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Abstract. Let R be a commutative ring with identity. We give a new
generalization to prime ideals called a-prime ideal. A proper ideal P of
R is called an a-prime ideal if for all a,b in R with ab € P, then a € P
or a(b) € P where a € End(R). We study some properties of a-prime
ideals analogous to prime ideals. We give some characterizations for
such generalization and we prove that the intersection of all a-primes
in a ring R is the set of all a-nilpotent elements in R. Finally, we give
new versions of some famous theorems about prime ideals including
a-integral domains and a-fields.
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1 Introduction

Throughout this article R will be a commutative ring with nonzero iden-
tity and « : R — R a fixed endomorphism on R. The notion of a prime
ideal plays a key role in the theory of commutative algebra, and it has
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been widely studied. Recall from [!] that a prime ideal P of R is a
proper ideal P with the property that for a,b € R, ab € P implies a € P
or b € P. Recently many generalizations of prime ideals were introduced
and studied (see for example [1], [3] and [5]). The radical of an ideal
I of a ring R is defined to be VI = {r € R : v € Ifor somen € N}.
A proper ideal P is called primary if ab € P implies a € P or b € /P
[6]. An integral domain is refereed to us a commutative ring with iden-
tity which has no non-zero divisors. For any other concepts see [7]. In
this paper, we introduce the notion of a-prime ideal, and establish some
characterizations of it. We prove and generalize some results of a-prime
ideals that are analogous to prime ideals.

2 Main results

Let R be aring and let o € End(R) be a fixed endomorphism. A proper
ideal P of a ring R is called an a-prime ideal of R if for all r,s € R,
rs € P implies that » € P or a(s) € P. The definition is equivalent
to say rs € P implies that either a(r) € P or s € P. In view of the
definition of an a-prime ideal, we see that in the case when « is the
identity map, a-prime ideal will be a prime ideal. So a-prime ideals
are considered as a generalization of prime ideals. For an a-prime P, if
r € P, then o(r) € P sincer =1-r € P implies 1 € P or a(r) € P.
Hence we can assume «(P) C P. Also in the case when «(I) = I, for
all ideals I of R, then the prime ideals and a-prime ideals will be again
the same. Note that every prime ideal is an a-prime ideal, where « is
the identity map. However, the converse is not true in general as shown
in the following example.

Example 2.1. Consider the ideal P =< 2z > in the ring R = Zy4[z] with
endomorphism « on R defined by a(f(x)) = f(0). Then P is a-prime
but not prime, since 2-x € P and 2,z ¢ P whereas a(x) =0 € P.

Lemma 2.2. Let P be an a-prime. Then so is V/P.

Proof. Let zy € VP, for 2,y € R. Then (zy)" = 2"y € P and P
being a-prime implies 2" € P or a(y") = (a(y))" € P which means that
z € /P or a(y) € VP. Hence VP is a-prime. [
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For a ring R and an a-prime ideal P of R, we define a subset Sp of
R as Sp={r € R: a(r) € P}. Clearly, Sp is an ideal of R containing
P. The following is a direct consequence and can be proved easily and
so the proof is omited.

Lemma 2.3. Assume P is an a-prime ideal of a ring R. Then Sp is
an a-prime ideal of R.

Lemma 2.4. Suppose P is a-prime and maximal with respect to the
property that r € P implies a(r) € P. Then P is prime.

Proof. By contrast, suppose P is not prime and so there exist a,b € R
with ab € P such that a ¢ P and b ¢ P. Consider the ideal (P,a) =
{m+ra:m € P,r € R} and take x € (P,a). Then x = m + ra and
xb = mb+ rab € P. Hence a(x) € P C (P,a). So by hypothesis,
(P,a) = P and hence a € P, which is a contradiction. Therefore P is
prime. O

Now we give a charactrization of an a-prime ideal.

Theorem 2.5. Let R be a ring and P a proper ideal of R. Then P is
a-prime if and only if for any two ideals I,J of R such that IJ C P,
ICPoralJ)CP.

Proof. Let P be an a-prime ideal and IJ C P with I € P. Then there
exists a in I such that a ¢ P. For every b€ J, abe IJ C P,but a ¢ P
so a(b) € P, that is, a(J) C P. Conversely, let ab € P, which implies
that (a)(b) C P. Hence we have (a) C P or a((b)) € P. Therefore
a€ Pora) € Pand P is a-prime. [

Let J be a subset of a ring R. We show that the a-primeness of an
ideal P implies the a-primeness of the ideal (P : J).

Proposition 2.6. If P is an a-prime ideal of a ring R and I a subset
of R, then so is (P :1I).

Proof. Suppose ab € (P : I) for a,b € R. Then b € (P :al) = (P :
a)U (P :1I). Thus ba € Por b e (P:1I), thatis, b € P or a(a) € P
or b e (P:1I). Therefore a(a) € (P:I)orbe (P:1I)and (P:1)is
a-prime ideal. [l
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Remark 2.7. We note that for an a-prime ideal P of a ring R and
r € R, if v € P, then «a(r) € P. Thus if we put r = «(z), then
(a(z))™ € P implies that o a(z) € P.

Let R be aring. An element a € R is called a-nilpotent if a(a™) =0
for some positive integer n. We call the set of a-nilpotent elements in
a ring R the a-nilradical of R and denote by N,. We know that if z is
a nilpotent element in a ring R, then 1 — x is a unit in R. This result
can be extended as follows: For an a-nilpotent element r in R, 1 — «a(r)
is a unit in R. In the sight of the definition of a-nilpotent elements we
can define the a-radical of an ideal I to be VI = {a € R : a(a") €
I for some positive integer n}. Thus N, = ¥/0 and clearly I C /1.
Now, we are in a position to characterize the set NV, as an ideal. First,
we have to prove the ideality of N,.

Proposition 2.8. The set of all a-nilpotent elements N is an ideal of
R.

Proof. Let z,y € NM,. Then a(z") = a(y™) = 0 for some positive
integers n,m and by the binomial theorem (a(z) + a(y))" ™ 1 is a
sum where all its monomials contain the product (a(x))"(a(y))® with
r+s=m+mn—1. So the case when r < n and s < m is excluded.
Hence each of these monomials is zero. So (a(x +y))"™™ ! = (a(z) +
ay)™™ ! = 0and z +y € N, Also, for every r € R, we have
a((rz)™) = a(r™) - a(a™) = 0. Therefore N, is an ideal of R. [

Now, we give one of our main results that characterizes the ideal NV,
and it is a generalization of Proposition 1.8 of the Atiyah’s book [1]. For
this reason we need the following two lemmas.

Lemma 2.9. For a € End(R), the kernel of « is in the intersection of
all a-prime ideals.

Proof. Suppose x € Kera. Then a(x) = 0 belongs to every a-prime
ideal P of R. So, x belongs to the inverse image of every a-prime
ideal which is again an a-prime ideal by Proposotion 2.21. Therefore
Kera C mP is a— prime inRP' u

Lemma 2.10. Assume that R is an integral domain and o € End(R).
Then the kernel of o is a prime ideal in R.
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Proof. Suppose zy € Kera for z,y € R. Then a(zy) = a(z)a(y) =0
and R being an integral domain implies a(z) = 0 or a(y) = 0, that is,
x € Kera or y € Kera. Therefore Kera is a prime ideal in R. g

Theorem 2.11. The a-nilradical N, of an integral domain R is the
intersection of all the a-prime ideals of R.

Proof. Suppose x is a-nilpotent. Then a(z™) = 0 and 2" € Kera.
Lemma 2.10 implies that x € Kera and Lemma 2.9 gives us

S ﬂP is a— prime in RP‘ Thus NOC - mP is a— prime in RP’ For the
reverse inclusion, let x be non a-nilpotent and define a set S = {I : I
an ideal of R and a(2™) ¢ I for all n > 0}. Clearly 0 belong to S
and so S is nonempty. Order S by inclusion and let {I;};c; be a chain
of ideals of in S. Then I; C I; or I; C I; for each pair of indices
i and j. Set I = |J;I;, so that it is an ideal in S and becomes an
upper bound of the chain. Therefore by Zorn’s lemma, S has a maximal
element, say J. Now to prove that J is a-prime, let a(a), a(b) ¢ J.
Then J C J + Ra(a), J C J + Ra(b) and so they are not elements
of S. Thus there exist positive integers m,n such a(z™) € J + Ra(a),
a(z™) € J+Ra(b). So a(z™t™) € J+ Ra(ab). It follows J+ Ra(ab) ¢ S
and a(ab) = a(a)a(b) ¢ J. Therefore by Remark 2.7, ab ¢ J and J is
an a-prime ideal in which «(2™) ¢ J, that isx ¢ J and so x ¢ N,. O

By taking the quotient ring R/I instead of R in Theorem 2.11 we
conclude the following.

Corollary 2.12. For an integral domain R and an ideal I of R, the
a-radical of I is equal to the intersection of all the a-prime ideals of R
which contains I.

Here are some properties of the a-radical of an ideal, which are
extended from those of the usual radical of an ideal.

Proposition 2.13. Suppose I and J are two ideals of a ring R. Then
the following are true.

1. IfI C J, then YIC V/J
2. YIJ=VInJ=¥InVJ.
3. Ifa(l) =1, then I = R if and only if I = R.
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4. VT+JC NV VI+ VT
5. If T is an a-prime ideal of R, then YVI" = /I, for all positive

integer n.
Proof.
1. The proof is clear.

2. To prove the first equality we have I.J C INJ, so ¥IJ C YINJ.
For the reverse inclusion, let z € VI N J. Then a(z") € I N.J for
some positive integer n and so a(x>™) € I.J. Hence x € V/1.J. Now
to prove the last equality, we have from INJ CITand INJ C J
that YT NJ C YIN Y/J. For other side, let y € ¢Tn {/J. Then
a(y") € I and a(y®) € J for some positive integers r,s. Hence
a(y®) € InJ, for k = maz{r,s}. Thus y € ¥YINJ and the
equality holds.

3. Suppose /T = R. Then1 € ¥/T implies that a(1") = a(1) =1 € T
which means that I = R. The other implication is obvious.

4. The two inclusions I C VT and J C V/J together imply that

YT+JC ¥/ VT+ Y.

5. The proof follows from part (2), namely that VI" = VI.I..I =
VIin¥Iin..nVIi= VI

O
The equality of part (4) is not true in general as it is the case of usual

radical. The only thing that we can say is a(V V1 + ¥J) € T+ J.

Proposition 2.14. Let f : R — S be a ring homomorphism and assume
that o € End(R)NEnd(S) commutes with f. Let P and P be two ideals
of R and S respectively. Then

1. f(VP) C /f(P).
2. {/f1(P)C f7H(VP)
3. If f is an isomorphism, then f(V/P) = /f(P).
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Proof.
1. Let z € f(¥/P). Then z = f(a) for some a € V/P. Since a € /P,

there exists a positive integer n such that a(a™) € P. Now a(2") =

a((f(a)") = a(f(a")) = f(ala™)) € f(P). Sox e {/f(P).

2. Let a € {/f~1(P). Then there exists a positive integer n such
that a(a™) € f~4(P). So f(a(a™)) € P. Since f and o commute,
a(f(a)*) € P. Hence a € f~1(V/P). Thus §/f~1(P) C f~1(VP).

3. The proof is obtained from part (1) and f being an isomorphism.

O

We know that a proper ideal P of a ring R is prime if and only if R/P
has no zero divisors and that P is a-prime if and only if every zero divisor
of R/P is in Kera. Also, from Lemma 2.9 we have the isomorphism
R/Kera
P/Kera
zero divisors if and only if P/Kera is a prime ideal. Therefore we deduce
the main connection between prime ideals and a-prime ideals.

. Hence P is a-prime if and only if has no

Theorem 2.15. Let P be a proper ideal of R. Then P is an a-prime

ideal in R if and only if KZQ s prime in

Kera”

A ring R is called an a-integral domain if for all a,b € R with ab = 0,
a =0 or a(b) = 0 for some endomorphism « on R. It is clear that every
integral domain is an a-integral domain, but the converse is not true as
shown in the following example.

Z
Example 2.16. Consider the ring R = = 2] S and endomorphism
x? —x
a on R defined by a(f(x)) = = - f(x). Then R is a-integral domain
but not integral domain, since z(x — 1) = 0 and z,1 — x # 0 but

a(l—z)=z(1l—-2)=0

The next theorem characterizes a-prime ideals in the sense of quo-
tient rings.

Proposition 2.17. Let R be a commutative ring. Then P is an a-prime
ideal if and only if R/ P is an a-integral domain.
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Proof. Let R/P be an integral domain. Let a,b € R such that ab € P.
Then ab + P = P. Since R/P is an a-integral domain, a + P = P or
ala+ P)=P. Soa € P and a(a) € P. Thus P is an a-prime ideal .
Conversely, Let P be a-prime ideal. Let a,b € R with ab € P. Then
a€ Porala) e P.Soa+ P =Porala)+P=P. Hence a+ P =P
or a(a + P) = P. Therefore R/P is an a-integral domain.

O

An a-integral domain R is called an a-field if

is a field. Clearly
era
every field is an a-field and the converse is true in the case where Kera =
0.
It is well-known that if K is a field, then K[x] is a principal ideal
domain but not a field. Define a ring homomorphism « : K[x] — K|[x]

y = f(0). =< > d — ~
by a(f(x)) f(0). Then Kera x and —=" s
K is a field. Similarly, for K[zi,...,z,], we can define an endomor-

phism o on K[zi,...,z,] by a(f(z—1,...,2,)) = f(0,0,...,0). So,

(21, 2] e (21, 2] >~ K is a field. Thus we conclude the
Kera < X1y Ty >

following theorem.

Theorem 2.18. For any field K, the polynomial ring K[x1,...,z,] in
n indeterminates is a-field but not field.

We know that every finite integral domain is a field. Here we gener-
alize this result to a-integral domains.

Proposition 2.19. Every finite a-integral domain is an a-field

Proof. Suppose R is a finite a-integral domain, say R = {1, z2, ..., Tp}
Then for any z in R with a(z) # 0, the elements zx;, i = 1,2,...,n
are all distinct else for if xx; = xx;, then z(x; — x;) = 0 and as R is
a-integral domain, z; — z; = 0 or a(z) = 0. Hence, a(z) # 0 implies
xz; = x; and as R has identity, there exists s € {1,2,...n} such that
xxs = 1. Therefore x has an inverse x5 and R is an a-field. O

A proper ideal I of a ring R is called an a-primary ideal if for all
a,b € R such that ab € I, a € I or a(b™) € I for some positive integer
n. Clearly every a-prime ideal is a-primary. Now we have the following
lemma.
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Lemma 2.20. If P is an a-primary ideal of R, then /P is an a-prime
1deal.

Proof. Assume ab € ¥/P. Then a((ab)”) = a(a™") = a(a™)a(b"”) € P.
As P is an a-primary ideal, a(a”) € P or a(a(b")) = a([a(b)]”) € P.
Thus a € VP or a(db) € {/P. Therefore VP is an a-prime ideal. O

From Atiyah’s book [41], we know that the inverse image of a prime
ideal under a ring homomorphism is again prime ideal. Next, we prove
that the inverse image of an endomorphism of a-prime ideal is a-prime
in a generalized form.

Proposition 2.21. Let f : R — S be a ring homomorphism and assume
that o € End(R) N End(S) commutes with f. Then for any a-prime
ideal Q of S, f~1(Q) is an a-prime ideal of R.

Proof. Let () be an a-prime ideal of S. Then for any two elements a
and b in R with ab € f71(Q), we have f(a)f(b) € Q and Q being an
a-prime ideal implies that f(a) € Q or a(f(b)) = f(a(b)) € @, that is,
a € f~1Q) or a(b) € f~1(Q) and this is what we want to prove. [

A subset S of a ring R is called an a-multiplicative system if ac(b) €
S for all a,b € S. Thus from this definition we have the following lemma.

Lemma 2.22. Let R be a commutative ring with identity. Then P s
an a-prime ideal if and only if R — P is an a-multiplicative system .

Proposition 2.23. Suppose S is a multiplicative subset of a ring R and
@ : ST'R — S7IR is the induced map of a. Then there is a one-to-
one correspondence between a-prime ideals P of R with SN P =0 and
a-prime ideals of ST'R.

Proof. Suppose P is an a-prime ideal in R and (%)(%) € S71P for
%,% € S7'R. Then the exists u € S such that uab € P. So ua € P or
a(b) € P. Thus, % =2 ¢ S~1P or @ € S7'P, that is, ¢ € S7'P or
6(%) € S71P. Hence S~!'P is a—prime ideal in S™'R. The other side
is obtained from Proposition 2.21. O

From Proposition 2.21 and Proposition 2.23, we can conclude the

following.
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Proposition 2.24. Let f : R — S be a ring homomorphism and assume
that « € End(R)NEnd(S) commutes with f. Then an ideal I containing
Kera is an a-prime ideal if and only if f(I) is an a-prime ideal.

Corollary 2.25. Let I and J be two ideals of a ring R such that I C J.
Then J/I is a-prime ideal in R/I if and only if J is a-prime in R,
where & is the induced map on R/I from «.
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