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1 Introduction

Throughout this paper, R will denote an integral domain with quotient
field K. Further, Z, Q, and N will denote respectively the ring of inte-
gers, the field of rational numbers, and the set of natural numbers.
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A prime ideal I of R is said to be strongly prime if, whenever xy ∈ I
for elements x, y ∈ K, then x ∈ I or y ∈ I [8]. An ideal I of R is said
to be strongly primary if, whenever xy ∈ I for elements x, y ∈ K, then
x ∈ I or yn ∈ I for some n ≥ 1 [4].

The concept of 2-absorbing ideals was introduced in [3]. A proper
ideal I of R is said to be a 2-absorbing ideal of R if whenever a, b, c ∈
R and abc ∈ I, then ab ∈ I or ac ∈ I or bc ∈ I. In [5], Badawi,
et al. introduced the concept of 2-absorbing primary ideal which is a
generalization of primary ideal. A proper ideal I of R is called a 2-
absorbing primary ideal of R if whenever a, b, c ∈ R and abc ∈ I, then
ab ∈ I or ac ∈

√
I or bc ∈

√
I.

The purpose of this paper is to introduce the concepts of strongly 2-
absorbing primary ideals (resp., submodules) and strongly 2-absorbing
ideals (resp., submodules) as generalizations of strongly prime ideals.
Furthermore, we investigate basic properties of these classes of ideals.

Let R be an integral domain with quotient field K. An ideal I of R
is said to be a strongly 2-absorbing primary ideal if, whenever xyz ∈ I
for elements x, y, z ∈ K, we have either xy ∈ I or (yz)n ∈ I or (xz)m ∈ I
for some n,m ∈ N (Definition 2.1). A 2-absorbing ideal I of R is said
to be a strongly 2-absorbing ideal if, whenever xyz ∈ I for elements
x, y, z ∈ K, we have either xy ∈ I or yz ∈ I or xz ∈ I (Definition 3.1).
Moreover, a submodule N of an R-module M is said to be strongly 2-
absorbing primary (resp., strongly 2-absorbing) if (N :R M) is a strongly
2-absorbing primary (resp., strongly 2-absorbing) ideal of R (Definition
2.1 and 3.1).

Let R be an integral domain with quotient field K. In Section 2 of
this paper, among other results, we prove that if I is a strongly primary
ideal of R, then I is a strongly 2-absorbing primary ideal of R (Proposi-
tion 2.2). Example 2.3, shows that the converse of Proposition 2.2 is not
true in general. In Theorem 2.6, we provide a useful characterization for
strongly 2-absorbing primary ideals of R, where R is a rooty domain.
In Theorem 2.8, we show that for a strongly 2-absorbing primary ideal
I of R:

(a) If J and H are radical ideals of R, then JH ⊆ I or I2 ⊆ J ∪H;

(b) If J and I are prime ideals of R, then J and I are comparable.



SOME GENERALIZATION OF STRONGLY PRIME IDEALS 3

Furthermore, it is shown that if P and Q are non-zero strongly primary
ideals of R, then P ∩ Q is a strongly 2-absorbing primary ideal of R
(Theorem 2.10).

In Section 3 of this paper, among other results, we prove that if I
is a strongly prime ideal of R, then I is a strongly 2-absorbing ideal of
R (Proposition 3.2). But the converse of Proposition 3.2 is not true in
general (Proposition 3.5, Example 3.6, and Example 3.7). In Theorem
3.3, we provide a useful characterization for a strongly 2-absorbing ideal
of R. Also, we see that if P and Q are non-zero strongly prime ideals
of R, then P ∩ Q is a strongly 2-absorbing ideal of R (Theorem 3.16).
Finally, it is proved that ifM is a NoetherianR-module, thenM contains
a finite number of minimal strongly 2-absorbing submodules (Theorem
3.29).

2 Strongly 2-absorbing Primary Ideals and Sub-
modules

Definition 2.1. Let R be an integral domain with quotient field K.
We say that an ideal I of R is a strongly 2-absorbing primary ideal if,
whenever xyz ∈ I for elements x, y, z ∈ K, we have either xy ∈ I
or (yz)n ∈ I or (xz)m ∈ I for some n,m ∈ N. Also, we say that a
submodule N of an R-module M is a strongly 2-absorbing primary if,
(N :R M) is a strongly 2-absorbing primary ideal of R.

Proposition 2.2. Let R be an integral domain with quotient field K
and let I be a strongly primary ideal of R. Then I is a strongly 2-
absorbing primary ideal of R.

Proof. Let xyz ∈ I for some x, y, z ∈ K. Then by assumption, either
xy ∈ I or zn ∈ I for some n ≥ 1. If xy ∈ I, then we are done. If
zn ∈ I, then (zx)n(zy)n = (zxy)nzn ∈ I. Thus again by assumption,
either (zx)n ∈ I or (yz)ns ∈ I for some s ≥ 1 as desired. �

Recall that a discrete valuation ring (DVR) is a principal ideal do-
main (PID) with exactly one non-zero maximal ideal.

The following example shows that the converse of Proposition 2.2 is
not true in general.
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Example 2.3. Let K be a field of characteristic 2 and assume that
I = (X2)K[[X2, X3]], where K[[X2, X3]] is the ring of formal power
series over the indeterminates X2 and X3. By considering the elements
X3 and 1/X in the quotient field K((X)), it is clear that I is not strongly
primary. Now, let fgh ∈ I, where f, g, h ∈ K((X)). Then there exist
units u, v, w of the DV R K[[X]] and integers α, β, γ for which f = uXα,
g = vXβ, and h = wXγ . Then fgh ∈ I implies that α + β + γ ≥ 2;
hence, (β + γ) + (α + γ) + (α + β) ≥ 4. Now, if one of β + γ or α + γ
is at least one, then correspondingly either (gh)2 ∈ I or (fh)2 ∈ I. On
the other hand, if both β + γ and α+ γ are at most 0, then α+ β ≥ 4.
However, this would mean that fg ∈ I. Therefore, I must be a strongly
2-absorbing primary ideal of K[[X2, X3]].

Remark 2.4. Clearly, every proper strongly 2-absorbing primary ideal
of R is a 2-absorbing primary ideal of R. But the converse is not true
in general. Because for example, if we consider the integral domain Z,
then K = Q and (35/3)(15/2)(4/7) = 50 ∈ 50Z implies that 50Z is not
a strongly 2-absorbing primary ideal of Z. But 50Z is a 2-absorbing
primary ideal of Z by [5, Example 2.17].

Notation 2.5. For a subset S of R, we define E(S) by

E(S) = {x ∈ K : xn 6∈ S for each n ≥ 1}.

Let R be an integral domain with quotient field K. An ideal I of
R is called strongly radical if whenever x ∈ K satisfies xn ∈ I for some
n ≥ 1, then x ∈ I [1].

Following [9], an integral domain R is called rooty if each radical ideal
of R is strongly radical (equivalently, each prime ideal of R is strongly
radical. Thus valuation domains are rooty domains [2]).

Theorem 2.6. Let R be an integral domain with quotient field K and
let I be an ideal of R. Consider the following statements:

(a) I is a 2-absorbing primary ideal of R and for each x, y ∈ K with
xy 6∈ I we have x−1I ∩ E(I) = ∅ or y−1I ∩ E(I) = ∅.

(b) I is a strongly 2-absorbing primary ideal of R.
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Then (a) ⇒ (b). Moreover, if K \ E(I) is closed under addition (in
particular, if R is rooty), then (b)⇒ (a).

Proof. (a)⇒ (b) Let xyz ∈ I for some x, y, z ∈ K and xy 6∈ I. Then by
part (a), either x−1I ∩E(I) = ∅ or y−1I ∩E(I) = ∅. If x−1I ∩E(I) = ∅,
then yz = yzxx−1 = (yzx)x−1 ∈ x−1I implies that (yz)n ∈ I for some
n ≥ 1. Similarly, if y−1I ∩ E(I) = ∅, then we have (xz)m ∈ I for some
m ≥ 1, as needed.

(b) ⇒ (a) Assume on the contrary that x, y ∈ K with xy 6∈ I and
x−1I ∩ E(I) 6= ∅ and y−1I ∩ E(I) 6= ∅. Then there exist a, b ∈ I such
that x−1a ∈ E(I) and y−1b ∈ E(I). Now as I is a strongly 2-absorbing
primary ideal of R, we have (x)(y)(x−1y−1a) = a ∈ I implies that
(y−1a)n ∈ I for some n ≥ 1. In a similar way we have (x−1b)m ∈ I for
some m ≥ 1. On the other hand,

a+ b = (x)(y)(x−1y−1(a+ b)) ∈ I

implies that either xy ∈ I or (x−1(a + b))s ∈ I or (y−1(a + b))t ∈ I.
Therefore, as K \E(I) is closed under addition, either xy ∈ I or x−1a 6∈
E(I) or y−1b 6∈ E(I), which is a contradiction. �

Theorem 2.7. Let R be an integral domain with quotient field K and
I be an ideal of R. Consider the following:

(a) If xyz ∈ I for elements x, y, z ∈ K, we have either xy ∈ I or
yz ∈

√
I or xz ∈

√
I.

(b) If xyz ∈ I for elements x, y, z ∈ K, we have either xy ∈ I or
(yz)n ∈ I or (xz)m ∈ I for some n,m ≥ 1 (i.e., I is a strongly
2-absorbing primary ideal of R).

Then (a)⇒ (b). Moreover, if R is a rooty domain, then (b)⇒ (a).

Proof. (a)⇒ (b) This is clear.
(b) ⇒ (a) Let xyz ∈ I for elements x, y, z ∈ K. If xy 6∈ I, then we

have either (yz)n ∈ I or (xz)m ∈ I for some n,m ≥ 1 by part (b). Since
R is a rooty domain, yz ∈

√
I or xz ∈

√
I, as needed. �

Theorem 2.8. Let R be an integral domain with quotient field K and
let I be a strongly 2-absorbing primary ideal of R. Then we have the
following:
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(a) If J and H are radical ideals of R, then JH ⊆ I or I2 ⊆ J ∪H.

(b) If J and I are prime ideals of R, then J and I are comparable.

Proof. (a) Suppose that J and H are radical ideals of R such that
JH 6⊆ I. Then there exist a ∈ J and b ∈ H such that ab ∈ JH \ I. Let
x, y ∈ I. Then (xy/ab)(a/x)(b/1) ∈ I implies that either (a/x)(b/1) ∈ I
or ((xy/ab)(a/x))n ∈ I or ((xy/ab)(b/1))m ∈ I for some n,m ≥ 1.
Thus either x(ab/x) ∈ xR ⊆ I or (b(y/b))n ∈ bnI ⊆ bnR ⊆ H or
(a(xy/a))m ∈ amI ⊆ amR ⊆ J . Hence, either ab ∈ I or yn ∈ H or
(xy)m ∈ J . Since ab 6∈ I, we have either y ∈

√
H = H or xy ∈

√
J = J .

Therefore, xy ∈ J ∪H. This implies that I2 ⊆ J ∪H, as desired.
(b) The result follows from the fact that J2 ⊆ I or I2 ⊆ J by part

(a). �

Corollary 2.9. Let R be an integral domain with quotient field K and
Q be a maximal ideal of R. If Q is a strongly 2-absorbing primary ideal
of R, then R is a local ring with maximal ideal Q.

Proof. It follows from Theorem 2.8. �

Theorem 2.10. Let R be an integral domain with quotient field K and
let P and Q be nonzero strongly primary ideals of R. Then P ∩ Q is
a strongly 2-absorbing primary ideal of R. In particular, if N1, N2 are
two strongly primary submodules of an R-module M , then N1 ∩N2 is a
strongly 2-absorbing primary submodule of M .

Proof. Suppose (xy)z ∈ P ∩ Q and x, y, z ∈ K. Then (xy)z ∈ P and
(xy)z ∈ Q. Since P is strongly primary, so either xy ∈ P or zn ∈ P
for some n ≥ 1. If xy ∈ P , then either x ∈ P or ym ∈ P for some
m ≥ 1. Similarly, x ∈ Q or yt ∈ Q or zs ∈ Q for some s, t ≥ 1.
First assume that x ∈ P and x ∈ Q. Then (xy)y−1 = x ∈ P implies
that xy ∈ P or (y−1)h ∈ P for some h ≥ 1. Similarly, xy ∈ Q or
(y−1)g ∈ Q for some g ≥ 1. If (y−1)g ∈ Q ⊆ R or (y−1)h ∈ P ⊆ R,
then (xz)h = (xyz)h(y−1)h ∈ P ∩ Q or (xz)g = (xyz)g(y−1)g ∈ P ∩ Q
by definition of an ideal. Otherwise, xy ∈ P ∩ Q as requested. If the
statements above lead to different elements in P and Q, we still have
that the intersection is strongly 2-absorbing primary. For example, if
zn ∈ P and yt ∈ Q, then clearly (zy)nt ∈ P and (zy)nt ∈ Q by definition
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of an ideal, thus (zy)nt ∈ P ∩ Q. Now the last statement follows from
the fact that (N1 ∩N2 :R M) = (N1 :R M) ∩ (N2 :R M). �

Proposition 2.11. Let R be an integral domain with quotient field
K and S be a multiplicatively closed subset of R. If I is a strongly
2-absorbing primary ideal of R such that S ∩ I = ∅, then S−1I is a
strongly 2-absorbing primary ideal of S−1R.

Proof. Assume that a, b, c ∈ K such that abc ∈ S−1I. Then there
exists s ∈ S such that (sa)(b)c = sabc ∈ I. Since I is a strongly
2-absorbing primary ideal of R, this implies that either (sa)c ∈ I or
((b)c)n = (bc)n ∈ I or ((sa)(b))m = (sab)m ∈ I for some n,m ≥ 1.
Thus ac = (sa)c/s ∈ s−1I or (bc)n = ((b)c/1)n ∈ s−1I or (ab)m =
((sa)(b)/s)m ∈ s−1I, as needed. �

Corollary 2.12. Let R be an integral domain with quotient field K,
N be submodule of a finitely generated R-module M , and let S be
a multiplicatively closed subset of R. If N is a strongly 2-absorbing
primary submodule and (N :R M) ∩ S = ∅, then S−1N is a strongly
2-absorbing primary S−1R-submodule of S−1M .

Proof. As M is finitely generated, (S−1N :S−1R S−1M) = S−1(N :R
M) by [10, Lemma 9.12]. Now the result follows from Proposition 2.11.
�

Proposition 2.13. Let R be an integral domain with quotient field
K and M be an R-module. Let N be a strongly 2-absorbing primary
submodule of M . Then we have the following.

(a) If r ∈ K such that r−1 ∈ R, then (N :M r) is a strongly 2-absorbing
primary submodule of M .

(b) If f : M → Ḿ is a monomorphism of R-modules, then N is a
strongly 2-absorbing primary submodule of M if and only if f(N)
is a strongly 2-absorbing primary submodule of f(M).

Proof. (a) Let xyz ∈ ((N :M r) :R M) for some x, y, z ∈ K. Then
rxyz ∈ (N :R M). Thus as N is a strongly 2-absorbing primary submod-
ule, either rxy ∈ (N :R M) or (rxz)n ∈ (N :R M) or (yz)m ∈ (N :R M)
for some n,m ≥ 1. Hence either xy = r−1rxy ∈ r−1(N :R M) ⊆
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(N :R M) or (xz)n = (r−1rxz)n ∈ r−1(N :R M) ⊆ (N :R M) or
(yz)m ∈ (N :R M), as needed.

(b) This follows from the fact that (N :R M) = (f(N) :R f(M)).
�

3 Strongly 2-absorbing Ideals and Submodules

Definition 3.1. Let R be an integral domain with quotient field K.
We say that a 2-absorbing ideal I of R is a strongly 2-absorbing ideal
if, whenever xyz ∈ I for elements x, y, z ∈ K, we have either xy ∈ I or
yz ∈ I or xz ∈ I. Also, we say that a submodule N of an R-module M
is strongly 2-absorbing if (N :R M) is a strongly 2-absorbing ideal of R.

Proposition 3.2. Let R be an integral domain with quotient field K
and let I be a strongly prime ideal of R. Then I is a strongly 2-absorbing
ideal of R.

Proof. Let xyz ∈ I for some x, y, z ∈ K. Then by assumption, either
xy ∈ I or z ∈ I. If xy ∈ I, then we are done. If z ∈ I, then zxyz ∈ I.
Thus again by assumption, either zx ∈ I or yz ∈ I as desired. �

The following theorem is a characterization for a strongly 2-absorbing
ideal of R.

Theorem 3.3. Let R be an integral domain with quotient field K and
let I be an ideal of R. Then the following statements are equivalent:

(a) I is a strongly 2-absorbing ideal of R;

(b) For each x, y ∈ K with xy 6∈ I we have either x−1I ⊆ I or y−1I ⊆
I.

Proof. (a) ⇒ (b) Assume on the contrary that x, y ∈ K with xy 6∈ I
and neither x−1I 6⊆ I nor y−1I 6⊆ I. Then there exist a, b ∈ I such that
x−1a 6∈ I and y−1b 6∈ I. Now as I is a strongly 2-absorbing ideal of R,
we have (x)(y)(x−1y−1a) = a ∈ I implies that y−1a ∈ I. In the similar
way we have x−1b ∈ I. On the other hand,

a+ b = (x)(y)(x−1y−1(a+ b)) ∈ I
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implies that either xy ∈ I or x−1(a+b) ∈ I or y−1(a+b) ∈ I. Therefore,
either xy ∈ I or x−1a ∈ I or y−1b ∈ I, a contradiction.

(b) ⇒ (a) Let xyz ∈ I for some x, y, z ∈ K. If xy ∈ I, xz ∈ I, and
yz ∈ I, then we are done. So suppose without loss of generality that
xy 6∈ I. Then by part (b), either x−1I ⊆ I or y−1I ⊆ I. If x−1I ⊆ I,
then yz = yzxx−1 = (yzx)x−1 ∈ x−1I ⊆ I. Similarly, if y−1I ⊆ I, then
we have xz ∈ I, as desired. �

Corollary 3.4. Let R be an integral domain with quotient field K and
let I be a strongly 2-absorbing ideal of R. Then for each x, y ∈ K with
xy 6∈ I we have either I ⊆ Rx or I ⊆ Ry.

Proof. Let x, y ∈ K with xy 6∈ I. Then by Theorem 3.3 (a) ⇒ (b),
we have either x−1I ⊆ I or y−1I ⊆ I. Thus either I ⊆ Ix ⊆ Rx or
I ⊆ Ix ⊆ Ry. �

Proposition 3.5, Example 3.6, and Example 3.7 show that the con-
verse of Proposition 3.2 is not true in general.

Proposition 3.5. Let R be an integral domain with a prime ideal P
such that there exists a discrete valuation overring (V,Q) of R centered
at P (that is, Q ∩ R = P ), where Q = xV . Suppose that uxk ∈ P for
all units u of V and natural numbers k ≥ 2, but there is no unit u of V
for which ux ∈ P . Then P is a strongly 2-absorbing ideal of R that is
not a strongly prime ideal.

Proof. The fact that P is not a strongly prime ideal of R is immediate
from the fact that x2 ∈ P , but x 6∈ P , by assumption. Now, since P
is a prime ideal of R, it is necessarily a 2-absorbing ideal of R. Let
y and z be elements of the quotient field of R for which yz 6∈ P . By
Theorem 3.3, it suffices to show that either y−1P ⊆ P or z−1P ⊆ P .
Observe that there exist units u and v of V and integers α and β for
which y = uxα and z = vxβ. Since yz 6∈ P , it must be the case that
α + β ≤ 1. However, this means that either α ≤ 0 or β ≤ 0. As such,
either −α + γ ≥ 2 or −β + γ ≥ 2 for all integers γ ≥ 2, from which it
follows that either y−1P ⊆ P or z−1P ⊆ P as needed. �

Example 3.6. If K is a field, then the ideal (X2, X3) in K[[X2, X3]]
the ring of formal power series in the indeterminates X2 and X3 over K
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is an example of a strongly 2-absorbing prime ideal that is not strongly
prime.

Example 3.7. If Q is the maximal ideal of a non-trivial DV R, V , then
Q2 is a strongly 2-absorbing ideal of V that is not a strongly prime ideal,
since Q2 is not even a prime ideal of V .

Proposition 3.8. Let R be an integral domain with quotient field K, I
be a strongly 2-absorbing ideal of R, and Q be a prime ideal of R which
is properly contained in I. Then I/Q is a strongly 2-absorbing ideal of
R/Q.

Proof. Clearly, I/Q is a 2-absorbing ideal of R/Q. Now let φ :
R → R/Q denote the canonical homomorphism. Suppose that x1 =
φ(y1)/φ(z1) and x2 = φ(y2)/φ(z2) are elements of the quotient field of
R/Q such that x1x2 6∈ I/Q. Then (y1/z1)(y2/z2) 6∈ I. Hence if a ∈ I,
we have (z1/y1)a ∈ I or (z2/y2)a ∈ I by using Theorem 3.3. We can
assume without loss of generality that (z1/y1)a ∈ I. It follows that
(φ(z1)/φ(y1))φ(a) ∈ I/Q. Thus x−1(I/Q) ⊆ I/Q, as needed. �

Remark 3.9. Clearly, every strongly 2-absorbing ideal of R is a 2-
absorbing ideal of R. But the converse is not true in general. Because
for example, if we consider the integral domain Z, then K = Q and
(8/15)(3/2)(5/2) = 2 ∈ 2Z implies that 2Z is not a strongly 2-absorbing
ideal of Z. But 2Z is a 2-absorbing ideal of Z.

Definition 3.10. We say that an integral domain R is a 2-absorbing
pseudo-valuation domain if every 2-absorbing ideal of R is a strongly
2-absorbing ideal of R.

Proposition 3.11. Every valuation domain is a 2-absorbing pseudo-
valuation domain.

Proof. Let V be a valuation domain, and let I be a 2-absorbing ideal
of V . Suppose xyz ∈ I, where x, y, z ∈ K, the quotient field of V . If
x, y, and z are in V , we are done. Suppose without loss of generality
that x 6∈ V . Since V is a valuation domain, we have x−1 ∈ V . Hence
yz = (x−1)(xyz) ∈ I, as needed. �
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Definition 3.12. Let R be an integral domain with quotient field K.
We say that a non-zero prime ideal P of R is a strongly semiprime if
whenever x2 ∈ P for element x ∈ K, we have x ∈ P .

Remark 3.13. Let R be an integral domain with quotient field K.
Clearly every non-zero strongly prime ideal of R is a strongly semiprime
ideal of R. But as we see in the following example the converse is not
true in general.

Example 3.14. Consider an integral domain Z. Then K = Q and
(4/3)(3/2) = 2 ∈ 2Z implies that 2Z is not a strongly prime ideal of Z.
But 2Z is a strongly semiprime ideal of Z.

Proposition 3.15. Let R be an integral domain with quotient field K.

(a) If P is a strongly semiprime and strongly 2-absorbing ideal of R,
then P is a strongly prime ideal of R.

(b) If P1 and P2 are strongly semiprime ideals of R, then P1 ∩ P2 is a
strongly semiprime ideal of R.

Proof. (a) Let P be a strongly semiprime and strongly 2-absorbing
ideal of R and let x ∈ K \R. Then as P is strongly semiprime x2 6∈ P .
Since P is strongly 2-absorbing, this implies that x−1P ⊆ P by Theorem
3.3. Now the result follows from [8, Proposition 1.2].

(b) This is clear. �

Theorem 3.16. Let R be an integral domain with quotient field K and
let P and Q be non-zero strongly prime ideals of R. Then P ∩ Q is a
strongly 2-absorbing ideal of R.

Proof. The proof is similar to that of Theorem 2.10. �

Proposition 3.17. Let R be an integral domain with quotient field
K and let I be a strongly 2-absorbing ideal of R. Then we have the
following:

(a)
√
I is a strongly 2-absorbing ideal of R and x2 ∈ I for every x ∈√
I.
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(b) If S is a multiplicatively closed subset of R such that S ∩ I = ∅,
then S−1I is a strongly 2-absorbing ideal of S−1R.

Proof. (a) Since I is a strongly 2-absorbing ideal of R, observe that
x2 ∈ I for every x ∈

√
I. Let x, y, z ∈ K such that xyz ∈

√
I. Then

(xyz)2 = x2y2z2 ∈ I. Since I is a strongly 2-absorbing ideal of R,
we may assume without loss of generality that x2y2 ∈ I. Now since
(xy)2 = x2y2 ∈ I, we have xy ∈

√
I as desired.

(b) The proof is similar to that of Proposition 2.11. �

Corollary 3.18. Let R be an integral domain with quotient field K,
N be a submodule of a finitely generated R-module M , and let S be
a multiplicatively closed subset of R. If N is a strongly 2-absorbing
submodule and (N :R M)∩S = ∅, then S−1N is a strongly 2-absorbing
S−1R-submodule of S−1M .

Proof. As M is finitely generated, (S−1N :S−1R S−1M) = S−1(N :R
M) by [10, Lemma 9.12]. Now the result follows from Proposition 3.17.
�

Theorem 3.19. Let R be an integral domain with quotient field K and
let I be a strongly 2-absorbing ideal of R. Then we have the following.

(a) If J and H are ideals of R, then JH ⊆ I or I2 ⊆ J ∪H.

(b) If J and I are prime ideals of R, then J and I are comparable.

Proof. The proof is similar to that of Theorem 2.8. �

Corollary 3.20. Let R be an integral domain with quotient field K
and Q be a maximal ideal of R. If Q is a strongly 2-absorbing ideal of
R, then R is a local ring with maximal ideal Q.

Proof. This follows from Theorem 3.19 (b). �
Recall that if K is the field of fractions of R, then an intermediate

ring in the extension R ⊆ K is called an overring of R.

Proposition 3.21. Let R be an integral domain with quotient field K,
I be a strongly 2-absorbing ideal of R, and let T be an overring of R.
Then IT is a strongly 2-absorbing ideal of T .
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Proof. Let x, y ∈ K and xy 6∈ IT . Then xy 6∈ I. Thus by Theorem
3.3, either x−1I ⊆ I or y−1I ⊆ I. Therefore, either x−1IT ⊆ IT or
y−1IT ⊆ IT . Hence IT is a strongly 2-absorbing ideal of T , again by
Theorem 3.3. �

Proposition 3.22. Let R be an integral domain with quotient field K
and let {Iλ}λ∈Λ be a chain of strongly 2-absorbing ideals of R. Then∑

λ∈Λ Iλ is a strongly 2-absorbing ideal of R.

Proof. Suppose that x, y ∈ K with xy 6∈
∑

λ∈Λ Iλ and we have
x−1

∑
λ∈Λ Iλ 6⊆

∑
λ∈Λ Iλ and y−1

∑
λ∈Λ Iλ 6⊆

∑
λ∈Λ Iλ. Then there exist

α, β ∈ Λ such that x−1Iα 6⊆
∑

λ∈Λ Iλ and y−1Iβ 6⊆
∑

λ∈Λ Iλ. Hence,
x−1Iα 6⊆ Iα and y−1Iβ 6⊆ Iβ. Thus y−1Iα ⊆ Iα and x−1Iβ ⊆ Iβ. By
assumption, Iα ⊆ Iβ or Iβ ⊆ Iα. This implies that x−1Iα ⊆ x−1Iβ ⊆
Iβ ⊆

∑
λ∈Λ Iλ or y−1Iβ ⊆ y−1Iα ⊆ Iα ⊆

∑
λ∈Λ Iλ. This is a contradic-

tion. Thus by Theorem 3.3,
∑

λ∈Λ Iλ is a strongly 2-absorbing ideal of
R. �

Recall that a chained ring is any ring whose set of ideals is totally
ordered by inclusion.

Corollary 3.23. If R is a chained ring and contains a strongly 2-
absorbing ideal, then R contains a unique largest strongly 2-absorbing
ideal.

Proof. This is proved easily by using Zorn’s Lemma and Proposition
3.22. �

An R-module M is said to be a multiplication module if for every
submodule N of M there exists an ideal I of R such that N = IM [6].

Corollary 3.24. Let R be an integral domain which is a chained ring
with quotient field K and M be a faithful finitely generated multiplica-
tion R-module. If {Ni}i∈I is a family of strongly 2-absorbing submodules
of M , then

∑
i∈I Ni is a strongly 2-absorbing submodule of M .

Proof. This follows from Proposition 3.22 and the fact that

(
∑
i∈I

(Ni :R M)M :R M) =
∑
i∈I

(Ni :R M)

by [7, Theorem 3.1]. �



14 H. ANSARI-TOROGHY et al.

Proposition 3.25. Let R be an integral domain with quotient field K
and M be an R-module. Then we have the following:

(a) If N is a strongly 2-absorbing submodule of M and r ∈ K such
that r−1 ∈ R, then (N :M r) is a strongly 2-absorbing submodule
of M .

(b) If f : M → Ḿ is a monomorphism of R-modules, then N is a
strongly 2-absorbing submodule of M if and only if f(N) is a
strongly 2-absorbing submodule of f(M).

(c) If N1, N2 are two submodules of M with (N1 :R M) and (N2 :R M)
strongly prime ideals of R, then N1 ∩N2 is a strongly 2-absorbing
submodule of M .

Proof. (a) The proof is similar to that of Proposition 2.13 (a).
(b) The proof is similar to that of Proposition 2.13 (b).
(c) Since (N1 ∩ N2 :R M) = (N1 :R M) ∩ (N2 :R M), the result

follows from Proposition 3.16. �

Proposition 3.26. Let R be an integral domain with quotient field K,
M be an R-module, and let {Ki}i∈I be a chain of strongly 2-absorbing
submodules of M . Then ∩i∈IKi is a strongly 2-absorbing submodule of
M .

Proof. Let a, b, c ∈ K and abc ∈ (∩i∈IKi :R M) = ∩i∈I(Ki :R M).
Assume to the contrary that ab 6∈ ∩i∈I(Ki :R M), bc 6∈ ∩i∈I(Ki :R M),
and ac 6∈ ∩i∈I(Ki :R M). Then there are m,n, t ∈ I where ab 6∈ (Kn :R
M), bc 6∈ (Km :R M), and ac 6∈ (Kt :R M). Since {Ki}i∈I is a chain, we
can assume without loss of generality that Km ⊆ Kn ⊆ Kt. Then

(Km :R M) ⊆ (Kn :R M) ⊆ (Kt :R M).

As abc ∈ (Km :R M), we have ab ∈ (Km :R M) or ac ∈ (Km :R M) or
bc ∈ (Km :R M). In any case, we have a contradiction. �

Definition 3.27. Let R be an integral domain with quotient field K.
We say that a strongly 2-absorbing submodule N of an R-module M is
a minimal strongly 2-absorbing submodule of a submodule H of M , if
H ⊆ N and there does not exist a strongly 2-absorbing submodule T of
M such that H ⊂ T ⊂ N .
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It should be noted that a minimal strongly 2-absorbing submodule
of M means that a minimal strongly 2-absorbing submodule of the sub-
module 0 of M .

Lemma 3.28. Let R be an integral domain with quotient field K and
let M be an R-module. Then every strongly 2-absorbing submodule of
M contains a minimal strongly 2-absorbing submodule of M .

Proof. This is proved easily by using Zorn’s Lemma and Proposition
3.26. �

Theorem 3.29. Let R be an integral domain with quotient field K and
let M be a Noetherian R-module. Then M contains a finite number of
minimal strongly 2-absorbing submodules.

Proof. Suppose that the result is false. Let Σ denote the collection
of all proper submodules N of M such that the module M/N has an
infinite number of minimal strongly 2-absorbing submodules. Since 0 ∈
Σ, we have Σ 6= ∅. Therefore Σ has a maximal member T , since M
is a Noetherian R-module. Clearly, T is not a strongly 2-absorbing
submodule. Therefore, there exist a, b, c ∈ K such that abc(M/T ) = 0
but ab(M/T ) 6= 0, ac(M/T ) 6= 0, and bc(M/T ) 6= 0. The maximality of
T implies that M/(T + abM), M/(T + acM), and M/(T + bcM) have
only finitely many minimal strongly 2-absorbing submodules. Suppose
P/T is a minimal strongly 2-absorbing submodule of M/T . So abcM ⊆
T ⊆ P , which implies that abM ⊆ P or acM ⊆ P or bcM ⊆ P . Thus
P/(T + abM) is a minimal strongly 2-absorbing submodule of M/(T +
abM) or P/(T + bcM) is a minimal strongly 2-absorbing submodule
of M/(T + bcM) or P/(T + acM) is a minimal strongly 2-absorbing
submodule of M/(T + acM). Thus, there are only a finite number of
possibilities for the submodule M/T . This is a contradiction. �

Acknowledgements
The authors would like to express their appreciation to the referees for
careful reading and valuable comments. Also, the authors would like
to thank Professor Andrew Hetzel for his helpful suggestions and useful
comments.



16 H. ANSARI-TOROGHY et al.

References

[1] D.D. Anderson and D.F. Anderson, Multiplicatively closed subsets
of fields, Houston J. Math. 13 (1989), 1-11.

[2] D.F. Anderson and J. Park, Rooty and root-closed domains, Ad-
vances in Commutative ring theory, Lecture Notes Pure Applied
Math., Marcel Dekker 205 (1999), 87-99.

[3] A. Badawi, On 2-absorbing ideals of commutative rings, Bull. Aus-
tral. Math. Soc. 75 (2007), 417-429.

[4] A. Badawi and E.G. Houston, Powerful ideals, strongly primary
ideals, almost pseudo-valuation domains, and conductive domains,
Comm. Algebra, 30 (2002), 1591-1606.

[5] A. Badawi, U. Tekir, and E. Yetkin, On 2-absorbing primary ideals
in commutative rings, Bull. Korean Math. Soc., 51 (4) (2014), 1163-
1173.

[6] A. Barnard, Multiplication modules, J. Algebra 71 (1981), 174-178.

[7] Z.A. El-Bast and P.F. Smith, Multiplication modules, Comm. Al-
gebra 16 (1988), 755-779.

[8] J. Hedstrom and G. Houston, Pseudo-valuation domains, Pacific J.
Math. 75 (1) (1978), 137-147.

[9] J. Sato and T. Sugatani, On the radical ideal of seminormal rings,
Comm. Algebra 18 (1990), 441-451.

[10] R.Y. Sharp, Step in commutative algebra, Cambridge University
Press, 1990.

Habibollah Ansari-Toroghy
Professor of Mathematics
Department of Pure Mathematics, Faculty of Mathematical Sciences
University of Guilan
Rasht, Iran

E-mail: ansari@guilan.ac.ir



SOME GENERALIZATION OF STRONGLY PRIME IDEALS 17

Faranak Farshadifar
Assistant Professor of Mathematics
Department of Mathematics
Farhangian University
Tehran, Iran

E-mail: f.farshadifar@cfu.ac.ir

Sepideh Maleki-Roudposhti
Ph.D student of Mathematics
Department of Pure Mathematics, Faculty of Mathematical Sciences
University of Guilan
Rasht, Iran

E-mail: Sepidehmaleki.r@gmail.com


	1 Introduction
	2 Strongly 2-absorbing Primary Ideals and Submodules
	3 Strongly 2-absorbing Ideals and Submodules
	References

