Journal of Mathematical Extension Vol. 7, No. 1, (2013), 1-7

Note on the Covariance Coset of the Moore-Penrose Inverses in C*-Algebras

M. H. Alizadeh

Islamic Azad University-Noor Branch

Abstract. We will introduce and study several algebraic properties of the covariance cosets in C^* -algebras. Indeed, we will characterize the covariance coset in terms of commutators. Also, we will show that for an invertible element b, the covariance coset of b^{-1} coincides with the covariance coset of b^* . Moreover, if b is normal, then the covariance coset of b coincides with the covariance coset of b^* . In addition, we will prove that the covariance coset is a cone.

AMS Subject Classification: 47A05; 46L05; 15A09 **Keywords and Phrases:** Moore-Penrose inverse; covariance set

1. Introduction

The concept of a generalized inverse seems to have been first mentioned in 1903 by Fredholm and the class of all pseudoinverses was characterized in 1912 by Hurwitz [2]. Generalized inverses of differential and integral operators thus antedated the generalized inverses of matrices, whose existence was first introduced and studied by Moore [13, 14] during the years 1910-1920. This notion was rediscovered by Penrose [9] in 1955, and is nowadays called the Moore-Penrose inverse. In recent years, generalized inverses and their properties have received a lot of attention (see for example [2, 3, 4, 10], and the references therein). The notion of generalized inverses in C^* -algebra, was introduced in the seminal paper by Harte and Mbekhta [4]. Harte and Mbekhta have shown that many important properties of Moore-Penrose inverses in C^* -algebra. A part of

Received: June 2012; Accepted: December 2012

M. H. ALIZADEH

literature has been dedicated to weighted Moore-Penrose inverse, spectral theory, closed range operators, linear preserver problems and numerical computations in the area of optimization, statistics and ill-posed problem, etc. (see [2, 5, 10, 14]). All these reasons have convinced many mathematicians, to start research in this rich and important branch of mathematics.

Throughout this paper \mathcal{A} be a unital C^* -algebra. An element $a \in \mathcal{A}$ is called regular if it has a generalized inverse (in the sense of von Neumann) in \mathcal{A} , i.e., there exists $b \in \mathcal{A}$ such that

$$aba = a.$$

An element $a \in \mathcal{A}$ is Moore-Penrose invertible if there exists $b \in \mathcal{A}$ such that

aba = a, bab = b, $(ab)^* = ab$ and $(ba)^* = ba$.

It is well known that each regular element in a C^* -algebra, has the Moore-Penrose inverse (denoted by MP– inverse from now on.). Generally MP– inverse is uniquely determined in \mathcal{A} if it exists. We will denote the MP–inverse of a by a^{\dagger} .

In the following, we will denote by \mathcal{A}^{-1} and \mathcal{A}^{\dagger} the set of all invertible and MP– invertible elements of \mathcal{A} , respectively. An element a in \mathcal{A} is called idempotent if $a^2 = a$. A projection $p \in \mathcal{A}$ satisfies $p = p^* = p^2$. It should be noticed that if $x \in \mathcal{A}^{\dagger}$, then xx^{\dagger} and $x^{\dagger}x$ are projections. Moreover,

$$(xx^{\dagger})^{\dagger} = xx^{\dagger}$$
 and $(x^{\dagger}x)^{\dagger} = x^{\dagger}x$.

The commutator of a pair of elements x and y in \mathcal{A} is defined by

$$[x,y] = xy - yx.$$

Obviously [x, y] = 0 if and only if x and y commute. Assume that a is an element in \mathcal{A}^{-1} . Its inverse a^{-1} is *covariant* with respect to \mathcal{A}^{-1} , i.e., for all $b \in \mathcal{A}^{-1}$ we have

$$(bab^{-1})^{-1} = ba^{-1}b^{-1}.$$

In general, the elements of \mathcal{A}^{\dagger} are not covariant under \mathcal{A}^{-1} (see [1]). For a given element $a \in \mathcal{A}^{\dagger}$ with MP–inverse a^{\dagger} , we will denote the *covariance set* by $\mathcal{C}(a)$ and define

$$\mathcal{C}(a) = \{ b \in \mathcal{A}^{-1} : (bab^{-1})^{\dagger} = ba^{\dagger}b^{-1} \}.$$
 (1)

Covariance set was studied by [1], [6], [11] and [13].

In this note we introduce the notion of *covariance coset* of the Moore-Penrose inverses in C^* -algebras. In fact we define this set by reversing the roles of a and b in $\mathcal{C}(a)$ and denote it by $\mathcal{B}(b)$. i.e.,

$$\mathcal{B}(b) = \left\{ a \in \mathcal{A}^{\dagger} : (bab^{-1})^{\dagger} = ba^{\dagger}b^{-1} \right\}.$$
 (2)

The notion of covariance coset was introduced by Robinson in [12] for matrices. In this paper we will characterize the covariance coset in terms of commutators. Also, we will show that for an invertible element $b \in \mathcal{A}$ we have $\mathcal{B}(b^{-1}) = \mathcal{B}(b^*)$. Moreover, if b is normal, then $\mathcal{B}(b) = \mathcal{B}(b^{-1}) = \mathcal{B}(b^*)$. In Proposition 4 and related corollaries we will describe the main properties of the covariance coset in C^* algebras. We conclude the results by showing that for any non-zero scalar λ , $\mathcal{B}(b) = \mathcal{B}(\lambda b)$.

2. Main Results

In the following proposition we characterize $\mathcal{B}(b)$ in terms of commutators.

Proposition 2.1. Assume $b \in A^{-1}$. Then the following statements are equivalent:

(i) $a \in \mathcal{B}(b)$; (ii) $\left[a^{\dagger}a, b^{*}b\right] = 0$ and $\left[aa^{\dagger}, b^{*}b\right] = 0$.

Proof. (i) \Longrightarrow (ii): Suppose $a \in \mathcal{B}(b)$. Therefore $ba^{\dagger}b^{-1}$ is the MPinverse of bab^{-1} . Thus, $(ba^{\dagger}ab^{-1})^* = ba^{\dagger}ab^{-1}$. Therefore, $(b^*)^{-1}a^{\dagger}ab^*b = ba^{\dagger}a$. From here one can conclude that $[a^{\dagger}a, b^*b] = 0$. In a similar manner from $(baa^{\dagger}b^{-1})^* = ba^{\dagger}ab^{-1}$ we get that $[aa^{\dagger}, b^*b] = 0$.

M. H. ALIZADEH

(ii) \Longrightarrow (i): Since a^{\dagger} is MP-inverse of a, it suffices to show that $(ba^{\dagger}ab^{-1})^* = ba^{\dagger}ab^{-1}$ and $(baa^{\dagger}b^{-1})^* = baa^{\dagger}b^{-1}$. By the assumptions $[a^{\dagger}a, b^*b] = 0$. From this we obtain $(b^*)^{-1}a^{\dagger}ab^*b = ba^{\dagger}a$. Thus, $(ba^{\dagger}ab^{-1})^* = ba^{\dagger}ab^{-1}$. In a similar manner from $[aa^{\dagger}, b^*b] = 0$ we get $(baa^{\dagger}b^{-1})^* = baa^{\dagger}b^{-1}$. \Box Note that if $a \in \mathcal{A}^{\dagger}$ with MP-inverse a^{\dagger} and $b \in \mathcal{A}^{-1}$, then from the above proposition and Lemma 2.1 in [1], we conclude that

 $b \in \mathcal{C}(a)$ if and only if $a \in \mathcal{B}(b)$.

Also, we remark that $\mathcal{C}(a) \subset \mathcal{A}^{-1} \subset \mathcal{B}(b) \subset \mathcal{A}^{\dagger}$ for all $a \in \mathcal{A}^{\dagger}$ and for each $b \in \mathcal{A}^{-1}$.

Proposition 2.2. Assume that $b \in \mathcal{A}^{-1}$. Then $\mathcal{B}(b^*) = \mathcal{B}(b^{-1})$.

Proof. By Proposition 2.1.

$$a \in \mathcal{B}(b^*)$$
 if and only if $\left[a^{\dagger}a, bb^*\right] = 0$ and $\left[aa^{\dagger}, bb^*\right] = 0$.

This is equivalent to

$$a^{\dagger}abb^* = bb^*a^{\dagger}a \quad \text{and} \quad aa^{\dagger}bb^* = bb^*aa^{\dagger}.$$
 (3)

Multiply (3) from left and right by $(bb^*)^{-1}$, we get

$$[a^{\dagger}a, (b^{-1})^* b^{-1}] = 0 \quad \text{and} \quad [aa^{\dagger}, (b^{-1})^* b^{-1}] = 0.$$
(4)

Again Proposition 1.1, shows that (4) holds if and only if $a \in \mathcal{B}(b^{-1})$. \Box

Proposition 2.3. Assume that $b \in \mathcal{A}^{-1}$ and b is normal. Then $\mathcal{B}(b) = \mathcal{B}(b^{-1})$.

Proof. Since b is normal, the equality is an immediate consequence of Proposition 2.2. \Box

We recall that a set $K \subset \mathcal{A}$ is a cone if $x \in K$ implies $\lambda x \in K$ for each $\lambda \ge 0$. Also, an element $a \in \mathcal{A}$ is called simply polar [4] if it has a commuting generalized inverse, that is, there exists a generalized inverse c of a, such that [a, c] = 0. In the following proposition we collect some main properties of the covariance coset.

Proposition 2.4. Assume that $b \in A^{-1}$. Then, the following statements are equivalent:

(i) $a \in \mathcal{B}(b)$; (ii) $a^{\dagger} \in \mathcal{B}(b)$; (iii) $a^* \in \mathcal{B}(b)$; (iv) $aa^{\dagger} \in \mathcal{B}(b)$ and $a^{\dagger}a \in \mathcal{B}(b)$; (v) $\lambda a \in \mathcal{B}(b)$ for any non-zero scalar λ .

Proof. First we show that (i) and (ii) are equivalent: By Proposition 1.1, $a \in \mathcal{B}(b)$ if and only if

$$\left[a^{\dagger}a, b^*b\right] = 0 \quad and \quad \left[aa^{\dagger}, b^*b\right] = 0. \tag{5}$$

Since $(a^{\dagger})^{\dagger} = a$. Thus (5) is equivalent to

$$\left[a^{\dagger}\left(a^{\dagger}\right)^{\dagger}, b^{*}b\right] = 0 \quad and \quad \left[\left(a^{\dagger}\right)^{\dagger}a^{\dagger}, b^{*}b\right] = 0.$$
 (6)

Again, Proposition 1.1, shows that (6) holds if and only if $a^{\dagger} \in \mathcal{B}(b)$.

(i) \iff (iii): In a similar manner, since $a^{\dagger}a$ and aa^{\dagger} are normal elements we infer that $a^{\dagger}a = a^* (a^*)^{\dagger}$ and $aa^{\dagger} = (a^*)^{\dagger} a^*$ by applying Proposition 1.1, we get $a \in \mathcal{B}(b) \iff a^* \in \mathcal{B}(b)$.

(i) \implies (iv): $a \in \mathcal{B}(b)$ if and only if (5) holds. Since $aa^{\dagger} = aa^{\dagger}aa^{\dagger}$ and $(aa^{\dagger})^{\dagger} = aa^{\dagger}$. Thus (5) is equivalent to

$$[aa^{\dagger}(aa^{\dagger})^{\dagger}, b^*b] = 0 \text{ and } [(aa^{\dagger})^{\dagger}aa^{\dagger}, b^*b] = 0.$$
 (7)

This implies that $aa^{\dagger} \in \mathcal{B}(b)$. Similarly we get

$$[a^{\dagger}a(a^{\dagger}a)^{\dagger}, b^{*}b] = 0 \text{ and } [(a^{\dagger}a)^{\dagger}a^{\dagger}a, b^{*}b] = 0.$$
(8)

Thus, $a^{\dagger}a \in \mathcal{B}(b)$.

For the proof of $(iv) \implies (i)$; It is easy to verify that (iv) satisfies if and only if (5) and (8) hold. These together imply (5), that is, (i) holds.

(i) \iff (v): Since $\lambda \neq 0$, $(\lambda a)^{\dagger} = \frac{1}{\lambda}a^{\dagger} = (a\lambda)^{\dagger}$. Now applying the Proposition 1.1, we obtain the result. \Box

Corollary 2.5. If $b \in A^{-1}$, then $\mathcal{B}(b)$ is a cone. It is well known that every normal element is simply polar. Hence

Corollary 2.6. If a is normal, then

 $a \in \mathcal{B}(b) \iff aa^{\dagger} \in \mathcal{B}(b) \iff a^{\dagger}a \in \mathcal{B}(b).$

Proposition 2.7. Assume that $b \in \mathcal{A}^{-1}$ and $\lambda \neq 0$ is any scalar. Then $\mathcal{B}(b) = \mathcal{B}(\lambda b)$.

Proof. By Proposition 1.1, $a \in \mathcal{B}(b)$ if and only if (5) satisfies which is equivalent to

$$\left[a^{\dagger}a, (\lambda b)^{*}(\lambda b)\right] = 0 \quad and \quad \left[aa^{\dagger}, (\lambda b)^{*}(\lambda b)\right] = 0.$$

This holds if and only if $a \in \mathcal{B}(\lambda b)$. \Box

References

- M. H. Alizadeh, On the covariance of generalized inverse in C^{*}-algebra, J. Numer. Anal. Indust. Appl. Math., 5 (2011) 135-139.
- [2] A. Ben-Israel and T. N. E. Greville, Generalized Inverses: Theory and Applications, 2nd Edn. Springer-Verlag, New York, 2003.
- [3] J. Benítez and V. Rakočević, Invertibility of the commutator of an element in a C*-algebra and its Moore-Penrose inverse, Studia Math., 200 (2010), 163-174.
- [4] R. Harte and M. Mbekhta, On generalized inverses in C^{*}-algebras, Studia Math., 103 (1992), 71-77.
- [5] Z. Khodadadi and B. Tarami, Robust empirical bayes estimation of the elliptically countoured covariance matrix, Journal of Mathematical Extension, 5 (2011), 31-46.

- [6] A. R. Meenakshi and V. Chinadurai, Some remarks on the covariance of the Moore-Penrose inverse, Houtson J. Math., 18 (1992), 167-174.
- [7] E. H. Moore, On the reciprocal of the general algebraic matrix, Bull. Amer. Math. Soc., 26 (1920), 394-395.
- [8] E. H. Moore and R. W. Barnard, General Analysis, Memories of the American Philosophical Society, I. American Philosophical Society, Philadelphia, Pennsylvania, Part 1, (1935), 197-209.
- [9] R. Penrose, A generalized inverse for matrices. Proc. Cambridge Philos. Soc., 51 (1955), 406-413.
- [10] C. R. Rao and S. K. Mitra, Generalized inverse of matrices and its applications, Wiley and Sons, New York, 1971.
- [11] D. W. Robinson, On the covariance of the Moore-Penrose inverse, Linear Algebra Appl., 61 (1984), 91-99.
- [12] D. W. Robinson, Covariance of the Moore-Penrose inverses with respect to an invertible matrix, Linear Algebra Appl., 71 (1985), 275-281.
- [13] H. Schwerdtfeger, On the covariance of Moore-Penrose inverse, Linear Algebra Appl., 52/53 (1983), 629-643.
- [14] Q. Xu, Y. Wei, and Y. Gu, Sharp norm-estimations for Moore-Penrose inverses of stable perturbations of Hilbert C*-module operators, SIAM J. Numer. Anal., 47 (2010), 4735-4758.

Mohammad Hossein Alizadeh

Department of Mathematics Asisstant Professor of Mathematics Islamic Azad University, Noor Branch Noor, Iran E-mail: alizadeh@aegean.gr