Primary Submodules over a Multiplicatively Closed Subset of a Commutative Ring

N. Ilaghi
Payame Noor University
M. Maani-Shirazi

Payame Noor University
Sh. Khoshdel *
Payame Noor University

Abstract

In this paper, we introduce the concept of primary submodules over S which is a generalization of the concept of S-prime submodules. Suppose S is a multiplicatively closed subset of a commutative ring R and let M be a unital R-module. A proper submodule Q of M with $\left(Q:_{R} M\right) \cap S=\emptyset$ is called primary over S if there is an $s \in S$ such that, for all $a \in R, m \in M, a m \in Q$ implies that $s m \in Q$ or $s a^{n} \in\left(Q:_{R} M\right)$, for some positive integer n. We get some new results on primary submodules over S. Furthermore, we compare the concept of primary submodules over S with primary ones. In particular, we show that a submodule Q is primary over S if and only if $\left(Q:_{M} s\right)$ is primary, for some $s \in S$.

AMS Subject Classification: 16p40; 13A15; 16D60
Keywords and Phrases: Multiplicatively closed subset, Multiplication module, Primary module, primary module over S

[^0]
1 Introduction

Throughout this paper, R will be a non-zero commutative ring with identity and all modules are unital. Let K and L be two submodules of an R-module M and I an ideal of R. We denote the ideal $\{a \in R \mid a L \subseteq$ $K\}$ by $\left(K:_{R} L\right)$ and the submodule $\{m \in M \mid I m \subseteq K\}$ by $\left(K:_{M} I\right)$. In particular, we use $\operatorname{ann}(M)$ instead of $\left(0:_{R} M\right)$ and $\left(K:_{M} s\right)$ instead of ($K:_{M} R s$), where $R s$ is the principal ideal generated by an element $s \in R$. Also, the Jacobson radical of R is denoted by $J(R)$ and we use $U(R)$ for the set of all unit elements of R. By $\operatorname{Max}(R)$ we mean the set of all maximal ideals of R.

Recall that a proper submodule Q of an R-module M is primary if, for all $a \in R$ and $m \in M, a m \in Q$ implies that $m \in Q$ or $a^{n} \in\left(Q:_{R} M\right)$, for some positive integer n, see, for example, [3], [4], [8], [10] and [11]. An R-module M is called a multiplication module if $N=\left(N:_{R} M\right) M$, for every submodule N of M ([5] and [12]). A nonempty subset S of R is called a multiplicatively closed subset (briefly, m.c.s.) of R if $0 \notin S$, $1 \in S$ and $s s^{\prime} \in S$, for all $s, s^{\prime} \in S([13])$. Let S be a m.c.s. of R and P a submodule of M with $\left(P:_{R} M\right) \cap S=\emptyset$. Then P is called an S-prime submodule of M if there exists $s \in S$ such that $a m \in P$ implies that $s m \in P$ or $s a \in\left(P:_{R} M\right)$, for each $a \in R$ and $m \in M$. Note that by taking $s=1$, every prime submodule is an S-prime submodule. In [9], the concept of S-prime submodules was defined. We generalize this concept to primary submodules over S. A submodule Q of M with $\left(Q:_{R} M\right) \cap S=\emptyset$ is called primary over S if there exists $s \in S$ such that, for all $a \in R$ and $m \in M, a m \in Q$ implies that $s m \in Q$ or $s a^{n} \in\left(Q:_{R} M\right)$, for some positive integer n. Since $1 \in S$, all primary submodules Q with $\left(Q:_{R} M\right) \cap S=\emptyset$ are primary over S. With an additional assumption, we show that the converse is true. Being Q a primary submodule over S is related to being $\left(Q:_{R} M\right)$ is so as an ideal. Also, If M is a finitely generated R-module, then we find an equivalent condition for a proper submodule Q to be primary over S in M.

2 Main Results

Definition 2.1. Let S be a m.c.s. of the ring R and Q a submodule of
M as an R-module with $\left(Q:_{R} M\right) \cap S=\emptyset$. Then Q is called a primary submodule over S if there exists $s \in S$ such that, for all $a \in R$ and $m \in M$, am $\in Q$ implies that $s m \in Q$ or $s a^{n} \in\left(Q:_{R} M\right)$, for some positive integer n.

Clearly every S-prime submodule is primary over S. For instance, in a vector space V over a field F, every proper submodule W of V is S-prime and so primary over S, where S is an arbitrary m.c.s. of F.
Example 2.2. Let p be a fixed prime number. Each proper submodule of the \mathbb{Z}-module $\mathbb{Z}_{p^{\infty}}$ is of the form $G_{k}=\left(\frac{1}{p^{k}}+\mathbb{Z}\right)$, for some integer $k \geq 0$ and $\left(G_{k}: \mathbb{Z} \mathbb{Z}_{p^{\infty}}\right)=0$. Take the m.c.s. $S=\left\{1, q, q^{2}, \ldots\right\}$, for some prime number $q \neq p$. Note that $p\left(\frac{1}{p^{k+1}}+\mathbb{Z}\right) \in G_{k}$ but, for each $s \in S$, $s\left(\frac{1}{p^{k+1}}+\mathbb{Z}\right) \notin G_{k}$ and $s p^{n} \notin\left(G_{k}: \mathbb{Z} \mathbb{Z}_{p^{\infty}}\right)=0$, for all positive integer n. Hence G_{k} is not primary over S, for all non-negative integers k and so $\mathbb{Z}_{p^{\infty}}$ does not have any primary submodule over S.
Proposition 2.3. Suppose S is a m.c.s. of the ring R and M is an R-module. If $S \subseteq U(R)$ and Q is primary over S then Q is primary.
Proof. Since Q is primary over S, so there exists $s \in S$ satisfying the definition. Let $a \in R, m \in M$ and $a m \in Q$. By assumption, as $s \in S \subseteq U(R), m \in Q$ or $a^{n} \in\left(Q:_{R} M\right)$, for some positive integer n. Therefore Q is primary.
Proposition 2.4. Let S_{1} and S_{2} be multiplicatively closed subsets of the ring R such that $S_{1} \subseteq S_{2}, M$ an R-module and Q a primary submodule over S_{1} of M with $\left(Q:_{R} M\right) \cap S_{1}=\emptyset$. Then Q is primary over S_{2} in case $\left(Q:_{R} M\right) \cap S_{2}=\emptyset$.
Proof. Since Q is primary over S_{1} so there exists $s_{1} \in S_{1}$ satisfying the definition. Let $a \in R, m \in M$ and $a m \in Q$. By hypothesis, $s_{1} m \in Q$ or $s_{1} a^{n} \in\left(Q:_{R} M\right)$, for some positive integer n. But $S_{1} \subseteq S_{2}$. Thus $s_{1} \in S_{2}$ and we get the result.

Recall that, for the m.c.s S of the ring R, the saturation S^{*} of S is defined as

$$
S^{*}=\left\{x \in R \left\lvert\, \frac{x}{1} \in U\left(S^{-1} R\right)\right.\right\} .
$$

Clearly, S^{*} is a m.c.s. of R containing $S([6])$.

Proposition 2.5. Let S be a m.c.s. of the ring R, M an R-module and Q a submodule of M. Then Q is primary over S if and only if Q is primary over S^{*}.

Proof. Suppose that Q is primary over S. We show that $\left(Q:_{R} M\right) \cap$ $S^{*}=\emptyset$. For this, let $x \in\left(Q:_{R} M\right) \cap S^{*}$. So $\frac{x}{1} \in U\left(S^{-1} R\right)$ and there exist $a \in R, s \in S$ such that $\frac{x a}{s}=1$ which implies that $u x a=u s$, for some $u \in S$. Put $u s=s^{\prime} \in S$. Then $s^{\prime}=u s=u x a \in\left(Q:_{R} M\right) \cap S$, a contradiction. So $\left(Q:_{R} M\right) \cap S^{*}=\emptyset$. Since Q is primary over S and $S \subseteq S^{*}$, by the above proposition, Q is primary over S^{*}.

Conversely, suppose that Q is primary over S^{*}. So there exists $s^{*} \in$ S^{*} satisfying the definition. Let $a \in R, m \in M$ and $a m \in Q$. By hypothesis, $s^{*} m \in Q$ or $s^{*} a^{n} \in\left(Q:_{R} M\right)$, for some positive integer n. Also, $s^{*} \in S^{*}$. Thus there exist $s \in S$ and $b \in R$ such that $\frac{s^{*} b}{s}=1$ and so $u s=u s^{*} b$, for some $u \in S$. By taking $u s=s^{\prime} \in S, s^{\prime} m=$ $u s m=u s^{*} b m \in Q$ or $s^{\prime} a^{n}=u s a^{n}=u s^{*} b a^{n} \in\left(Q:_{R} M\right)$. Therefore Q is primary over S.

Proposition 2.6. Let S be a m.c.s. of the ring R, M an R-module and Q a submodule of M. If Q is a primary submodule over S then $S^{-1} Q$ is a primary submodule of $S^{-1} M$ as an $S^{-1} R$-module.

Proof. Assume that Q is a primary submodule over S. Let $\frac{r}{s} \frac{m}{t} \in S^{-1} Q$, where $\frac{r}{s} \in S^{-1} R$ and $\frac{m}{t} \in S^{-1} M$. There exist $q \in Q$ and $v \in S$ such that $\frac{r m}{s t}=\frac{q}{v}$ and so uvrm $=u s t q \in Q$, for some $u \in S$. Since Q is primary over S, there exists $s^{\prime} \in S$ so that $s^{\prime} m \in Q$ or $s^{\prime}(u v r)^{n} \in\left(Q:_{R} M\right)$, for some positive integer n. Thus $\frac{m}{t}=\frac{s^{\prime} m}{s^{\prime} t} \in S^{-1} Q$ or $\frac{r^{n}}{s^{n}}=\frac{\left.s^{\prime}(u v r)^{n}\right)}{s^{\prime}(u v s)^{n}} \in$ $S^{-1}\left(Q:_{R} M\right) \subseteq\left(S^{-1} Q:_{S^{-1} R} S^{-1} M\right)$. Therefore $S^{-1} Q$ is a primary submodule of $S^{-1} M$ as an $S^{-1} R$-module.

The converse of the above proposition is not true in general.
Example 2.7. Consider the \mathbb{Z}-module $\mathbb{Q} \times \mathbb{Q}$, where \mathbb{Q} is the field of rational numbers. Take $N=\mathbb{Z} \times 0$ and $S=\mathbb{Z}-\{0\}$. Then S is a m.c.s. of \mathbb{Z} and $S^{-1} \mathbb{Z}=\mathbb{Q}$ is a field. So $S^{-1}(\mathbb{Q} \times \mathbb{Q})$ is a vector space over $S^{-1} \mathbb{Z}=\mathbb{Q}$ and the proper submodule $S^{-1} N$ is a primary submodule of $S^{-1}(\mathbb{Q} \times \mathbb{Q})$. Obviously, $\left(N:_{\mathbb{Z}} \mathbb{Q} \times \mathbb{Q}\right)=0$. Let s be an arbitrary element of S and choose a prime number p with $(p, s)=1$.

Note that $p\left(\frac{1}{p}, 0\right)=(1,0) \in N, s\left(\frac{1}{p}, 0\right)=\left(\frac{s}{p}, 0\right) \notin N=\mathbb{Z} \times 0$ and $s p^{n} \notin(N: \mathbb{Z} \mathbb{Q} \times \mathbb{Q})$, for each positive integer n, which shows that N is not primary over S.

Now, we characterize primary submodules over S of modules over the ring R in case R is Noetherian.

Lemma 2.8. Let R be a Noetherian ring, M an R-module and Q a submodule of M. Suppose that S is a m.c.s. of R such that $\left(Q:_{R}\right.$ $M) \cap S=\emptyset$. Then the following are equivalent.
(i) Q is primary over S;
(ii) There exists $s \in S$ such that, for each ideal J of R and submodule N of $M, J N \subseteq Q$ implies that $s N \subseteq Q$ or $s J^{n} \subseteq\left(Q:_{R} M\right)$, for some positive integer n.

Proof. (i) \Longrightarrow (ii) Assume that Q is a primary submodule over S. Thus there exists $s \in S$ satisfying the definition. Let J be an ideal of R, N a submodule of M and $J N \subseteq Q$. If $s N \subseteq Q$ we are done. Otherwise, there exists $x \in N$ such that $s x \notin Q$. But R is a Noetherian ring and J is an ideal of R. Therefore $J=\left(a_{1}, a_{2}, \ldots, a_{k}\right)$. We have $a_{i} x \in Q$, for each $i=1, \ldots, k$. Since Q is primary over S and $s x \notin Q$ so, for each $i=1, \ldots, k$, sa $a_{i}^{k_{i}} \in\left(Q:_{R} M\right)$, for some positive integer k_{i}. Put $n=\sum_{i=1}^{k}\left(k_{i}-1\right)+1$. In this case, $s J^{n} \subseteq\left(Q:_{R} M\right)$.
(ii) \Longrightarrow (i) Let $a \in R, m \in M$ and $a m \in Q$. Put $J=R a$ and $N=R m$. Then $J N=R a m \subseteq Q$. By assumption, $s N=R s m \subseteq Q$ or $s J^{n}=R s a^{n} \subseteq\left(Q:_{R} M\right)$, for some positive integer n and so either $s m \in Q$ or $s a^{n} \in\left(Q:_{R} M\right)$. Therefore Q is a primary submodule over S.

Corollary 2.9. Suppose that S is a m.c.s. of a Noetherian ring R and Q an ideal of R such that $\left(Q:_{R} M\right) \cap S=\emptyset$. Then the following are equivalent.
(i) Q is primary over S in R;
(ii) There exists $s \in S$ such that, for every ideals I and J of R, if $J I \subseteq Q$ then $s I \subseteq Q$ or $s J^{n} \subseteq Q$, for some positive integer n.

Proposition 2.10. Let S be a m.c.s. of the ring R and $f: M \longrightarrow M^{\prime}$ an R-homomorphism. Then
(i) If Q^{\prime} is primary over S in M^{\prime} provided that $\left(f^{-1}\left(Q^{\prime}\right):_{R} M\right) \cap S=$ \emptyset, then $f^{-1}\left(Q^{\prime}\right)$ is so in M.
(ii) If f is an epimorphism and Q is primary over S in M such that $\operatorname{Ker} f \subseteq Q$, then $f(Q)$ is so in M^{\prime}.

Proof. (i) Since Q^{\prime} is primary over S in M^{\prime}, there exists $s \in S$ satisfying the definition. Let $a m \in f^{-1}\left(Q^{\prime}\right)$, for some $a \in R$ and $m \in M$. Then $f(a m)=a f(m) \in Q^{\prime}$. By assumption, $s f(m)=f(s m) \in Q^{\prime}$ or $s a^{n} \in$ $\left(Q^{\prime}:_{R} M^{\prime}\right)$, for some positive integer n. Now we show that ($Q^{\prime}:_{R}$ $\left.M^{\prime}\right) \subseteq\left(f^{-1}\left(Q^{\prime}\right):_{R} M\right)$. Take $x \in\left(Q^{\prime}:_{R} M^{\prime}\right)$, we have $x M^{\prime} \subseteq Q^{\prime}$. Since $f(M) \subseteq M^{\prime}, f(x M)=x f(M) \subseteq x M^{\prime} \subseteq Q^{\prime}$ so $x M \subseteq x M+$ Kerf $=f^{-1}(f(x M)) \subseteq f^{-1}\left(Q^{\prime}\right)$ and thus $x \in\left(f^{-1}\left(Q^{\prime}\right):_{R} M\right)$. As $\left(Q^{\prime}:_{R} M^{\prime}\right) \subseteq\left(f^{-1}\left(Q^{\prime}\right):_{R} M\right)$, we can conclude either $s m \in f^{-1}\left(Q^{\prime}\right)$ or $s a^{n} \in\left(f^{-1}\left(Q^{\prime}\right):_{R} M\right)$. Hence $f^{-1}\left(Q^{\prime}\right)$ is primary over S in M.
(ii) First we claim that $\left(f(Q):_{R} M^{\prime}\right) \cap S=\emptyset$. Otherwise, there exists an element $s \in\left(f(Q):_{R} M^{\prime}\right) \cap S$ and so $f(s M)=s f(M) \subseteq s M^{\prime} \subseteq f(Q)$. By taking their inverse images under f, we have $s M \subseteq s M+\operatorname{Kerf} \subseteq$ $Q+\operatorname{Kerf}=Q$, which means $s M \subseteq Q$. Thus $s \in\left(Q:_{R} M\right) \cap S$, a contradiction. By assumption, Q is primary over S in M. Then there exists an element $s \in S$ satisfying the definition. Now take $a \in R$, $m^{\prime} \in M^{\prime}$ such that $a m^{\prime} \in f(Q)$. As f is an epimorphism, there exists $m \in M$ such that $m^{\prime}=f(m)$. Hence $a m^{\prime}=a f(m)=f(a m) \in f(Q)$. Since $\operatorname{Kerf} \subseteq Q$,am $\in Q$. But Q is primary over S in M. Hence we have $s m \in Q$ or $s a^{n} \in\left(Q:_{R} M\right)$, for some positive integer n. But $\left(Q:_{R} M\right) \subseteq\left(f(Q):_{R} M^{\prime}\right)$. Therefore $f(s m)=s f(m)=s m^{\prime} \in f(Q)$ or $s a^{n} \in\left(f(Q):_{R} M^{\prime}\right)$. Consequently, $f(Q)$ is primary over S in M^{\prime}.

Being f an epimorphism in part (ii) is essential. Let us give an example.

Example 2.11. Let $R=\mathbb{Z}, M=\mathbb{Z}, S=\{-1,1\}$ and $f: \mathbb{Z} \longrightarrow \mathbb{Z}$ with $f(x)=6 x$. Then f is a \mathbb{Z}-homomorphism which is not onto. By Proposition 2.3, primary and primary submodules over S in \mathbb{Z} are the same. We know that 0 and $(p)^{n}$, where p is an arbitrary prime number and n a positive integer, are all primary submodules in \mathbb{Z} ([3]). Let $Q=3 \mathbb{Z}$. Then Q is primary and $f(Q)=18 \mathbb{Z}$ is not primary.

Corollary 2.12. Let S be a m.c.s. of the ring R and L a submodule of
the R-module M. Then
(i) If Q^{\prime} is primary over S in M with $\left(Q^{\prime}:_{R} L\right) \cap S=\emptyset$ then $L \cap Q^{\prime}$ is primary over S in L.
(ii) Suppose that Q is a submodule of M with $L \subseteq Q$. Then Q is primary over S in M if and only if $\frac{Q}{L}$ is so in $\frac{M}{L}$.
Proof. (i) Consider the injection $i: L \longrightarrow M$ defined by $i(m)=m$, for all $m \in L$. Then $i^{-1}\left(Q^{\prime}\right)=L \cap Q^{\prime}$. Now we claim that $\left(i^{-1}\left(Q^{\prime}\right):_{R}\right.$ $L) \cap S=\emptyset$. For it, let $s \in\left(i^{-1}\left(Q^{\prime}\right):_{R} L\right) \cap S$. Then $s L \subseteq i^{-1}\left(Q^{\prime}\right)=$ $L \cap Q^{\prime} \subseteq Q^{\prime}$ and thus $s \in\left(Q^{\prime}:_{R} L\right) \cap S$, a contradiction. The result follows by Proposition 2.10.
(ii) Let Q be primary over S in M and $\pi: M \longrightarrow \frac{M}{L}$ be the canonical epimorphism defined by $\pi(m)=m+L$, for all $m \in M$. Since $L=$ $\operatorname{Ker} \pi \subseteq Q$ so $\frac{Q}{L}$ is primary over S in $\frac{M}{L}$, by Proposition 2.10 part (ii).

Conversely, assume that $\frac{Q}{L}$ is primary over S in $\frac{M}{L}$. There exists $s \in S$ satisfying the definition. Let $a m \in Q$, for some $a \in R$ and $m \in M$. This implies that $a(m+L)=a m+L \in \frac{Q}{L}$. By assumption, $s(m+L)=s m+L \in \frac{Q}{L}$ or $s a^{n} \in\left(\frac{Q}{L}:_{R} \frac{M}{L}\right)=\left(Q:_{R} M\right)$, for some positive integer n. Therefore, $s m \in Q$ or $s a^{n} \in\left(Q:_{R} M\right)$. Consequently, Q is primary over S in M.
Proposition 2.13. Let S be a m.c.s. of the ring R and M an R-module. The following statements hold.
(i) If Q is primary over S in M then $\left(Q:_{R} M\right)$ is so in R.
(ii) If R is Noetherian, M a multiplication module over R and $\left(Q:_{R}\right.$ $M)$ is primary over S in R, then Q is so in M.
Proof. (i) Let Q be primary over S in M. There exists $s \in S$ satisfying the definition. Let $x y \in\left(Q:_{R} M\right)$, for some $x, y \in R$. Then $x y m \in Q$, for all $m \in M$. If $s x^{n} \in\left(Q:_{R} M\right)$, for some positive integer n, we are done. Otherwise, sym $\in Q$, for all $m \in M$ which means that $s y \in\left(Q:_{R}\right.$ $M)$. Therefore ($Q:_{R} M$) is primary over S in M.
(ii) Assume that M is a multiplication module over a Noetherian ring R and $\left(Q:_{R} M\right)$ is primary over S in R. There exists $s \in S$ satisfying in Corollary 2.9 part (ii). Let J be an ideal of R and N a submodule of M with $J N \subseteq Q$. Then $J\left(N:_{R} M\right) \subseteq\left(J N:_{R} M\right) \subseteq\left(Q:_{R} M\right)$. As $\left(Q:_{R} M\right)$ is primary over S in $R, s\left(N:_{R} M\right) \subseteq\left(Q:_{R} M\right)$ or $s J^{n} \subseteq\left(Q:_{R} M\right)$, for some positive integer n. Thus $s N=s\left(N:_{R}\right.$
$M) M \subseteq\left(Q:_{R} M\right) M=Q$ or $s J^{n} \subseteq\left(Q:_{R} M\right)$. By Lemma $2.8, Q$ is primary over S in M.

Let K and L be submodules of the multiplication R-module M. Recall that the product of K and L is defined as $K L=\left(K:_{R} M\right)\left(L:_{R}\right.$ M) M ([1]).

Corollary 2.14. Let M be a multiplication module over a Noetherian $\operatorname{ring} R$ and Q a submodule of M with $\left(Q:_{R} M\right) \cap S=\emptyset$, where S is a m.c.s. of R. The following are equivalent.
(i) Q is primary over S in M;
(ii) There exists $s \in S$ such that, for every two submodules K and L of M with $K L \subseteq Q, s L \subseteq Q$ or $s K^{n} \subseteq Q$, for some positive integer n.

Proof. (i) \Longrightarrow (ii) There exists $s \in S$ satisfying in Lemma 2.8 part (ii). Let K and L be submodules of M with $K L \subseteq Q$. Then $\left(K:_{R} M\right)\left(L:_{R}\right.$ $M) M \subseteq Q$ and so $s\left(L:_{R} M\right) M \subseteq Q$ or $s\left(K:_{R} M\right)^{n} \subseteq\left(Q:_{R} M\right)$, for some positive integer n. Hence $s L \subseteq Q$ or $s\left(K:_{R} M\right)^{n} \subseteq\left(Q:_{R} M\right)$. If $s L \subseteq Q$ we are done. Otherwise, $s\left(K:_{R} M\right)^{n} \subseteq\left(Q:_{R} M\right)$ and so $s\left(K:_{R} M\right)^{n} M \subseteq\left(Q:_{R} M\right) M=Q$. Therefore $s K^{n} \subseteq Q$.
(ii) \Longrightarrow (i) Let $a m \in Q$, for some $a \in R$ and $m \in M$. Put $L=R m$ and $J=R a$. Then $J L \subseteq Q$ and $J L M \subseteq Q M=Q$. Take $K=J M$. In this case, $K L \subseteq Q$. By hypothesis, $s L \subseteq Q$ or $s K^{n} \subseteq Q$, for some positive integer n. Then we have $s L \subseteq Q$ or $s\left(K:_{R} M\right)^{n} M \subseteq Q$. If $s L \subseteq Q$, since $L=R m$ so $s m \in Q$ and we are done. Now suppose that $s\left(K:_{R} M\right)^{n} M \subseteq Q$. Since $K=J M$ and $J=R a$, sa $a^{n} \in\left(Q:_{R} M\right)$. Therefore Q is primary over S.

Theorem 2.15. Let S be a m.c.s. of the Noetherian ring R and M a finitely generated multiplication R-module. For a submodule Q of M with $\left(Q:_{R} M\right) \cap S=\emptyset$, the following are equivalent.
(i) Q is primary over S;
(ii) $\left(Q:_{R} M\right)$ is primary over S in R;
(iii) $Q=I M$, for some primary ideal I over S in R with ann $(M) \subseteq$ I.

Proof. (i) \Longrightarrow (ii) It is clear by Proposition 2.13.
(ii) \Longrightarrow (iii) By taking $I=\left(Q:_{R} M\right)$, we get the result.
(iii) \Longrightarrow (i) Suppose that $Q=I M$, for some primary ideal I over S in R with $\operatorname{ann}(M) \subseteq I$. There exists $s \in S$ satisfying in Corollary 2.9 part (ii). Assume that $J N \subseteq Q$, for some ideal J of R and submodule N of M. Then $J\left(N:_{R} M\right) M \subseteq I M$. By [12], $J\left(N:_{R} M\right) \subseteq I+a n n M=I$. By hypothesis, $s\left(N:_{R} M\right) \subseteq I \subseteq\left(Q:_{R} M\right)$ or $s J^{n} \subseteq I \subseteq\left(Q:_{R} M\right)$, for some positive integer n. So $s N \subseteq Q$ or $s J^{n} \subseteq\left(Q:_{R} M\right)$. Hence Q is primary over S in M.

Lemma 2.16. Let S_{i} be a m.c.s of the ring R_{i}, for $i=1,2$. Put $S=S_{1} \times S_{2}$ as a m.c.s. of the ring $R=R_{1} \times R_{2}$. For each ideal $Q=Q_{1} \times Q_{2}$ of R, the following are equivalent.
(i) Q is primary over S in R;
(ii) Q_{1} is primary over S_{1} in R_{1} and $Q_{2} \cap S_{2} \neq \emptyset$ or Q_{2} is primary over S_{2} in R_{2} and $Q_{1} \cap S_{1} \neq \emptyset$.

Proof. (i) \Longrightarrow (ii) Suppose that Q is primary over S in R. There exists $s=\left(s_{1}, s_{2}\right) \in S$ satisfying the definition. Since $(1,0)(0,1)=(0,0) \in Q$, so $s(0,1)=\left(0, s_{2}\right) \in Q$ or $s(1,0)^{n}=\left(s_{1}, 0\right) \in Q$, for some positive integer n. Thus $s_{1} \in Q_{1} \cap S_{1}$ or $s_{2} \in Q_{2} \cap S_{2}$. Therefore $Q_{1} \cap S_{1} \neq \emptyset$ or $Q_{2} \cap S_{2} \neq \emptyset$. We may assume that $Q_{1} \cap S_{1} \neq \emptyset$ and show Q_{2} is primary over S_{2} in M_{2}. Since $Q \cap S=\emptyset$ so $Q_{2} \cap S_{2}=\emptyset$. Let $x y \in Q_{2}$, for some $x, y \in R_{2}$. Since $(0, x)(0, y) \in Q$ and Q is primary over S in R, either $s(0, y)=\left(0, s_{2} y\right) \in Q$ or $s(0, x)^{n}=\left(0, s_{2} x^{n}\right) \in Q$. This means that $s_{2} y \in Q_{2}$ or $s_{2} x^{n} \in Q_{2}$. Therefore Q_{2} is primary over S_{2} in R_{2}. In other case, one can easily show that Q_{1} is primary over S_{1} in R_{1}.
(ii) \Longrightarrow (i) Assume that $Q_{1} \cap S_{1} \neq \emptyset$ and Q_{2} is primary over S_{2} in R_{2}. We show that Q is primary over S. Since $Q_{1} \cap S_{1} \neq \emptyset$, there exists $s_{1} \in Q_{1} \cap S_{1}$. Moreover, we have $s_{2} \in S_{2}$ satisfying the definition of being primary over S_{2}. Let $(a, b)(c, d)=(a c, b d) \in Q$, for some $a, c \in R_{1}$ and $b, d \in R_{2}$. This implies that $b d \in Q_{2}$ and thus $s_{2} d \in Q_{2}$ or $s_{2} b^{n} \in Q_{2}$, for some positive integer n. Put $s=\left(s_{1}, s_{2}\right) \in S$. Then $s(c, d)=\left(s_{1} c, s_{2} d\right) \in Q$ or $s(a, b)^{n}=\left(s_{1} a^{n}, s_{2} b^{n}\right) \in Q$. Therefore Q is primary over S in R. In the other case, one can similarly prove that Q is primary over S in R.

Theorem 2.17. Let S_{i} be a m.c.s of the ring R_{i} and M_{i} an R_{i}-module, for $i=1,2$. Suppose that $Q=Q_{1} \times Q_{2}$ is a submodule of $M=M_{1} \times M_{2}$ as an $R=R_{1} \times R_{2}$-module. The following are equivalent.
(i) Q is primary over S in M;
(ii) Q_{1} is primary over S_{1} in M_{1} and $\left(Q_{2}:_{R_{2}} M_{2}\right) \cap S_{2} \neq \emptyset$ or $\left(Q_{1}:_{R_{1}} M_{1}\right) \cap S_{1} \neq \emptyset$ and Q_{2} is primary over S_{2} in M_{2}.

Proof. (i) \Longrightarrow (ii) Assume that Q is primary over S in M. We have $s=\left(s_{1}, s_{2}\right) \in S$ satisfying the definition. By Proposition 2.13, $\left(Q:_{R}\right.$ $M)=\left(Q_{1}:_{R_{1}} M_{1}\right) \times\left(Q_{2}:_{R_{2}} M_{2}\right)$ is primary over S in R, and so by Lemma 2.16, either $\left(Q_{1}:_{R_{1}} M_{1}\right) \cap S_{1} \neq \emptyset$ or $\left(Q_{2}:_{R_{2}} M_{2}\right) \cap S_{2} \neq \emptyset$. We may assume that $\left(Q_{1}:_{R_{1}} M_{1}\right) \cap S_{1} \neq \emptyset$. Let $a m \in Q_{2}$, for some $a \in R_{2}$, $m \in M_{2}$. Then $(1, a)(0, m)=(0, a m) \in Q$. Since Q is primary over S so $s(0, m)=\left(0, s_{2} m\right) \in Q$ or $s(1, a)^{n}=\left(s_{1}, s_{2} a^{n}\right) \in\left(Q:_{R} M\right)$, for some positive integer n. This implies that $s_{2} m \in Q_{2}$ or $s_{2} a^{n} \in\left(Q_{2}:_{R_{2}} M_{2}\right)$. Therefore Q_{2} is primary over S_{2}. In the other case, one can similarly show that Q_{1} is primary over S_{1} in M_{1}.
(ii) \Longrightarrow (i) Assume that ($Q_{1}:_{R_{1}} M_{1}$) $\cap S_{1} \neq \emptyset$ and Q_{2} is primary over S_{2} in M_{2}. Thus there exists $s_{1} \in\left(Q_{1}:_{R_{1}} M_{1}\right) \cap S_{1}$ and we have $s_{2} \in S_{2}$ satisfying the definition of primary over S_{2}. Now, let $\left(a_{1}, a_{2}\right)\left(m_{1}, m_{2}\right)=$ $\left(a_{1} m_{1}, a_{2} m_{2}\right) \in Q$, for some $a_{i} \in R_{i}$ and $m_{i} \in M_{i}, i=1,2$. Then $a_{2} m_{2} \in$ Q_{2}. Since Q_{2} is primary over S_{2}, so $s_{2} m_{2} \in Q_{2}$ or $s_{2} a_{2}^{n} \in\left(Q_{2}:_{R_{2}} M_{2}\right)$, for some positive integer n. Put $s=\left(s_{1}, s_{2}\right) \in S$. Then $s\left(m_{1}, m_{2}\right)=$ $\left(s_{1} m_{1}, s_{2} m_{2}\right) \in Q=Q_{1} \times Q_{2}$ or $s\left(a_{1}, a_{2}\right)^{n}=\left(s_{1} a_{1}^{n}, s_{2} a_{2}^{n}\right) \in\left(Q:_{R} M\right)$. Therefore Q is primary over S. Similarly, one can show that if Q_{1} is primary over S_{1} in M_{1} and $\left(Q_{2}:_{R_{2}} M_{2}\right) \cap S_{2} \neq \emptyset$, then Q is primary over S in M.

Theorem 2.18. Let S_{i} be a m.c.s of the ring R_{i} and M_{i} an R_{i}-module, for $i=1,2, \ldots, n$. Take $M=M_{1} \times M_{2} \times \cdots \times M_{n}$ as an $R=R_{1} \times R_{2} \times \cdot \cdot$ $\cdot \times R_{n}$-module and $S=S_{1} \times S_{2} \times \cdots \times S_{n}$ as a m.c.s. of R. Assume that $Q=Q_{1} \times Q_{2} \times \cdots \times Q_{n}$ is a submodule of M. The following statements are equivalent.
(i) Q is primary over S in M;
(ii) Q_{i} is primary over S_{i} in M_{i}, for some $i \in\{1,2, \ldots, n\}$ and $\left(Q_{j}:_{R_{j}}\right.$ $\left.M_{j}\right) \cap S_{j} \neq \emptyset$, for all $j \in\{1,2, \ldots, n\}-\{i\}$.

Proof. We prove it by induction on n. For $n=1$, the result is true. If $n=2$ then (i) \Longleftrightarrow (ii) follows from Theorem 2.17. Assume that (i) and (ii) are equivalent for every positive integer $k<n$. Now, we shall prove that (i) \Longleftrightarrow (ii) when $k=n$. Put $M^{\prime}=M_{1} \times M_{2} \times \cdots \times M_{n-1}$,
$R^{\prime}=R_{1} \times R_{2} \times \cdots \times R_{n-1}, Q^{\prime}=Q_{1} \times Q_{2} \times \cdots \times Q_{n-1}$ and $S^{\prime}=$ $S_{1} \times S_{2} \times \cdots \times S_{n-1}$. By Theorem $2.17, Q=Q^{\prime} \times Q_{n}$ is primary over S in M if and only if Q^{\prime} is primary over S^{\prime} in M^{\prime} and $\left(Q_{n}:_{R_{n}} M_{n}\right) \cap S_{n} \neq \emptyset$ or $\left(Q^{\prime}:_{R^{\prime}} M^{\prime}\right) \cap S^{\prime} \neq \emptyset$ and Q_{n} is primary over S_{n} in M_{n}. The rest follows from the induction hypothesis.

Lemma 2.19. Let S be a m.c.s of the $\operatorname{ring} R$ and Q a primary submosule over S of an R-module M. The following statements hold, for some $s \in S$.
(i) $\left(Q:_{M} s^{\prime}\right) \subseteq\left(Q:_{M} s\right)$, for all $s^{\prime} \in S$.
(ii) $\left(\left(Q:_{R} M\right):_{R} s^{\prime}\right) \subseteq\left(\left(Q:_{R} M\right):_{R} s\right)$, for all $s^{\prime} \in S$.

Proof. (i) Since Q is primary over S in R so there exists $s \in S$ satisfying the definition. By taking $s^{\prime} \in S$ and $m^{\prime} \in\left(Q:_{M} s^{\prime}\right), s^{\prime} m^{\prime} \in Q$. Thus $s m^{\prime} \in Q$ or $s s^{\prime n} \in\left(Q:_{R} M\right)$, for some positive integer n. Since $\left(Q:_{R}\right.$ $M) \cap S=\emptyset$ so $s m^{\prime} \in Q$, which means that $m^{\prime} \in\left(Q:_{M} s\right)$.
(ii) We know that $\left(Q:_{R} M\right)$ is primary over S in R, so it is enough to replace $\left(Q:_{R} M\right)$ instead of Q in part (i).

Proposition 2.20. Let S be a m.c.s. of the ring R, M a finitely generated R-module and Q a submodule of M satisfying $\left(Q:_{R} M\right) \cap S=\emptyset$. The following are equivalent.
(i) Q is primary over S in R;
(ii) $S^{-1} Q$ is a primary submodule of $S^{-1} M$ and there exists $s \in S$ satisfying $\left(Q:_{M} s^{\prime}\right) \subseteq\left(Q:_{M} s\right)$, for all $s^{\prime} \in S$.

Proof. (i) \Longrightarrow (ii) It is clear from Proposition 2.6 and Lemma 2.19.
(ii) \Longrightarrow (i) Let $a \in R, m \in M$ and $a m \in Q$. Then $\frac{a m}{1} \in S^{-1} Q$. Since $S^{-1} Q$ is a primary submodule of $S^{-1} M$ and M is finitely generated so $\frac{m}{1} \in S^{-1} Q$ or $\frac{a^{n}}{1} \in\left(S^{-1} Q:_{S^{-1} R} S^{-1} M\right)=S^{-1}\left(Q:_{R} M\right)$, for some positive integer n. Thus $u^{\prime} m \in Q$ or $u a^{n} \in\left(Q:_{R} M\right)$, for some $u, u^{\prime} \in S$. By assumption, there exists $s \in S$ so that $\left(Q:_{M} s^{\prime}\right) \subseteq\left(Q:_{M} s\right)$, for all $s^{\prime} \in S$. If $u a^{n} \in\left(Q:_{R} M\right)$ then $a^{n} M \subseteq\left(Q:_{M} u\right) \subseteq\left(Q:_{M} s\right)$ and thus $s a^{n} \in\left(Q:_{R} M\right)$. If $u^{\prime} m \in Q$ a similar argument shows that $s m \in Q$. Therefore Q is primary over S in M.

Theorem 2.21. Let S be a m.c.s. of the ring R, M an R-module and Q a submodule of M such that $\left(Q:_{R} M\right) \cap S=\emptyset$. Then Q is primary over S in M if and only if $\left(Q:_{M} s\right)$ is primary in M, for some $s \in S$.

Proof. Suppose that $\left(Q:_{M} s\right)$ is primary in M, for some $s \in S$. Let $a m \in Q$, for some $a \in R$ and $m \in M$. Since $a m \in Q \subseteq\left(Q:_{M} s\right)$ and $\left(Q:_{M} s\right)$ is primary, so $m \in\left(Q:_{M} s\right)$ or $a^{n} \in\left(\left(Q:_{M} s\right):_{R} M\right)$, for some positive integer n. This implies that $s m \in Q$ or $s a^{n} \in\left(Q:_{R} M\right)$.

Conversely, suppose that Q is primary over S in M. Then there exists $s \in S$ satisfying the definition. Now we prove that $\left(Q:_{M} s\right)$ is primary in M. For it, let $a \in R, m \in M$ and $a m \in\left(Q:_{M} s\right)$. Then ($\left.s a\right) m \in Q$. Since Q is primary over S so $s m \in Q$ or $s^{n+1} a^{n} \in\left(Q:_{R} M\right)$, for some positive integer n. If $s m \in Q$ we are done. Otherwise $s^{n+1} a^{n} \in\left(Q:_{R}\right.$ $M)$ and so, by Lemma 2.19, $a^{n} \in\left(\left(Q:_{R} M\right):_{R} s^{n+1}\right) \subseteq\left(\left(Q:_{R} M\right):_{R} s\right)$. Thus we can conclude that $a^{n} \in\left(\left(Q:_{M} s\right):_{R} M\right)$ and hence $\left(Q:_{M} s\right)$ is primary.
Theorem 2.22. Let M be a module over the ring R and Q a submodule of M such that $\left(Q:_{R} M\right) \subseteq J(R)$, where $J(R)$ is the Jacobson radical of R. The following statements are equivalent.
(i) Q is primary in M;
(ii) $\left(Q:_{R} M\right)$ is primary and Q is primary over $R-\boldsymbol{m}$, for all maximal ideals m of R.
Proof. (i) \Longrightarrow (ii) Suppose that Q is primary. Since $\left(Q:_{R} M\right) \subseteq J(R)$, so $\left(Q:_{R} M\right) \subseteq \mathbf{m}$, for all maximal ideals \mathbf{m}. Hence $\left(Q:_{R} M\right) \cap(R-\mathbf{m})=$ \emptyset, for all maximal ideals \mathbf{m}. The rest follows clearly.
(ii) $\Longrightarrow(\mathrm{i})$ Suppose $\left(Q:_{R} M\right.$) is primary and Q is primary over $R-\mathbf{m}$, for all maximal ideals \mathbf{m}. Let $a \in R, m \in M$ and $a m \in Q$ with $a^{n} \notin\left(Q:_{R} M\right)$, for each positive integer n. Let \mathbf{m} be a maximal ideal. Since Q is primary over $R-\mathbf{m}$ so there exists $s_{\mathbf{m}} \in R-\mathbf{m}$ such that $s_{\mathbf{m}} m \in Q$ or $s_{\mathbf{m}} a^{k} \in\left(Q:_{R} M\right)$, for some positive integer k. But $\left(Q:_{R} M\right)$ is primary, $s_{\mathbf{m}} \notin\left(Q:_{R} M\right)$ and $a^{n} \notin\left(Q:_{R} M\right)$, for each positive integer n. Thus $s_{\mathbf{m}} m \in Q$. Now define the set $\Omega=\left\{s_{\mathbf{m}} \mid \exists \mathbf{m} \in\right.$ $\left.\operatorname{Max}(R) \ni: s_{\mathbf{m}} \notin \mathbf{m}, s_{\mathbf{m}} m \in Q\right\}$. Now we show that (Ω), the ideal generated by Ω, is equal to R. For it, let \mathbf{m}^{\prime} be a maximal ideal such that $\Omega \subseteq \mathbf{m}^{\prime}$. The definition of Ω requires that there exists $s \mathbf{m}^{\prime} \in \Omega$ and $s_{\mathbf{m}^{\prime}} \notin \mathbf{m}^{\prime}$. Since $\Omega \subseteq \mathbf{m}^{\prime}$ so $s_{\mathbf{m}^{\prime}} \in \Omega \subseteq \mathbf{m}^{\prime}$, a contradiction. Thus $(\Omega)=R$ which implies that $1=r_{1} s_{\mathbf{m}_{1}}+r_{2} s_{\mathbf{m}_{2}}+\cdots+r_{n} s_{\mathbf{m}_{n}}$, for some $r_{i} \in R$ and $s_{\mathbf{m}_{i}} \notin \mathbf{m}_{i}$ with $s_{\mathbf{m}_{i}} m \in Q$ and $\mathbf{m}_{i} \in \operatorname{Max}(R)$, for each $i=1,2, \ldots, n$. Thus $m=r_{1} s_{\mathbf{m}_{1}} m+r_{2} s_{\mathbf{m}_{2}} m+\cdots+r_{n} s_{\mathbf{m}_{n}} m \in Q$ and so Q is primary.

Corollary 2.23. Suppose that M is a module over a ring R with unique maximal ideal \boldsymbol{m}. The following are equivalent.
(i) Q is primary in M.
(ii) $\left(Q:_{R} M\right)$ is primary in R and Q is primary over $R-\boldsymbol{m}$ in M.

Proof. It is clear by Theorem 2.22.
Suppose that M is a module over the ring R. Nagata introduced the idealization $R(+) M$ of M. Here $R(+) M=R \oplus M$ is a commutative ring whose addition is componentwise and multiplication is defined as $(a, m)\left(b, m^{\prime}\right)=\left(a b, a m^{\prime}+b m\right)$, for each $a, b \in R$ and $m, m^{\prime} \in M([7])$. The name comes from the fact that if N is a submodule of M, then $0(+) N$ is an ideal of $R(+) M$. If S is a m.c.s. of the ring R and N a submodule of an R-module M, then $S(+) N=\{(s, n) \mid s \in S, n \in N\}$ is a m.c.s. of $R(+) M([2])$.

Proposition 2.24. Let S be a m.c.s. of the ring R and Q an ideal of R such that $Q \cap S=\emptyset$. The following are equivalent.
(i) Q is a primary ideal over S in R;
(ii) $Q(+) M$ is a primary ideal over $S(+) 0$ in $R(+) M$;
(iii) $Q(+) M$ is a primary ideal over $S(+) M$ in $R(+) M$.

Proof. (i) \Longrightarrow (ii) Suppose Q is primary over S in R. There exists $s \in S$ satisfying the definition. Let $(x, m)\left(y, m^{\prime}\right)=\left(x y, x m^{\prime}+y m\right) \in Q(+) M$, for some $x, y \in R$ and $m, m^{\prime} \in M$. Then we have $x y \in Q$. Since Q is primary over S in R so $s y \in Q$ or $s x^{n} \in Q$, for some positive integer n. By putting $s^{\prime}=(s, 0) \in S(+) 0$, we have $s^{\prime}\left(y, m^{\prime}\right)=(s, 0)\left(y, m^{\prime}\right) \in$ $Q(+) M$ or $s^{\prime}(x, m)^{n}=(s, 0)\left(x^{n}, n x^{n-1} m\right)=\left(s x^{n}, n s x^{n-1} m\right) \in Q(+) M$. Therefore $Q(+) M$ is primary over $S(+) 0$ in $R(+) M$.
(ii) \Longrightarrow (iii) It is clear by Proposition 2.4.
(iii) \Longrightarrow (i) Suppose that $Q(+) M$ is primary over $S(+) M$ in $R(+) M$. There exists $s=\left(s_{1}, m_{1}\right) \in S(+) M$ satisfying the definition. Let $x y \in Q$, for some $x, y \in R$. Then $(x, 0)(y, 0)=(x y, 0) \in Q(+) M$. By hypothesis, $s(y, 0)=\left(s_{1}, m_{1}\right)(y, 0)=\left(s_{1} y, y m_{1}\right) \in Q(+) M$ or $s(x, 0)^{n}=$ $\left(s_{1}, m_{1}\right)\left(x^{n}, 0\right)=\left(s_{1} x^{n}, x^{n} m_{1}\right) \in Q(+) M$, for some positive integer n . Hence, $s_{1} y \in Q$ or $s_{1} x^{n} \in Q$ and so Q is primary over S.

Acknowledgements

The authors would like to thank the referees for their valuable comments and suggestions.

References

[1] R. Ameri, On the prime submodules of multiplication modules, International Journal of Mathematics and Mathematical Sciences, 27 (2003), $1715-1724$.
[2] D. D. Anderson and M. Winders, Idealization of a module, Journal of Commutative Algebra, 1(1) (2009), 3-56.
[3] M. Atiyah, Introduction to Commutative Algebra, Boca Raton, FL., USA: CRC Press, 2018.
[4] S. Ebrahimi Atani, F. Callalpm and U. Tekir, A short note on the primary submodules of multiplication modules, International Journal of Algebra, 1(8) (2007), $381-384$.
[5] Z. A. El-Bast and P. F. Smith, Multiplication modules, Communications in Algebra, 16(4) (1988), $755-779$.
[6] R. Gilmer, Multiplicative Ideal Theory, Queen's Papers in Pure and Applied Mathematics, No. 90. Kingston, Canada: Queens University, 1992.
[7] M. Nagata, Local Rings, New York, NY, USA: Interscience, 1962.
[8] E. S. Sevim, T. Arabaci, U. Tekir and S. Koc, A note on finite union of primary submodules, Eurasian bulletin of mathematics ebm, 2(1) (2019), $32-35$.
[9] E. S. Sevim, T. Arabaci, U. Tekir and S. Koc, On S-prime submodules, Turkish J. Math, 43 (2019), 1036 - 1046.
[10] R. Y. Sharp, Steps in Commutative Algebra, Cambridge, UK: Cambridge University Press, 2000.
[11] P. F. Smith, Primary modules over commutative rings, Glasgow Mathematical Journal, 43(1) (2001), 103 - 111.
[12] P. F. Smith, Some remarks on multiplication modules, Archiv der Mathematik, 50(3) (1988), 223 - 235.
[13] F. Wang and H. Kim, Fundations of Commutative Rings and Their Modules, Singapore: Springer, 2016.

Nahid Ilaghi

Ph.D Student of Mathematics
Department of Mathematics
Payame Noor University (PNU), P. O. Box 19395-4697
Tehran, Iran
E-mail: ilaghi-nahid@yahoo.com

Mansooreh Maani-Shirazi

Assistant Professor of Mathematics
Department of Mathematics
Payame Noor University (PNU), P. O. Box 19395-4697
Tehran, Iran
E-mail: maani@pnu.ac.ir

Shamsolmolouk Khoshdel

Assistant Professor of Mathematics
Department of Mathematics
Payame Noor University (PNU), P. O. Box 19395-4697
Tehran, Iran
E-mail: khoshdel@pnu.ac.ir

[^0]: Received: July 2019; Accepted: July 2020

 * Corresponding Author

