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Abstract. Let R be a commutative ring with identity. We give a new
generalization to prime ideals called α-prime ideal. A proper ideal P of
R is called an α-prime ideal if for all a, b in R with ab ∈ P , then a ∈ P
or α(b) ∈ P where α ∈ End(R). We study some properties of α-prime
ideals analogous to prime ideals. We give some characterizations for
such generalization and we prove that the intersection of all α-primes
in a ring R is the set of all α-nilpotent elements in R. Finally, we give
new versions of some famous theorems about prime ideals including
α-integral domains and α-fields.
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1 Introduction

Throughout this article R will be a commutative ring with nonzero iden-
tity and α : R −→ R a fixed endomorphism on R. The notion of a prime
ideal plays a key role in the theory of commutative algebra, and it has
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been widely studied. Recall from [4] that a prime ideal P of R is a
proper ideal P with the property that for a, b ∈ R, ab ∈ P implies a ∈ P
or b ∈ P . Recently many generalizations of prime ideals were introduced
and studied (see for example [1], [3] and [5]). The radical of an ideal
I of a ring R is defined to be

√
I = {r ∈ R : rn ∈ Ifor somen ∈ N}.

A proper ideal P is called primary if ab ∈ P implies a ∈ P or b ∈
√
P

[6]. An integral domain is refereed to us a commutative ring with iden-
tity which has no non-zero divisors. For any other concepts see [7]. In
this paper, we introduce the notion of α-prime ideal, and establish some
characterizations of it. We prove and generalize some results of α-prime
ideals that are analogous to prime ideals.

2 Main results

Let R be a ring and let α ∈ End(R) be a fixed endomorphism. A proper
ideal P of a ring R is called an α-prime ideal of R if for all r, s ∈ R,
rs ∈ P implies that r ∈ P or α(s) ∈ P . The definition is equivalent
to say rs ∈ P implies that either α(r) ∈ P or s ∈ P . In view of the
definition of an α-prime ideal, we see that in the case when α is the
identity map, α-prime ideal will be a prime ideal. So α-prime ideals
are considered as a generalization of prime ideals. For an α-prime P , if
r ∈ P , then α(r) ∈ P since r = 1 · r ∈ P implies 1 ∈ P or α(r) ∈ P .
Hence we can assume α(P ) ⊆ P . Also in the case when α(I) = I, for
all ideals I of R, then the prime ideals and α-prime ideals will be again
the same. Note that every prime ideal is an α-prime ideal, where α is
the identity map. However, the converse is not true in general as shown
in the following example.

Example 2.1. Consider the ideal P =< 2x > in the ring R = Z4[x] with
endomorphism α on R defined by α(f(x)) = f(0). Then P is α-prime
but not prime, since 2 · x ∈ P and 2, x /∈ P whereas α(x) = 0 ∈ P .

Lemma 2.2. Let P be an α-prime. Then so is
√
P .

Proof. Let xy ∈
√
P , for x, y ∈ R. Then (xy)n = xnyn ∈ P and P

being α-prime implies xn ∈ P or α(yn) = (α(y))n ∈ P which means that
x ∈
√
P or α(y) ∈

√
P . Hence

√
P is α-prime. �
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For a ring R and an α-prime ideal P of R, we define a subset SP of
R as SP = {r ∈ R : α(r) ∈ P}. Clearly, SP is an ideal of R containing
P . The following is a direct consequence and can be proved easily and
so the proof is omited.

Lemma 2.3. Assume P is an α-prime ideal of a ring R. Then SP is
an α-prime ideal of R.

Lemma 2.4. Suppose P is α-prime and maximal with respect to the
property that r ∈ P implies α(r) ∈ P . Then P is prime.

Proof. By contrast, suppose P is not prime and so there exist a, b ∈ R
with ab ∈ P such that a /∈ P and b /∈ P . Consider the ideal (P, a) =
{m + ra : m ∈ P, r ∈ R} and take x ∈ (P, a). Then x = m + ra and
xb = mb + rab ∈ P . Hence α(x) ∈ P ⊆ (P, a). So by hypothesis,
(P, a) = P and hence a ∈ P , which is a contradiction. Therefore P is
prime. �

Now we give a charactrization of an α-prime ideal.

Theorem 2.5. Let R be a ring and P a proper ideal of R. Then P is
α-prime if and only if for any two ideals I, J of R such that IJ ⊆ P ,
I ⊆ P or α(J) ⊆ P .

Proof. Let P be an α-prime ideal and IJ ⊆ P with I 6⊆ P . Then there
exists a in I such that a /∈ P . For every b ∈ J , ab ∈ IJ ⊆ P , but a /∈ P
so α(b) ∈ P , that is, α(J) ⊆ P . Conversely, let ab ∈ P , which implies
that 〈a〉〈b〉 ⊆ P . Hence we have 〈a〉 ⊆ P or α(〈b〉) ⊆ P . Therefore
a ∈ P or α(b) ∈ P and P is α-prime. �

Let J be a subset of a ring R. We show that the α-primeness of an
ideal P implies the α-primeness of the ideal (P : J).

Proposition 2.6. If P is an α-prime ideal of a ring R and I a subset
of R, then so is (P : I).

Proof. Suppose ab ∈ (P : I) for a, b ∈ R. Then b ∈ (P : aI) = (P :
a) ∪ (P : I). Thus ba ∈ P or b ∈ (P : I), that is, b ∈ P or α(a) ∈ P
or b ∈ (P : I). Therefore α(a) ∈ (P : I) or b ∈ (P : I) and (P : I) is
α-prime ideal. �
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Remark 2.7. We note that for an α-prime ideal P of a ring R and
r ∈ R, if rn ∈ P , then α(r) ∈ P . Thus if we put r = α(x), then
(α(x))n ∈ P implies that α ◦ α(x) ∈ P .

Let R be a ring. An element a ∈ R is called α-nilpotent if α(an) = 0
for some positive integer n. We call the set of α-nilpotent elements in
a ring R the α-nilradical of R and denote by Nα. We know that if x is
a nilpotent element in a ring R, then 1 − x is a unit in R. This result
can be extended as follows: For an α-nilpotent element r in R, 1−α(r)
is a unit in R. In the sight of the definition of α-nilpotent elements we
can define the α-radical of an ideal I to be α

√
I = {a ∈ R : α(an) ∈

I for some positive integer n}. Thus Nα = α
√

0 and clearly I ⊆ α
√
I.

Now, we are in a position to characterize the set Nα as an ideal. First,
we have to prove the ideality of Nα.

Proposition 2.8. The set of all α-nilpotent elements Nα is an ideal of
R.

Proof. Let x, y ∈ Nα. Then α(xn) = α(ym) = 0 for some positive
integers n,m and by the binomial theorem (α(x) + α(y))n+m−1 is a
sum where all its monomials contain the product (α(x))r(α(y))s with
r + s = m + n − 1. So the case when r < n and s < m is excluded.
Hence each of these monomials is zero. So (α(x + y))n+m−1 = (α(x) +
α(y))n+m−1 = 0 and x + y ∈ Nα. Also, for every r ∈ R, we have
α((rx)n) = α(rn) · α(xn) = 0. Therefore Nα is an ideal of R. �

Now, we give one of our main results that characterizes the ideal Nα
and it is a generalization of Proposition 1.8 of the Atiyah’s book [4]. For
this reason we need the following two lemmas.

Lemma 2.9. For α ∈ End(R), the kernel of α is in the intersection of
all α-prime ideals.

Proof. Suppose x ∈ Kerα. Then α(x) = 0 belongs to every α-prime
ideal P of R. So, x belongs to the inverse image of every α-prime
ideal which is again an α-prime ideal by Proposotion 2.21. Therefore
Kerα ⊆

⋂
P is α− prime in R P . �

Lemma 2.10. Assume that R is an integral domain and α ∈ End(R).
Then the kernel of α is a prime ideal in R.
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Proof. Suppose xy ∈ Kerα for x, y ∈ R. Then α(xy) = α(x)α(y) = 0
and R being an integral domain implies α(x) = 0 or α(y) = 0, that is,
x ∈ Kerα or y ∈ Kerα. Therefore Kerα is a prime ideal in R. �

Theorem 2.11. The α-nilradical Nα of an integral domain R is the
intersection of all the α-prime ideals of R.

Proof. Suppose x is α-nilpotent. Then α(xn) = 0 and xn ∈ Kerα.
Lemma 2.10 implies that x ∈ Kerα and Lemma 2.9 gives us

x ∈
⋂
P is α− prime in R P . Thus Nα ⊆

⋂
P is α− prime in R P . For the

reverse inclusion, let x be non α-nilpotent and define a set S = {I : I
an ideal of R and α(xn) /∈ I for all n > 0}. Clearly 0 belong to S
and so S is nonempty. Order S by inclusion and let {Ii}i∈I be a chain
of ideals of in S. Then Ii ⊆ Ij or Ij ⊆ Ii for each pair of indices
i and j. Set I =

⋃
i Ii, so that it is an ideal in S and becomes an

upper bound of the chain. Therefore by Zorn’s lemma, S has a maximal
element, say J . Now to prove that J is α-prime, let α(a), α(b) /∈ J .
Then J ⊂ J + Rα(a), J ⊂ J + Rα(b) and so they are not elements
of S. Thus there exist positive integers m,n such α(xm) ∈ J + Rα(a),
α(xn) ∈ J+Rα(b). So α(xn+m) ∈ J+Rα(ab). It follows J+Rα(ab) /∈ S
and α(ab) = α(a)α(b) /∈ J . Therefore by Remark 2.7, ab /∈ J and J is
an α-prime ideal in which α(xn) /∈ J , that is x /∈ J and so x /∈ Nα. �

By taking the quotient ring R/I instead of R in Theorem 2.11 we
conclude the following.

Corollary 2.12. For an integral domain R and an ideal I of R, the
α-radical of I is equal to the intersection of all the α-prime ideals of R
which contains I.

Here are some properties of the α-radical of an ideal, which are
extended from those of the usual radical of an ideal.

Proposition 2.13. Suppose I and J are two ideals of a ring R. Then
the following are true.

1. If I ⊆ J , then α
√
I ⊆ α

√
J

2. α
√
IJ = α

√
I ∩ J = α

√
I ∩ α
√
J .

3. If α(1) = 1, then α
√
I = R if and only if I = R.
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4. α
√
I + J ⊆ α

√
α
√
I + α
√
J

5. If I is an α-prime ideal of R, then α
√
In = α

√
I, for all positive

integer n.

Proof.

1. The proof is clear.

2. To prove the first equality we have IJ ⊆ I ∩J , so α
√
IJ ⊆ α

√
I ∩ J .

For the reverse inclusion, let x ∈ α
√
I ∩ J . Then α(xn) ∈ I ∩ J for

some positive integer n and so α(x2n) ∈ IJ . Hence x ∈ α
√
IJ . Now

to prove the last equality, we have from I ∩ J ⊆ I and I ∩ J ⊆ J
that α

√
I ∩ J ⊆ α

√
I ∩ α
√
J . For other side, let y ∈ α

√
I ∩ α
√
J . Then

α(yr) ∈ I and α(ys) ∈ J for some positive integers r, s. Hence
α(yk) ∈ I ∩ J , for k = max{r, s}. Thus y ∈ α

√
I ∩ J and the

equality holds.

3. Suppose α
√
I = R. Then 1 ∈ α

√
I implies that α(1n) = α(1) = 1 ∈ I

which means that I = R. The other implication is obvious.

4. The two inclusions I ⊆ α
√
I and J ⊆ α

√
J together imply that

α
√
I + J ⊆ α

√
α
√
I + α
√
J .

5. The proof follows from part (2), namely that α
√
In = α

√
I.I...I =

α
√
I ∩ α
√
I ∩ ... ∩ α

√
I = α

√
I.

�
The equality of part (4) is not true in general as it is the case of usual

radical. The only thing that we can say is α(
α
√

α
√
I + α
√
J) ⊆ α

√
I + J .

Proposition 2.14. Let f : R→ S be a ring homomorphism and assume
that α ∈ End(R)∩End(S) commutes with f . Let P and P̄ be two ideals
of R and S respectively. Then

1. f( α
√
P ) ⊆ α

√
f(P ).

2. α
√
f−1(P̄ ) ⊆ f−1( α

√
P̄ )

3. If f is an isomorphism, then f( α
√
P ) = α

√
f(P ).
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Proof.

1. Let x ∈ f( α
√
P ). Then x = f(a) for some a ∈ α

√
P . Since a ∈ α

√
P ,

there exists a positive integer n such that α(an) ∈ P . Now α(xn) =
α((f(a)n) = α(f(an)) = f(α(an)) ∈ f(P ). So x ∈ α

√
f(P ).

2. Let a ∈ α
√
f−1(P̄ ). Then there exists a positive integer n such

that α(an) ∈ f−1(P̄ ). So f(α(an)) ∈ P̄ . Since f and α commute,

α(f(a)n) ∈ P̄ . Hence a ∈ f−1( α
√
P̄ ). Thus α

√
f−1(P̄ ) ⊆ f−1( α

√
P̄ ).

3. The proof is obtained from part (1) and f being an isomorphism.

�
We know that a proper ideal P of a ring R is prime if and only if R/P

has no zero divisors and that P is α-prime if and only if every zero divisor
of R/P is in Kerα. Also, from Lemma 2.9 we have the isomorphism

R/P ∼=
R/Kerα

P/Kerα
. Hence P is α-prime if and only if

R/Kerα

P/Kerα
has no

zero divisors if and only if P/Kerα is a prime ideal. Therefore we deduce
the main connection between prime ideals and α-prime ideals.

Theorem 2.15. Let P be a proper ideal of R. Then P is an α-prime
ideal in R if and only if P

Kerα is prime in R
Kerα .

A ring R is called an α-integral domain if for all a, b ∈ R with ab = 0,
a = 0 or α(b) = 0 for some endomorphism α on R. It is clear that every
integral domain is an α-integral domain, but the converse is not true as
shown in the following example.

Example 2.16. Consider the ring R =
Z[x]

< x2 − x >
and endomorphism

α on R defined by α(f(x)) = x · f(x). Then R is α-integral domain
but not integral domain, since x(x − 1) = 0 and x, 1 − x 6= 0 but
α(1− x) = x(1− x) = 0

The next theorem characterizes α-prime ideals in the sense of quo-
tient rings.

Proposition 2.17. Let R be a commutative ring. Then P is an α-prime
ideal if and only if R/P is an α-integral domain.
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Proof. Let R/P be an integral domain. Let a, b ∈ R such that ab ∈ P .
Then ab + P = P . Since R/P is an α-integral domain, a + P = P or
α(a + P ) = P . So a ∈ P and α(a) ∈ P . Thus P is an α-prime ideal .
Conversely, Let P be α-prime ideal. Let a, b ∈ R with ab ∈ P . Then
a ∈ P or α(a) ∈ P . So a+ P = P or α(a) + P = P . Hence a+ P = P
or α(a+ P ) = P . Therefore R/P is an α-integral domain.

�

An α-integral domain R is called an α-field if
R

Kerα
is a field. Clearly

every field is an α-field and the converse is true in the case where Kerα =
0.

It is well-known that if K is a field, then K[x] is a principal ideal
domain but not a field. Define a ring homomorphism α : K[x] → K[x]

by α(f(x)) = f(0). Then Kerα =< x > and
K[x]

Kerα
=

K[x]

< x >
∼=

K is a field. Similarly, for K[x1, . . . , xn], we can define an endomor-
phism α on K[x1, . . . , xn] by α(f(x−1, . . . , xn)) = f(0, 0, . . . , 0). So,
K[x1, . . . , xn]

Kerα
=

K[x1, . . . , xn]

< x1, . . . , xn >
∼= K is a field. Thus we conclude the

following theorem.

Theorem 2.18. For any field K, the polynomial ring K[x1, . . . , xn] in
n indeterminates is α-field but not field.

We know that every finite integral domain is a field. Here we gener-
alize this result to α-integral domains.

Proposition 2.19. Every finite α-integral domain is an α-field

Proof. Suppose R is a finite α-integral domain, say R = {x1, x2, ..., xn}
Then for any x in R with α(x) 6= 0, the elements xxi, i = 1, 2, . . . , n
are all distinct else for if xxi = xxj , then x(xi − xj) = 0 and as R is
α-integral domain, xi − xj = 0 or α(x) = 0. Hence, α(x) 6= 0 implies
xi = xj and as R has identity, there exists s ∈ {1, 2, ...n} such that
xxs = 1. Therefore x has an inverse xs and R is an α-field. �

A proper ideal I of a ring R is called an α-primary ideal if for all
a, b ∈ R such that ab ∈ I, a ∈ I or α(bn) ∈ I for some positive integer
n. Clearly every α-prime ideal is α-primary. Now we have the following
lemma.
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Lemma 2.20. If P is an α-primary ideal of R, then α
√
P is an α-prime

ideal.

Proof. Assume ab ∈ α
√
P . Then α((ab)n) = α(anbn) = α(an)α(bn) ∈ P .

As P is an α-primary ideal, α(an) ∈ P or α(α(bn)) = α([α(b)]n) ∈ P .
Thus a ∈ α

√
P or α(b) ∈ α

√
P . Therefore α

√
P is an α-prime ideal. �

From Atiyah’s book [4], we know that the inverse image of a prime
ideal under a ring homomorphism is again prime ideal. Next, we prove
that the inverse image of an endomorphism of α-prime ideal is α-prime
in a generalized form.

Proposition 2.21. Let f : R→ S be a ring homomorphism and assume
that α ∈ End(R) ∩ End(S) commutes with f . Then for any α-prime
ideal Q of S, f−1(Q) is an α-prime ideal of R.

Proof. Let Q be an α-prime ideal of S. Then for any two elements a
and b in R with ab ∈ f−1(Q), we have f(a)f(b) ∈ Q and Q being an
α-prime ideal implies that f(a) ∈ Q or α(f(b)) = f(α(b)) ∈ Q, that is,
a ∈ f−1(Q) or α(b) ∈ f−1(Q) and this is what we want to prove. �

A subset S of a ring R is called an α-multiplicative system if aα(b) ∈
S for all a, b ∈ S. Thus from this definition we have the following lemma.

Lemma 2.22. Let R be a commutative ring with identity. Then P is
an α-prime ideal if and only if R− P is an α-multiplicative system .

Proposition 2.23. Suppose S is a multiplicative subset of a ring R and
α : S−1R → S−1R is the induced map of α. Then there is a one-to-
one correspondence between α-prime ideals P of R with S ∩ P = ∅ and
α-prime ideals of S−1R.

Proof. Suppose P is an α-prime ideal in R and (as )( bt ) ∈ S−1P for
a
s ,

b
t ∈ S

−1R. Then the exists u ∈ S such that uab ∈ P . So ua ∈ P or

α(b) ∈ P . Thus, ua
us = a

s ∈ S
−1P or α(b)

t ∈ S
−1P , that is, a

s ∈ S
−1P or

α( bt ) ∈ S
−1P . Hence S−1P is α−prime ideal in S−1R. The other side

is obtained from Proposition 2.21. �
From Proposition 2.21 and Proposition 2.23, we can conclude the

following.
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Proposition 2.24. Let f : R→ S be a ring homomorphism and assume
that α ∈ End(R)∩End(S) commutes with f . Then an ideal I containing
Kerα is an α-prime ideal if and only if f(I) is an α-prime ideal.

Corollary 2.25. Let I and J be two ideals of a ring R such that I ⊆ J .
Then J/I is ᾱ-prime ideal in R/I if and only if J is α-prime in R,
where ᾱ is the induced map on R/I from α.
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