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Abstract. The aim of this study is to establish some new Caputo frac-
tional integral inequalities. By applying definition of (h−m)-convexity
and some straightforward inequalities an upper bound of the sum of left
and right sided Caputo fractional derivatives has been established. Fur-
thermore, a modulus inequality and a Hadamard type inequality have
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all particular functions deducible from (h − m)-convexity, see Remark
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1 Introduction

Nobody can deny the importance of fractional calculus in the field of
engineering, fluid mechanics, mathematical analysis etc. Many mathe-
maticians have been introduced many articles using fractional calculus
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(see [3, 4, 5, 6] and references therein).
The study on the fractional calculus continued with the contributions
from Fourier, Abel, Lacroix, Leibniz, Grunwald and Letnikov for detail
(see, [7, 8]). In the realm of the fractional differential equations, Caputo
fractional derivative and Riemann-Liouville ones are mostly used. They
generalize the ordinary integral and differential operators. However, the
fractional derivatives have fewer properties than the corresponding clas-
sical ones. On the other hand, besides the smooth requirement, Caputo
derivative does not coincide with the classical derivative [9]. For detail
of fractional derivatives readers are suggested [1, 2, 7].

Definition 1.1. [7] Let α > 0 and α /∈ {1, 2, 3, ...}, n = [α] + 1,
f ∈ ACn[a, b], the space of functions having nth derivatives absolutely
continuous. Then the left-sided and right-sided Caputo fractional deriva-
tives of order α are defined as follows:

(CDα
a+f)(x) =

1

Γ(n− α)

∫ x

a

f (n)(t)

(x− t)α−n+1
dt, x > a (1)

and

(CDα
b−f)(x) =

(−1)n

Γ(n− α)

∫ b

x

f (n)(t)

(t− x)α−n+1
dt, x < b. (2)

If α = n ∈ {1, 2, 3, ...} and usual derivative f (n)(x) of order n exists,
then Caputo fractional derivative (CDn

a+f)(x) coincides with f (n)(x)
whereas (CDn

b−f)(x) coincides with f (n)(x) with exactness to a constant
multiplier (−1)n. In particular we have

(CD0
a+f)(x) = (CD0

b−f)(x) = f(x) (3)

where n = 1 and α = 0.

The aim of this paper is to find fractional inequalities for the Ca-
puto fractional derivatives via (h−m)-convex functions. The (h−m)-
convexity is the generalization of convexity on right half of the real line
including zero (see, [10, 11] and references therein). Moreover, these
fractional inequalities appear as a compact formulation which contain
various induced results for all functions deducible from (h−m)-convex
functions, see Remark 1.3.
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Definition 1.2. Let J ⊆ R be an interval containing (0, 1) and let
h : J → R be a non-negative function. We say that f : [0, b] → R is a
(h−m)-convex function, if f is non-negative and for all x, y ∈ [0, b],m ∈
[0, 1] and α ∈ (0, 1), one has

f(αx+m(1− α)y) ≤ h(α)f(x) +mh(1− α)f(y). (4)

If reverse of the inequality holds, then f is called (h−m)-concave func-
tion.

For suitable choice of h and m, class of (h−m)-convex functions is
reduced to the different known classes of functions defined on [0, b].

Remark 1.3. (i) By setting m = 1 in (4), it reduces to the definition
of h-convex function.
(ii) By setting h(α) = α in (4), it reduces to the definition of m-convex
function.
(iii) By setting h(α) = α and m = 1 in (4), it reduces to the definition
of convex function.
(iv) By setting h(α) = 1 and m = 1 in (4), it reduces to the definition
of p-function.
(v) By setting h(α) = αs and m = 1 in (4), it reduces to the definition
of s-convex function of second sense.
(vi) By setting h(α) = 1

α and m = 1 in (4), it reduces to the definition
of Godunova-Levin function.
(vii) By setting h(α) = 1

αs and m = 1 in (4), it reduces to the definition
of s-Godunova-Levin function of second kind.

2 Main Results

Firstly, an upper bound of the sum of left and right Caputo fractional
derivatives (CFD) has been proved by applying inequalities in the re-
sult of the definition of (h−m)-convex function. The established upper
bound of (CFD) via (h − m)-convex function contains upper bounds
in particular for h-convex, m-convex and convex functions, also for s-
convex function of second sense, Godunova-Levin function and p-function.
Further a modulus inequality is established for (CFD) by using (h−m)-
convexity of f (n+1). At the end an inequality of Hadamard type is
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obtained. Moreover, presented results have been further studied in par-
ticular points in the domain.

Theorem 2.1. Let f : [0,∞)→ R be a function such that f ∈ ACn[a, b],
0 ≤ a < b. If f (n) is (h − m)-convex, then for α, β > 1 the following
inequality for the Caputo fractional derivatives holds:(

CDα−1
a+

f
)

(x) +
(
CDβ−1

b− f
)

(x) (5)

≤

(
(x− a)n−α+1f (n)(a)

Γ(n− α+ 1)
+

(b− x)n−β+1f (n)(b)

Γ(n− β + 1)

+mf (n)
( x
m

)((b− x)n−β+1

Γ(n− β + 1)
+

(x− a)n−α+1

Γ(n− α+ 1)

))∫ 1

0
h(z)dz.

Proof. Using definition of (h−m)-convex function for f (n), we have

f (n)(t) ≤ h
(
x− t
x− a

)
f (n)(a) +mh

(
t− a
x− a

)
f (n)

( x
m

)
, (6)

where we use the identity

t =
x− t
x− a

a+m
t− a
x− a

x

m
.

Also for α > 0 and t ∈ [a, x], we have

(x− t)n−α ≤ (x− a)n−α. (7)

Multiplying (6) and (7) and integrating over [a, x], we get∫ x

a
(x− t)n−αf (n)(t)dt ≤ f (n)(a)(x− a)n−α

∫ x

a
h

(
x− t
x− a

)
dt (8)

+mf (n)
( x
m

)
(x− a)n−α

∫ x

a
h

(
t− a
x− a

)
dt.

Now by using definition of Caputo fractional derivative on left hand side
of (8) and by change of variables on its right hand side, we get

(
CDα−1

a+
f
)

(x) ≤ (x− a)n−α+1

Γ(n− α+ 1)

(
f (n)(a) +mf (n)

( x
m

))∫ 1

0
h(z)dz.

(9)
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Similarly using (t − x)n−β ≤ (x − b)n−β, t ∈ [x, b] and definition of
(h−m)-convexity of f (n) for the identity

t =
t− x
b− x

b+m
b− t
b− x

x

m

one can have(
CDβ−1

b− f
)

(x) ≤ (b− x)n−β+1

Γ(n− β + 1)

(
f (n)(b) +mf (n)

( x
m

))∫ 1

0
h(z)dz.

(10)
Adding (9) and (10), we get the inequality in (5). �

Corollary 2.2. By taking α = β in (5), we get the following inequality
for Caputo fractional derivatives:(

CDα−1
a+

f
)

(x) +
(
CDα−1

b− f
)

(x)

≤ 1

Γ(n− α+ 1)

(
(x− a)n−α+1f (n)(a) + (b− x)n−α+1f (n)(b)

+mf (n)
( x
m

) (
(b− x)n−α+1 + (x− a)n−α+1

) ) ∫ 1

0
h(z)dz.

Remark 2.3. (i) If we put m = 1 in (5), then bound of Caputo frac-
tional derivative for h-convex function is established.
(ii) If we put h(α) = α in (5), then bound of Caputo fractional derivative
for m-convex function is established.
(iii) If we put h(α) = α and m = 1 in (5), then bound of Caputo frac-
tional derivative for convex function is established..
(iv) If we put h(α) = 1 and m = 1 in (5), then bound of Caputo frac-
tional derivative for p-function is established..
(v) If we put h(α) = αs and m = 1 in (5), then bound of Caputo frac-
tional derivative for s-convex function of second sense is established.
(vi) If we put h(α) = 1

α and m = 1 in (5), then bound of Caputo frac-
tional derivative for Godunova-Levin function is established.
(vii) If we put h(α) = 1

αs and m = 1 in (5), then bound of Caputo
fractional derivative for s-Godunova-Levin function of second kind is
established.
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Theorem 2.4. Let f : [0,∞)→ R be a function such that f ∈ ACn+1[a, b],
0 ≤ a < b. If |f (n+1)| is (h−m)-convex, then for α, β > 0 the following
inequality for the Caputo fractional derivatives holds:∣∣∣∣∣(CDα

a+f)(x) + (CDβ
b−f)(x)−

(
(x− a)n−αf (n)(a)

Γ(n− α+ 1)
+

(b− x)n−βf (n)(b)

Γ(n− β + 1)

)∣∣∣∣∣
(11)

≤

(
(x− a)n−α+1|f (n+1)(a)|

Γ(n− α+ 1)
+

(b− x)n−β+1|f (n+1)(b)|
Γ(n− β + 1)

+m
∣∣∣f (n+1)

( x
m

)∣∣∣ ((x− a)n−α+1

Γ(n− α+ 1)
+

(b− x)n−β+1

Γ(n− β + 1)

))∫ 1

0
h(z)dz.

Proof. Since |f (n+1)| is (h−m)-convex, therefore for t ∈ [a, x], we have

|f (n+1)(t)| ≤ h
(
x− t
x− a

)
|f (n+1)(a)|+mh

(
t− a
x− a

) ∣∣∣f (n+1)
( x
m

)∣∣∣ ,
from which we can write

−
(
h

(
x− t
x− a

)
|f (n+1)(a)|+mh

(
t− a
x− a

) ∣∣∣f (n+1)
( x
m

)∣∣∣) (12)

≤ f (n+1)(t) ≤ h
(
x− t
x− a

)
|f (n+1)(a)|+mh

(
t− a
x− a

) ∣∣∣f (n+1)
( x
m

)∣∣∣ .
We consider the second inequality of (12), that is

f (n+1)(t) ≤ h
(
x− t
x− a

)
|f (n+1)(a)|+mh

(
t− a
x− a

) ∣∣∣f (n+1)
( x
m

)∣∣∣ . (13)

Now for α > 0, we have the following inequality

(x− t)n−α ≤ (x− a)n−α, t ∈ [a, x]. (14)

Multiplying the last two inequalities and integrating with respect to t
over [a, x], we have∫ x

a
(x− t)n−αf (n+1)(t)dt (15)

≤ (x− a)n−α
[
|f (n+1)(a)|

∫ x

a
h

(
x− t
x− a

)
dt+m

∣∣∣f (n+1)
( x
m

)∣∣∣∫ x

a
h

(
t− a
x− a

)
dt

]
.
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The left hand side of (15) is calculated as follows∫ x

a
(x− t)n−αf (n+1)(t)dt=−f (n)(a)(x− a)n−α+Γ(n− α+ 1)(CDα

a+f)(x),

while using change of variables in the right hand side of (15), the result-
ing inequality takes the form as follows

(CDα
a+f)(x)− f (n)(a)(x− a)n−α

Γ(n− α+ 1)
(16)

≤ (x− a)n−α+1

Γ(n− α+ 1)

(
|f (n+1)(a)|+m

∣∣∣f (n+1)
( x
m

)∣∣∣) ∫ 1

0
h(z)dz.

If we consider from (12), the left hand side inequality and proceeding as
we did for the right side inequality, we get

f (n)(a)(x− a)n−α

Γ(n− α+ 1)
− (CDα

a+f)(x) (17)

≤ (x− a)n−α+1

Γ(n− α+ 1)

(
|f (n+1)(a)|+m

∣∣∣f (n+1)
( x
m

)∣∣∣) ∫ 1

0
h(z)dz.

From (16) and (17), we get∣∣∣∣∣(CDα
a+f)(x)− f (n)(a)(x− a)n−α

Γ(n− α+ 1)

∣∣∣∣∣ (18)

≤ (x− a)n−α+1

Γ(n− α+ 1)

(
|f (n+1)(a)|+m

∣∣∣f (n+1)
( x
m

)∣∣∣) ∫ 1

0
h(z)dz.

On the other hand for t ∈ [x, b] using (h−m)-convexity of |f (n+1)|, we
have

|f (n+1)(t)| ≤ h
(
t− x
b− x

)
|f (n+1)(b)|+mh

(
b− t
b− x

) ∣∣∣f (n+1)
( x
m

)∣∣∣ . (19)

Also for t ∈ [x, b] and β > 0, we have

(t− x)n−β ≤ (b− x)n−β. (20)
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By adopting the same treatment as we have done for (12) and (14), one
can obtain from (19) and (20), the following inequality∣∣∣∣∣(CDβ

b−f)(n)(x)− f (n)(b)(b− x)n−β

Γ(n− β + 1)

∣∣∣∣∣ (21)

≤ (b− x)n−β+1

Γ(n− β + 1)

(
|f (n+1)(b)|+m

∣∣∣f (n+1)
( x
m

)∣∣∣) ∫ 1

0
h(z)dz.

By combining the inequalities (18) and (21) via triangular inequality, we
get the required inequality. �

Corollary 2.5. By taking α = β in (11), then we get the following
inequality for Caputo fractional derivatives:∣∣(CDα

a+f)(x) + (CDα
b−)f(x)

− 1

Γ(n− α+ 1)

(
(x− a)n−αf (n)(a)+(b− x)n−αf (n)(b)

)∣∣∣∣
≤ 1

Γ(n− α+ 1)

(
(x− a)n−α+1|f (n+1)(a)|+ (b− x)α+1|f (n+1)(b)|

+m
∣∣∣f (n+1)

( x
m

)∣∣∣ ((x− a)n−α+1 + (b− x)n−α+1
) ) ∫ 1

0
h(z)dz.

Remark 2.6. Axioms (i)-(vii) of Remark 2.3 for Theorem 2.1 are valid
for Theorem 2.4.

First of all we prove the following lemma.

Lemma 2.7. Let f : [0,∞)→ R be a function such that f ∈ ACn[a, b],
0 ≤ a < b. If f (n) is (h−m)-concave and f (n)

(
a+b−x
m

)
= f (n)(x), then

the following inequality holds:

f (n)
(
a+ b

2

)
≥ (m+ 1)h

(
1

2

)
f (n)(x), x ∈ [a, b]. (22)

Proof. We have

a+ b

2
=

1

2

(
x− a
b− a

b+
b− x
b− a

a

)
+

1

2

(
x− a
b− a

a+
b− x
b− a

b

)
. (23)
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Since f (n) is (h−m)-concave, therefore we have

f (n)
(
a+ b

2

)
(24)

≥ h
(

1

2

)[
f (n)

(
x− a
b− a

b+
b− x
b− a

a

)
+mf (n)

(
x− a

m(b− a)
a+

b− x
m(b− a)

b

)]
= h

(
1

2

)(
f (n)(x) +mf (n)

(
a+ b− x

m

))
.

Now by using the condition f (n)
(
a+b−x
m

)
= f (n)(x), inequality in (22)

can be obtained. �

Theorem 2.8. Let f : [0,∞)→ R be a function such that f ∈ ACn[a, b],
0 ≤ a < b. If f (n) is (h −m)-concave, then for α, β > 0 the following
inequality for the Caputo fractional derivatives holds:(

mf (n)
(
b

m

)
+ f (n)(a)

)
(25)

≤
Γ(n− β)(CDβ

a+
f)(b)

(b− a)n−β
+

Γ(n− α)(CDα
b−f)(a)

(b− a)n−α

≤ 1

(m+ 1)h
(
1
2

) ( 1

n− β
+

1

n− α

)
f (n)

(
a+ b

2

)
.

Proof. For α, β > 0, n− α− 1 ≤ 0 and

(b− a)n−α−1 ≤ (x− a)n−α−1. (26)

Since f (n) is (h−m) concave, therefore we have

mh

(
x− a
b− a

)
f (n)

(
b

m

)
+ h

(
b− x
b− a

)
f (n)(a) ≤ f (n)(x). (27)

Multiplying (26) with (27) and then integrating over [a, b], we get

(b− a)n−α−1

[
mf (n)

(
b

m

)∫ b

a
h

(
x− a
b− a

)
dx

+f (n)(a)

∫ b

a
h

(
b− x
b− a

)
dx

]
≤
∫ b

a
(x− a)n−α−1f (n)(x)dx
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which implies

(−1)nΓ(n− α)(CDα
b−f)(a) (28)

≥ (b− a)n−α
(
mf (n)

(
b

m

)
+ f (n)(a)

)∫ 1

0
h(z)dz.

Also

(b− a)n−β−1 ≤ (b− x)n−β−1. (29)

Multiplying (29) with (27), and then integrating over [a, b], we get

(b− a)n−β−1

[
mf (n)

(
b

m

)∫ b

a
h

(
x− a
b− a

)
dx

+f (n)(a)

∫ b

a
h

(
b− x
b− a

)
dx

]
≤
∫ b

a
(b− x)n−β−1f (n)dx

which implies

(−1)nΓ(n− β)(CDβ
a+
f)(a) (30)

≥ (b− a)n−β
(
mf (n)

(
b

m

)
+ f (n)(a)

)∫ 1

0
h(z)dz.

From (28) and (30), we get

Γ(n− β)(CDβ
a+
f)(b)

(b− a)n−β
+

Γ(n− α)(CDα
b−f)(a)

(b− a)n−α
(31)

≥
(
mf (n)

(
b

m

)
+ f (n)(a)

)∫ 1

0
h(z)dz.

Now from Lemma 1, we have

(m+ 1)h

(
1

2

)
f (n)(x) ≤ f (n)

(
a+ b

2

)
. (32)

Multiplying (32) by (x− a)n−α−1 and integrating over [a, b], we have∫ b

a
(x− a)n−α−1f (n)(x)dx ≤

f (n)
(
a+b
2

)
(m+ 1)h

(
1
2

) ∫ b

a
(x− a)n−α−1dx,
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Γ(n− α)(CDα
b−f)(a) ≤ (b− a)n−α

(n− α)(m+ 1)h
(
1
2

)f (n)(a+ b

2

)
. (33)

Multiplying (32) by (b− x)n−β−1 and integrating over [a, b], we have∫ b

a
(b− x)n−β−1f (n)(x)dx ≤

f (n)
(
a+b
2

)
(m+ 1)h

(
1
2

) ∫ b

a
(b− x)n−β−1dx,

Γ(n− β)(CDβ
a+
f)(x) ≤ (b− a)n−β

(n− β)(m+ 1)h
(
1
2

)f (n)(a+ b

2

)
. (34)

Adding (33) and (34), we obtain

Γ(n− β)(CDβ
a+
f)(b)

(b− a)n−β
+

Γ(n− α)(CDα
b−f)(a)

(b− a)n−α
(35)

≤ 1

(m+ 1)h
(
1
2

) ( 1

n− β
+

1

n− α

)
f (n)

(
a+ b

2

)
.

From (31) and (35), we get required inequality. �

Corollary 2.9. By taking α = β in (25), then we get the following
inequality for Caputo fractional derivatives:(

mf (n)
(
b

m

)
+ f (n)(a)

)
≤ Γ(n− α)

(b− a)n−α

(
(CDβ

a+
f)(b) + (CDα

b−f)(a)
)

≤ 2

(m+ 1)(n− α)h
(
1
2

)f (n)(a+ b

2

)
.

Remark 2.10. Axioms (i)-(vii) of Remark 2.3 for Theorem 2.1 are valid
for Theorem 2.8.

Next we give the following results as an application of previous es-
tablished results. First we apply Theorem 2.1, and get the following
result.

Theorem 2.11. Under the assumptions of Theorem 2.1, we have(
CDα−1

a+
f
)

(b) +
(
CDβ−1

b− f
)

(a) (36)

≤

(
(b− a)n−α+1f (n)(a)

Γ(n− α+ 1)
+

(b− a)n−β+1f (n)(b)

Γ(n− β + 1)

+m

(
f (n)

( a
m

) (b− a)n−β+1

Γ(n− β + 1)
+f (n)

(
b

m

)
(b− a)n−α+1

Γ(n− α+ 1)

))∫ 1

0
h(z)dz.
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Proof. If we take x = a in (5), then we get following inequality

(
CDβ−1

b− f
)

(a) ≤ (b− a)n−β+1

Γ(n− β + 1)

(
f (n)(b) +mf (n)

( a
m

))∫ 1

0
h(z)dz.

(37)
If we take x = b in (5), then we get following inequality

(
CDα−1

a+
f
)

(b) ≤ (b− a)n−α+1

Γ(n− α+ 1)

(
f (n)(a) +mf (n)

(
b

m

))∫ 1

0
h(z)dz.

(38)
Adding (37) and (38), we get required inequality in (36). �

Corollary 2.12. By taking α = β in (36), then we get the following
inequality for Caputo fractional derivatives:(

CDα−1
a+

f
)

(b) +
(
CDα−1

b− f
)

(a)

≤ (b− a)n−α+1

Γ(n− α+ 1)

(
f (n)(a) + f (n)(b) +m

(
f (n)

( a
m

)
+ f (n)

(
b

m

)))
×
∫ 1

0
h(z)dz.

Next we apply Theorem 2.4, and get the following result.

Theorem 2.13. Under the assumptions of Theorem 2.4, we have∣∣∣∣∣(CDα
a+f)(b)+(CDβ

b−f)(a)−

(
(b− a)n−αf (n)(a)

Γ(n− α+ 1)
+

(b− a)n−βf (n)(b)

Γ(n− β + 1)

)∣∣∣∣∣
(39)

≤

(
(b− a)n−α+1|f (n+1)(a)|

Γ(n− α+ 1)
+

(b− a)n−β+1|f (n+1)(b)|
Γ(n− β + 1)

+m

(
(b− a)n−α+1

Γ(n− α+ 1)

∣∣∣∣f (n+1)

(
b

m

)∣∣∣∣+
(b− a)n−β+1

Γ(n− β + 1)

∣∣∣f (n+1)
( a
m

)∣∣∣))
×
∫ 1

0
h(z)dz.
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Proof. If we take x = a in (11), then we get following inequality∣∣∣∣∣(CDβ
b−f)(n)(a)− f (n)(b)(b− a)n−β

Γ(n− β + 1)

∣∣∣∣∣ (40)

≤ (b− a)n−β+1

Γ(n− β + 1)

(
|f (n+1)(b)|+m

∣∣∣f (n+1)
( a
m

)∣∣∣) ∫ 1

0
h(z)dz.

If we take x = b in (11), then we get following inequality∣∣∣∣∣(CDα
a+f)(b)− f (n)(a)(b− a)n−α

Γ(n− α+ 1)

∣∣∣∣∣ (41)

≤ (b− a)n−α+1

Γ(n− α+ 1)

(
|f (n+1)(a)|+m

∣∣∣∣f (n+1)

(
b

m

)∣∣∣∣) ∫ 1

0
h(z)dz.

Adding (40) and (41), we get required inequality in (39). �

Corollary 2.14. By taking α = β in (39), then we get the following
inequality for Caputo fractional derivatives:∣∣∣∣(CDα

a+f)(b) + (CDβ
b−f)(a)− (b− a)n−α

Γ(n− α+ 1)

(
f (n)(a) + f (n)(b)

)∣∣∣∣
≤ (b− a)n−α+1

Γ(n− α+ 1)

(
|f (n+1)(a)|+ |f (n+1)(b)|

+m

(∣∣∣∣f (n+1)

(
b

m

)∣∣∣∣+
∣∣∣f (n+1)

( a
m

)∣∣∣))∫ 1

0
h(z)dz.

By applying Theorem 2.8, similar results can be established, there-
fore we leave it for reader.

Concluding remarks

This paper have been prepared to address Caputo fractional integral in-
equalities via functions whose nth derivatives are (h−m)-convex. It is
remarkable to mention that the presented results contain Caputo frac-
tional inequalities for h-convex functions, m-convex functions, convex
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functions, Godunova-Levin functions, p-functions and s-convex func-
tions in second sense on the domain of nonnegative real numbers. Fur-
ther in application point of the results of this paper may be useful in
studying uniqueness of solutions fractional differential equations, ana-
lyzing fractional models of different dynamic systems, complex systems
etc. In future we will try to study existence of solutions of fractional
systems under constraints of such fractional derivative inequalities.
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