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Equivalent HPM with ADM and Convergence

1.

In the recent years, the homotopy perturbation method (HPM), has
been applied to a wide class of engineering and scientific problems and
in many interesting mathematics and physics areas. Some important
problems in sciences and engineering can usually be reduced to a system
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of integral equations.Several powerful methods have been proposed to
obtain exact solutions of nonlinear partial differential equations, such
as the decomposition method [1, 2, 3], the (%)—expansion method [4],
the Laplace Adomian decomposition method [5], differential transform
method [6], the homotopy perturbation method [7, 8, 9], the homotopy
analysis method [10, 11], the Exp-function method [12, 13]. The ho-
motopy perturbation method (HPM) has some significant advantages
over numerical methods. It provides analytic, verifiable, rapidly con-
vergent approximations which yield insight into the character and the
behavior of the solution just as in the closed form solution. The homo-
topy perturbation method, gives a reasonable basis for studying linear
and nonlinear system of integral equations. The homotopy perturbation
method (HPM) solves successfully different types of linear and nonlin-
ear equations in engineering and sciences. The application of homotopy
perturbation method used as an alternative solution method to a wide
variety of integral problems. The method is applicable to integral prob-
lems that can be reduced to a finite set of non-linear (or linear) integral
equations. While the applicability of the method to the problem of HPM
to different types of integral equations has been discussed by many au-
thors, for example [9]. In this work, the nonlinear Volterra integral
equation of the second kind

t
at) = #(t)+ | Kt )ftu(€))de, )
is considered where g(t) is assumed to be bounded Vt € J = [0, T] and

[k(t,€)] <M, V0 < £ < T. The nonlinear term f(u) is Lipschitz continu-
ous with |f(u) — f(v)| < L]y — z| and has the polynomial representation

By =N(Sy) - > B, (2)

where the partial sum is S, = > ;L uj.

u= Z u, (3)
i=0
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where

N(u) = — /0 K(t, €)f(u(€))de, (4)

fu) = Ay, (5)
n=0

where A, is Adomian polynomial. Thus we have

N w) ==Y [ Kitoade = -3 "B, (©)
n=0 i=0 i=0

where by applying homotopy perturbation method we get

uk(t) =By_1, k>1. (8)

But by using of Adomian polynomial B, define as follows

fu) = Ay, (9)
n=0

t L g
B, _ /0 K(t,)Andg = -0 /0 K OF()| e (10)

In the present work, we study and prove the equivalent homotopy pertur-

bation method with Adomian decomposition method and bring several
theorems. The aim of the present paper implement and prove equivalent
homotopy perturbation method with Adomian decomposition method
and convergence homotopy perturbation method for a class of nonlin-
ear Volterra integral equations. The paper is organized as follows: In
Section 2, brief discussions for homotopy perturbation method are pre-
sented and approximate solution is obtained. In Section 3, we describe
the equivalent HPM with ADM briefly and apply this technique with a
simple example. Section 4, contains convergence analysis using of the
several theorems. In Section 5, contains numerical results. Also a con-
clusion is given in Section 6. Finally some references are given at the
end of this paper.
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2. Homotopy Perturbation Method

In this section, the homotopy perturbation method (HPM) is presented.
Instead of ordinary perturbation methods, this method doesn’t need a
small parameter in an equation. According to this method, a homotopy
with an embedding parameter p € [0, 1] is constructed and the embed-
ding parameter is considered as a ”small parameter”. Thus, this method
is called the homotopy perturbation method. HPM is a powerful tool
for solving various nonlinear equations, especially nonlinear partial dif-
ferential equations. Recently this method has attracted a wide class of
audience in all fields of science and engineering. This method proposed
by a Chinese mathematican J.H. He [18]. In this investigation; HPM
is used to obtain the numerical solution of the nonlinear Volterra inte-
gral equations. The numerical solutions which are found are compared
with the exact solutions. To illustrate the basic idea of the homotopy
perturbation method, consider the following nonlinear equation

A(v)—f(r)=0, r€Q, (11)
subject to the boundary condition:
du
B — =0 r 12
(15e) =0 rer. (12)

where A is written as follows:
A(v) =L(v) +N(v), req. (13)

Here A is a general differential operator, B is a boundary operator, f(r)
is known analytic function, I" is the boundary of the domain 2 and a%
denotes differentiation along with the normal vector drawn outwards €.
The operator A can generally be divided into two parts L , N. So, Eq.
(11) can be rewritten as follows :

L(v) + N(v) — f(r) = 0. (14)

By the homotopy technique, He [18] constructed a homotopy
v(r,p) : 2 x [0,1] — R which satisfies

H(v,p) = (1 = p)[L(v) — L(uo)] + p[A(v) = f(r)] = 0, pe[0,1], reQ, (15)
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where p € [0,1] is an embedding operator, and up is an initial approx-
imation of Eq. (15), which satisfies the boundary condition Eq. (40).
Obviously, we have

H(v,0) = L(v) = L(w) = 0, H(v,1) = A(v) — f(r) = 0. (16)

The change process of p from zero to unity is just that of v(r,p) from
up(r) to u(r). In topology, this is called deformation and L(v) — L(ug)
and A(v) — f(r) are called homotopic. We consider v as following:

Vv =vo+ vip + vap® + v3p® + ... (17)

According to HPM, the best approximate solution of Eq. (14) can be
explained as a series of powers of p,

o0
u:éLI%VZI;Vk:V0+V1+V2+.... (18)

The above convergence is given [16].

3. Equivalent HPM with ADM
Let L operator has inverse, then L™! there exist
L7'L(v) =L7'0+ L™'L(up) — pL~'L(ug) — pL ! [N(v) = f(r)], (19)

suppose L0 = ®, then we have

v =&+ ug — pup — pL ™' [N(v) — f(r)], (20)
kapk =&+ up — pug — pol[Z Nvip* — f(r)]. (21)
k=0 k=0

If Lug # 0, then we obtain
vo = @ + o, (22)

Vi = —ug — Lfl[Nvo — f(r)],
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Vo = —Lilel,

Vig1 = —L7'Nvy, Vk=2,3, ...

Now if Lug = 0, we get
vy = Up, (23)

vi = —L7}[Nvg — £(r)],

Vo = —L_lel,

Vi1 = —L7'Nvy, Vk=2,3, ...

One can see that homotopy perturbation method equivalent with Ado-
mian decomposition method. As a simple example, consider the nonlin-
ear initial value problem

du 9

du _ 24

M (24)
with the initial condition u(0) = 1. This differential equation has the
exact solution of y(x) = ﬁ By using of the homotopy perturbation

method we are going to vg = ug = 1. Following the method described
above, we define a linear operator L = %. The inverse operator is then

Lt = /OX(.)dX. (25)

Because L, Nv = —vZ = — 3", Zj‘:o vivi—j and f(r) = 0, given then we
can determine the recursive relationship that will be used to generate
the solution

vo =1, (26)

Vpy1 = =L 'Nv,, ¥n=0,1,...
vi = L7 [Nvo] = L71(1) = x, (27)

vy = —L7!Nv; = L71(2V0V1) =x2,
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V3 = —LilNVQ = L71(2V0V2 —+ v%) = X3,

and so on. Then we get

1

1—x

b

oo oo

u=limp_;v=Ilim,_,; kapk = ka =1l4+x+xX2+x>+...=
k=0 k=0

(28)

where is exact solution. Now applying Adomian decomposition method.
Rewriting the differential equation Eq. (24) in operator form, we have
Lu = Nu, where N is a nonlinear operator such that Nu = u?. Next we
apply the inverse operator for L to the equation. On the left hand side
of the equation, this gives

L™'Lu = u(x) — u(0). (29)
Using the initial condition, this becomes

L 'Lu=u(x) - 1. (30)

2

Returning this to equation Nu = u“, we now have

u(x) = 1+ L7Y(Nu). (31)

Next, we need to generate the Adomian polynomials, A,. Let u be ex-
panded as an infinite series y(t) = > 7 un(t) and define Ny = 327 JA,,.
Then

D () =14+L71 0 An). (32)
n=0 n=0
To find A,, we introduce the scalar A\ such that
n(A) =) A, (33)
n=0

Then

n

Nu(A) =) A (ui ). (34)
n=0

= i=0
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From the definition of the Adomian polynomials

1 4"

A,=— Nu(A , 35
e | (3)
we find the Adomian polynomials

Ap = ug, (36)

Ay = 2upuy,
Ag = 2uguy + u%,
A3 = 2ugus + 2ujuy,

and so on. Returning the Adomian polynomials to equation Eq. (32),
we can determine the recursive relationship that will be used to generate
the solution.

ug(x) =1, (37)
uny1(x) =L7'A,, Vn=0,1,...

Solving this yields
up(x) =1, (38)

and so on. We can see that the series solution generated by this method
is

o0
u(X):1—|—X+X2—|—X3—|—...:ZXn, (39)
n=0

which we recognize as the Taylor series for the exact solution
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4. Application of ADM and HPM for Nonlinear
Voltera Equations

Example 4.1. Consider the following nonlinear Volterra integro-differential

equation

W(x) = = — /0 ((u2(t) — 2)dt, u(0) = 0, (41)

with the exact solution u(x) = x2. Proceeding as before, we apply both
of the methods on problem (43). We summarize the errors of both meth-
ods for various values of x in the following table. The errors for methods
ADM and HPM are alike.

ADM and HPM:

Commencing with u(0) = ug = 0, and with equating coefficients of like
powers of p , we obtain

ug(x) =0, (42)
uy (x) = 0.3333333333x5 + x2,
ug(x) =0,
u3(x) = —.6105006104 x 107> x x* — .0007407407407x'° — .03333333333x°,
uy(x) =0,
=8

us(x) = .8809532617 x 1077 x x?2 4 2012834257 x 107¢ x x'®

+.000020350020352'* + .000740740740721°,

Table 1: The absolute error, between the exact solution (43) and the numerical solution.

Z; (one iteration) (two iterations) (three iterations) (four iterations)
0.0 0.1000x 1078 0.1000x 108 0.2000x 1078 0.0000
0.1 0.0049 0.0050 0.0050 0.0050
0.2 0.0193 0.0200 0.0200 0.0200
0.3 0.0415 0.0451 0.0453 0.0453

0.4 0.0693 0.0799 0.0810 0.0811
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Example 4.2. Let us second consider the nonlinear Volterra integral
equation

+/ u? u(0) =1, (43)

0

W =

1
u(x) = exp(x) — 3 exp(3x) +

with the exact solution u(x) = exp(x).

ADM and HPM:

Commencing with u(0) = uy = exp(x), and with equating coefficients of
like powers of p , we obtain

up(x) = exp(x), (44)
u;(x) =0,
up+1(x) =0, for n > 1.
On the other hand, the exact solution
u(x) = exp(x).

Example 4.3. We consider the nonlinear Volterra integral equation as
follows

u(x) = %(—3 + 8cos(x) + cos(2x)) + /X sin(x — t)(1 + u?(t))dt, (45)
0

with the initial condition ug(x) = §(—3 + 8cos(x) + cos(2x)).
ADM and HPM:
Commencing with u(0) = ug, approximate solution is obtained as follows

4
Uapp (X Zuk (x) = .0003741114852cos(x)* + .9612424460cos(x) + .1666666667cos(2x) (46)
k=0

—2.861667685c0s(x)% 4 3.647977656c0s(x)* — 4.545313212c0s(x)*+
.00001336112446¢0s(x)** 4 3.968139001cos(x)% — 1.698544428cos(x)®+
.2915487624cos(x)” + .01521000719cos(x)® — .09754755734cos(x)"+

.01461863391cos(x) 10 + .01813055105cos(x) ! 4+ .004004286116cos(x)*2 + 1.115147401,
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Table 2: The absolute error, between the exact solution (45) and the numerical solution.

T (one iteration) (two iterations) (three iterations) (four iterations)
0.0 0.1000x10~% 0.1000x10~% 0.2000x 107 0.0000
0.1 0.0049 0.0050 0.0050 0.0050
0.2 0.0193 0.0200 0.0200 0.0200
0.3 0.0415 0.0451 0.0453 0.0453
0.4 0.0693 0.0799 0.0810 0.0811

5. Convergence Analysis

5.1. Uniqueness theorem

Theorem 5.1. Problem (1) has a unique solution whenever 0 < a < 1,
where, o« = LMT.

Proof. Let u and u* be two different solutions to Eq. (1) then
]u—u|—\Nu—Nu]—|/ (t,2)(f(u) — f(u"))d
< [ ol ~ fwia

< LM/ lu — u*|dz
0
< LMTu—u*| = aju — u’|

from which we get (1 — a)|u — u*| < 0. Since 0 < a < 1, then |[u — u*| =0,
implies u = u* and this completes the proof. [

Theorem 5.2. The series solution (3) of problem (1) using of the HPM
converges if 0 < a <1 and |u;| < 1.

Proof. Denote as (C[J],||.||) the Banach space of all continuous func-
tions on J with the norm ||f(t)|| = maxyt € J|f(t)|. Define the sequence
of partial sums Sy; let S, and S;,, be arbitrary partial sums with n > m.
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We are going to prove that Sy, is a Cauchy sequence in this Banach space:
With notice to relations S, = > ;. ju; and (2) we have

”Sn - Sm” = maXVt€J|SH - Sm| (47)
n n—1 n—1
= maXvyiej| Z Uj| = maxyej| Z Nuj| = maxyey| Z Bi|
i=m+1 i=m i=m

n—1 t t n—1
= maxyieg| Y / K(t,z)A;dz| = maxyie;| / K(t,2) > Adzl
i=m 0 0 i=m
t
—maXVteJ]/ K(t,Z)(f(Sn_l)—f(Sm_l))dZ‘
0

< InaXVteJ/O IK(t,2)||(f(Sn-1) — {(Sm-1))|dz

< LMTHSnfl - Smfl” = O‘HSnfl - Smfl||
Let n = m + 1; then

||Sm+1 - Sm” g O‘HSm - Sm—l” g a2HSm—1 - Sm—QH g g OZmHSl - SOH

(48)
From the triangle inequality we have
||Sn - Sm” < ||Sm+1 - Sm” + ||Sm+2 - Sm+1|| + ...+ HSH - Sn71|| (49)
< [am + o™t + ...+ anfl]HSl — S()H
<a®l+a+a’+..4+ ™18 — Sl
1 _anfm
<a™ t)]].
o (g lu )]
Since 0 < a < 1 we have (1 —a"™™) < 1; then
1 — ot m
150 = Sull < ————maxveej|ui (t)]. (50)

But |u;| < 1 (since g(t) is bounded); so, as m — 1, then ||S, — Sw|| — 0.
We conclude that Sy, is a Cauchy sequence in C[J], so the series converges

and the proof is complete. [
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5.2. Error Estimate

Theorem 5.3. The mazximum absolute truncation error of the series
solution (8) to problem (1) is estimated to be

m-+1
maxvies[u(t) — ik wi(t)| < gy where K = maxyee;|f(g(t))].

Proof. From Theorem 5.2, inequality (50) we have

n—m

11—«
maXVtGJ\ul(t)]. (51)

18— Sull < 12

As n — oo then S,, — u(t) and maxyiey|us(t)| < TMmaxyies|f(ug)l, so
amtl

[[a(t) = Sml| < mmaXWeJlf(g(t))!- (52)

Therefore, the maximum absolute truncation error in the interval J is

- Kam+1
maXVtEJ]u Z ‘ 1 — a (53)

i=

This completes the proof. [

6. Numerical Results

Formula (2) can be converged faster of Formula (10). For example,
if f(y) = y? the first four polynomials using Formulas (2) and (10) are
computed to be:

Applying Formula (10) we obtain:

t
By = / K(t,z)uidz, (54)
0
t
B1 :/ K(t,z)ZuOule, (55)
0
t
Bo :/ K(t,2)(u} + 2ugug)dz, (56)
0

t
Bs = / K(t, z)(2u1u2 + 2110113)dZ. (57)
0



46 J. MANAFIANHERIS AND M. FAZLI AGHDAEI

Applying Formula (2) we obtain :

t
By = / K(t,z)uidz, (58)
0
t
B = / K(t,2)(uf + 2uguy )dz, (59)
0
t
By = / K(t, z)(u% + 2ugus + 2111112)dZ, (60)
0
t
B3 = / K(t, z)(ug + 2ugus + 2ujug + 2ugus)dz. (61)
0

Clearly, the first four polynomials computed using Formula (2) include
the first four polynomials computed using Formula (10) in addition to
other terms which should appear in By, Bs, Bg, . . . using Formula (10).
Thus, the solution using Formula (2) forces many terms to be entered
into the calculation processes earlier, yielding a faster convergence. In
order to verify the conclusions of Theorems 5.2 and 5.3, consider the
following numerical example:

1 1 t
u(t) = 5= (300 + 315t% + 5t + %) — — / (t—&u*(€)d¢, 0<t<,
20 150 J,

with exact solution u(t) = 15(1 + t2). Table 1, shows the exact absolute
truncation €rror

= Ju(t) — >y uk(t)|t=1 and the maximum absolute truncation error

A* = 75(“1 ) for different values of m where T =1, M = 1é0, L =60,

a= % and K = 384506041. Table 1 shows the exact absolute truncation
error and the maximum absolute truncation error.

Table 3: shows the exact absolute truncation error and the maximum
absolute truncation error.

m = Iu(t) - Y u ()]s A= e
5 1.23333 x 1073 0.109693
10 6.27671 x 107° 0.00112326
15 2.60089 x 107 0.0000115022
20 9.79976 x 10~° 1.17782 x 1077
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7. Conclusion

In this work, the convergence of homotopy perturbation method, as

applied to solving a class of Volterra integral equations, has been thor-

oughly investigated. We have proved several theorems for Volterra non-

linear integral equations. Our numerical experiment confirms the con-

vergence of the method. It also shows that the homotopy perturbation
method is the same with Adomian decomposition method.
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