 + a−2x−2

α3 = a3x3 + a−3x−3

α4 = b−3x−3y + b−2x−2y + b−1x−1y + b0y + b1xy + b2x2y + b3x3y

By substitute of each αi’s in 4, we can calculate the coefficients of each element
of the group in the left sides of equations and since right sides are zero, so each
coefficient must be zero too. Therefore, for every i and j, we have:

ai + ε(α4) = 0 b j +
∑3

i=0
ε(αi) = 0

ai = −
∑+3

j=−3
b j b j = −

∑+3

i=−3
ai

a−3 = · · · = a0 = · · · = a3 b−3 = · · · = b0 = · · · = b3
ai = −7b j b j = −7ai

Since we deal with a field of characteristic 2, so −7 = 1, therefore, for every i
and j, we have ai = b j, thus α = a0.Ĝ and therefore:

Anh(s) = ⟨Ĝ⟩

�
Let s be as was in 3.2, that is s = Ŝ2, then we have:

Proposition 3.3. Anh(s) is a nilpotent ideal.

Proof. Let α, β ∈ Anh(s), according to 3.2:

α.β = aĜ.bĜ = ab.ĜĜ = ab|G|Ĝ

Since F is a field of characteristic 2, and G has 14 elements, that is, |G| = 14 = 0,
so α.β = 0, thus Anh2(s) = 0, therefore, Anh(s) is a nilpotent ideal.
�

Let s be as was in 3.3, that is s = Ŝ2, then we have:

Proposition 3.4. Anh(s) ⊆ J(FG).
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Proof. Since every nilpotent ideal is a nil ideal, so 3.3 shows Anh(s) is a nil ideal.
On the other hand, by [15, Lemma 2.7.13 on p. 109], Jacobson radical contains all
of the nil ideals, so:

Anh(s) ⊆ J(FG)

�
In the next corollary, we’ll show that the equality hold:

Corollary 3.5. J(FG) = Anh(s).

Proof. By 3.4, Anh(s) ⊆ J(FG) and we know from 2.2 part (3) that J(FG) ⊆ Anh(s),
so the equality is hold:

J(FG) = Anh(s)

�
We’ll need the following proposition in the next steps:

Proposition 3.6. Dmn(J(FG)) = Dmn(Anh(s)) = 1

Proof. By 3.2 and 3.5 we have:

J(FG) = Anh(s) = ⟨Ĝ⟩ (5)

That means, J(FG) and Anh(s) are generated by one elment Ĝ, hence:

Dmn(J(FG)) = Dmn(Anh(s)) = 1

�
Let H := ⟨x⟩ = {x−3, x−2, x−1, 1, x, x2, x3}E G, a normal subgroup of G. Also we

recall augmentation ideals ∆(G,H) := ⟨h−1| h ∈ H⟩, that in special case H = G, we
denote ∆(G) := ∆(G,G). Now it’s obvious that by [15, Proposition 3.3.3 on p. 135],
we have:

Dmn(∆(G,H)) = |G| − [G : H] = 14− 2 = 12

Dmn(∆(G,G)) = |G| − [G : G] = 14− 1 = 13

Therefore we can bring the following remark:

Remark 3.7. Dimensions of ∆(G,H) and ∆(G) can be computed as follows:

Dmn(∆(G,H)) = 12

Dmn(∆(G,G)) = 13

We want to represent a decomposition for ∆(G) over J(FG) and ∆(G,H). As
both of them are included in ∆(G), first we show they are disjoint:

Proposition 3.8. J(FG) ∩∆(G,H) = 0.
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Proof. Let α ∈ J(FG)∩∆(G,H). By 5, J(FG) = ⟨Ĝ⟩. Now we compute α.x̂ in two
different ways, according to see α as an element of J(FG) or ∆(G,H) separately:

α ∈ J(FG) = ⟨Ĝ⟩ α ∈ ∆(G,H) = ⟨x − 1⟩
α = a.Ĝ α = β (x − 1)

α x̂ = aĜx̂ = aĜ|⟨x⟩| α x̂ = β (x − 1)x̂ = β (xx̂ − 1x̂)
= a.Ĝ.n = a.Ĝ = α = β .(x̂ − x̂) = β .0 = 0

So we conclude that:
α = α.x̂ = 0 (6)

And therefore we have:
J(FG) ∩∆(G,H) = 0

�
Now the decomposition can be achieved:

Proposition 3.9. ∆(G) = J(FG)⊕∆(G,H).

Proof. By 3.6 and 3.7, we have:

Dmn(J(FG)) + Dmn(∆(G,H)) = 1 + 12 = 13 = Dmn(∆(G))

Now 3.8 together with above equality shows that:

∆(G) = J(FG)⊕∆(G,H)

�
In the next Proposition, we prove that ∆(G,H) is a semisimple ring:

Proposition 3.10. ∆(G,H) is a semisimple ring.

Proof. By 3.9, we have ∆(G,H) = ∆(G)/J(FG) ⊆ FG/J(FG). And moreover with
[15, Theorem 6.6.1 on p. 214] any field over a finite group makes an Artinian group
ring, so FG is an Artinian group ring, and [15, Lemma 2.4.9 on p. 87], implies its
quotient ring, FG/J(FG), is Artinian too. By [15, Lemma 2.7.5 on p. 107] we know
Jacobson radical vanishes, J(FG/J(FG)) = 0. By [15, Theorem 2.7.16 on p. 111] we
can explore that FG/J(FG) is semisimple, and by [15, Proposition 2.5.2 on p. 91],
all of its subrings are semisimple too. So ∆(G,H) is semisimple.
�

By Artin-Wedderburn Theorem, ∆(G,H) decomposes to its simple components
that are division rings of matrices over extensions of F . Now we need to know their
numbers and dimensions. First we show that the center of ∆(G,H) is included in
the center of FG:

Proposition 3.11. Z(∆(G,H)) ⊆ Z(FG)
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Proof. For the proof of this proposition, we need show that each element of Z(FG)
must commute with all of elements of FG. Since F is commutative and G is generated
by x and y, so it suffices to show they commute with x and y. Let α ∈ Z(∆(G,H)),
so it commutes with x − 1 as it is in ∆(G,H):

α.(x − 1) = (x − 1).α
α.x − α = x.α − α

α.x = x.α

So α commutes with x. Now we show that α also commutes with y. First we show
that αy− yα is in Anh(x−1). Notice we know that (x−1)y = y(x−1−1) ∈ ∆(G,H),
so:

(x − 1)y ∈ ∆(G,H) y(x − 1) ∈ ∆(G,H)
α.(x − 1).y = (x − 1).y.α α.y.(x − 1) = y.(x − 1).α
(x − 1).αy = (x − 1).yα αy.(x − 1) = yα.(x − 1)
(x − 1)(αy − yα) = 0 (αy − yα)(x − 1) = 0

So (αy − yα) ∈ Anh(x − 1) and by [15, Lemma 3.4.3 on p. 139] we know that:

Anh(x − 1) = Anh(∆(G,H)) = FGx̂

Now we compute (αy−yα).x̂ in two different ways, directly itself or see (αy−yα)
as an element of FG.x̂ separately. At first we compute it directly. Before that notice
α ∈ Z(∆(G,H)) ⊆ ∆(G,H), so by 6, α.x̂ = 0, and although x does not commute
with y, but x̂ does. So we have:

(αy − yα).x̂ = α.y.x̂ − y.α.x̂ = α x̂.y − y.α x̂ = 0.y − y.0 = 0

Now we compute it according to see (αy − yα) as an element of FG.x̂. Before
that notice |⟨x⟩| = OrdG(x) = 7 = 1. So we have:

(αy − yα).x̂ = β .x̂.x̂ = β .x̂.|⟨x⟩| = β x̂ = (αy − yα)

Hence αy − yα = (αy − yα).x̂ = 0, thus αy = yα, that means α also commutes
with y and therefore:

Z(∆(G,H)) ⊆ Z(FG)

�
In the next proposition, we obtain the exact structure of Z(∆(G,H)):

Proposition 3.12. Z(∆(G,H)) = ⟨Ĉ1, Ĉ2, Ĉ3⟩
Proof. Let α ∈ Z(∆(G,H)), from [15, Theorem 3.6.2 on p. 151] we know center on
conjugacy classes, Z(FG) = ⟨Ĉ0, Ĉ1, Ĉ2, Ĉ3, Ĉ4⟩, so Z(∆(G,H)) ⊆ ⟨Ĉ0, Ĉ1, Ĉ2, Ĉ3, Ĉ4⟩,
by using 3.11. So α =

∑4
i=0 riĈi = r0Ĉ0 + r1Ĉ1 + r2Ĉ2 + r3Ĉ3 + r4Ĉ4. By 6, α.x̂ = 0

and notice that x±ix̂ = x̂, so (xi + x−i)x̂ = 2x̂ = 0. Hence:

0 = α x̂ =
4∑

i=0

riĈix̂ = r0Ĉ0x̂ + (
3∑

i=1

riĈix̂) + r4Ĉ4x̂

= r0.1.x̂ + (
3∑

i=1

ri(xi + x−i)x̂) + r4x̂yx̂ = r0x̂ + 0 + r4x̂y

(7)
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Since left side of 7 is zero, so right side coefficients should be zero, r0 = r4 = 0,
hence, α =

∑3
i=1 riĈi = r1Ĉ1 + r2Ĉ2 + r3Ĉ3, that means Z(∆(G,H)) ⊆ ⟨Ĉ1, Ĉ2, Ĉ3⟩.

Now it suffices to show that all of these types of elements are included in ∆(G,H).
We must show that there is a β that α = β (x − 1). It is straightforward to find β ’s
coefficients by solving a system of linear equations. For α = β (x − 1):

β = r1x + (r1 + r2)x2 + (r1 + r2 + r3)x3 + (r1 + r2)x4 + r1x5

So α ∈ ∆(G,H), and therefore:

Z(∆(G,H)) = ⟨Ĉ1, Ĉ2, Ĉ3⟩

�
Now the dimension of the center of ∆(G,H) can be computed:

Corollary 3.13. Dmn(Z(∆(G,H))) = 3

Proof. By 3.12, we know that Z(∆(G,H)) = ⟨Ĉ1, Ĉ2, Ĉ3⟩, so:

Dmn(Z(∆(G,H))) = 3

�
Let Mn(R) be the ring of the square matrices of the order n on the ring R and

GLn(R) be its unit group. Also Rn be the direct sum of n copy of the ring R, i.e.,
Rn = ⊕n

i=1R and Fn be the extension of the finite field F of the order n that is
[Fn : F ] = n. Now we are ready to prove 3.1:

Proof.[Proof of 3.1] Let α ∈ Z(∆(G,H)). From 3.12, we know elements of center
on conjugacy classes, α =

∑3
i=1 riĈi = r1Ĉ1 + r2Ĉ2 + r3Ĉ3. Since char(F) = 2, we

have:
α1 = r11Ĉ1 + r12Ĉ2 + r13Ĉ3

α2 = r21Ĉ2 + r22Ĉ3 + r23Ĉ1

α4 = r41Ĉ3 + r42Ĉ1 + r43Ĉ2

α8 = r81Ĉ1 + r82Ĉ2 + r83Ĉ3

Since |F | = 2n, we know r2
n

i = ri, so α2n
= r1Ĉ 2n

1 + r2Ĉ 2n

2 + r3Ĉ 2n

3 . Therefore
by 3.7 and 3.13, we conclude that if 3 divides n, then α2n

= α and else α23n
= α.

Therefore we have:
If n = 3m, Then α2n

= α So ∆(G,H) ∼= M2(F)3

If n ̸= 3m, Then α23n
= α So ∆(G,H) ∼= M2(F3)

By [15, Proposition 3.6.7 on p. 153], we know FG ∼= F(G/H) ⊕ ∆(G,H), and
therefore, U (FG) ∼= U (F(C2))× U (∆(G,H)). As U (F(C2)) was described in the
[5, Theorem 1.7 on p. 239], we have:

U (FG) =

{
Cn
2 ×C2n−1 × GL2(F)3 q = 3m

Cn
2 ×C2n−1 × GL2(F3) q ̸= 3m

�

https://www.modares.ac.ir/en-math/departments/pure-mathematics/students/phd
https://www.modares.ac.ir/en-pro/academic_staff/iranmana


THE STRUCTURE OF UNIT GROUP OF F2qD14 9

4 Conclusion
One of the important research works in group ring is obtaining the structure of unit
group of some finite group rings. In this paper, we deal with the finite field of even
order and we can obtain the structure of unit group of F2nD14.
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