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Abstract. In this paper, we introduce a new trigonometric family
of continuous distributions called the sine Kumaraswamy-G family of
distributions. It can be presented as a natural extension of the well-
established sine-G family of distributions, with new perspectives in
terms of applicability. We investigate the main mathematical properties
of the sine Kumaraswamy-G family of distributions, including asymp-
totes, quantile function, linear representations of the cumulative distri-
bution and probability density functions, moments, skewness, kurtosis,
incomplete moments, probability weighted moments and order statis-
tics. Then, we focus our attention on a special member of this family
called the sine Kumaraswamy exponential distribution. The statisti-
cal inference for the related parametric model is explored by using the
maximum likelihood method. Among others, asymptotic confidence in-
tervals and likelihood ratio tests for the parameters are discussed. A
simulation study is performed under varying sample sizes to assess the
performance of the model. Finally, applications to two practical data
sets are presented to illustrate its potentiality and robustness.
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1 Introduction

In recent years, much attention has been paid to the construction of
trigonometric families of distributions. The advantages of these families
are to keep a balance between a relative simplicity in their definitions,
allowing a perfect comprehension of their mathematical properties, and
a great applicability for modelling various kinds of practical data sets.
These two points follow from an appropriate use of flexible trigonomet-
ric functions. To our knowledge, the pioneer trigonometric family of
distributions is the sine-G family of distributions introduced by [12] and
[20]. A brief description of this family is presented below. Let G(x) be
the cumulative distribution function (cdf) of an univariate continuous
distribution and g(x) be the corresponding probability density function
(pdf). Then, the sine-G family of distributions is characterized by the
cdf given by

F (x) = sin
(π

2
G(x)

)
, x ∈ R. (1)

The related pdf is given by

f(x) =
π

2
g(x) cos

(π
2
G(x)

)
, x ∈ R.

Thus, simple functions are involved and it is proved in [12], [20] and
[23] that the flexibility of G(x) can be significantly enriched by the sine
transformation. The related parametric models take advantage of these
properties for a nice fitting of various kinds of data sets. By exploit-
ing the flexible nature of various trigonometric transformations, other
trigonometric families of distributions have been developed. See, for
instance, the cos-G family of distributions by [20] and [24], the tan-G
family of distributions by [20], [21] and [2], the sec-G family of distri-
butions by [20] and [22], the new sine-G family of distributions by [14],
the T-X-Tan-G by [1], the CS-G family of distributions by [3] and the
TransSC-G family of distributions by [10].

In this paper, we propose a new trigonometric family of continuous
distributions, called the sine Kumaraswamy-G family of distributions.
It can be viewed as a ”two power shape parameters generalization” of
the former sine-G family of distributions. We describe it as follows. Let
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a > 0, b > 0, G(x) be the cdf of an univariate continuous distribution
and g(x) be the corresponding pdf. Then, the sine Kumaraswamy-G
family of distributions is characterized by the cdf given by

F (x) = cos
(π

2
[1−G(x)a]b

)
, x ∈ R. (2)

The corresponding pdf is obtained as

f(x) =
π

2
abg(x)G(x)a−1[1−G(x)a]b−1 sin

(π
2

[1−G(x)a]b
)
, x ∈ R.

(3)

As indicated by its name, by using a trigonometric formula, we can show
that F (x) is obtained by the composition of the sine-G cdf given as (1)
and the Kumaraswamy-G cdf specified by H(x) = 1 − [1 − G(x)a]b,
x ∈ R. Further details and applications on the Kumaraswamy-G family
of distributions can be found in [4], [16], [7] and [19]. The roles of a
and b are to add more flexibility to the former cdf G(x), allowing the
construction of models which take into account precise characteristics
of various data sets. One can notice that, for b = 1, F (x) becomes
F (x) = sin ((π/2)G(x)a), which is the cdf of the sine exp-G family of
distributions (new in the literature to the best of our knowledge, but
very natural to consider) and for a = b = 1, we rediscover the cdf of
the sine-G family of distributions. The idea of combining trigonometric
and Kumaraswamy-G families of distributions finds trace in [20, Chap-
ter 6], but for the sec-G family of distributions (not the sine-G one) and
with the specific Kumaraswamy-Weibull distribution as baseline (not
the general Kumaraswamy-G family of distributions, i.e., for any G(x)).
Thus, the sine Kumaraswamy-G family of distributions remains new in
the literature and deserves a complete study, which is the aim of this
paper. After providing a comprehensive treatment of its mathematical
properties, we focus our attention on a special member of this family,
defined with the exponential distribution as baseline. It is called the
sine Kumaraswamy exponential distribution. Then, we consider it as
a parametric statistical model, with the estimation of the unknown pa-
rameters via the maximum likelihood method. We take advantage of the
existing convergence properties of this method to present a solid model
for data analysis. This is illustrated by the means of two practical sets.
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In particular, we show that the proposed model is better, in some sense,
to well-recognized competitive models of the literature.

The rest of the paper is organized as follows. In Section 2, the
main features of the sine Kumaraswamy-G family of distributions are
explored. Then, the sine Kumaraswamy exponential distribution is stud-
ied in detail in Section 3. In Section 4, it is considered as a parametric
model, with a statistical inference study, including concrete applications.
Conclusions are given in Section 5

2 Main features

In this section, we investigate the main features of the sine Kumaraswamy-
G family of distributions. We recall that it is characterized by the cdf
F (x) given by (2) and the related pdf f(x) specified by (3).

2.1 Main functions

We now express the main functions of interest of the sine Kumaraswamy-
G family of distributions. The corresponding survival function (sf) is
given by

S(x) = 1− F (x) = 2
[
sin
(π

4
[1−G(x)a]b

)]2
, x ∈ R.

We deduce the hazard rate function (hrf) sine Kumaraswamy-G family
defined by

h(x) =
f(x)

S(x)

=
π

2
abg(x)G(x)a−1[1−G(x)a]b−1 cot

(π
4

[1−G(x)a]b
)
, x ∈ R.

The corresponding cumulative hazard rate function (chrf) is

Ω(x) = − log[S(x)] = − log(2)− 2 log
[
sin
(π

4
[1−G(x)a]b

)]
, x ∈ R.
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Another central function of the sine Kumaraswamy-G family of distri-
butions is the quantile function (qf) obtained as

Q(y) = QG

[1−
{

2

π
arccos(y)

}1/b
]1/a

 , y ∈ (0, 1), (4)

where QG(y) denotes the qf corresponding to G(x). Let us recall that
Q(y) is characterized by the non-linear equation F (Q(y)) = Q(F (y)) =
y, y ∈ (0, 1). The median is given by

M = QG

[1−
{

2

π
arccos(0.5)

}1/b
]1/a

 ,

with arccos(0.5) ≈ 1.04719755. The qf is also involved in the following
key result: for a random variable U having the uniform distribution on
the unit interval, the random variable X defined by X = Q(U) has the
cdf (2). Others uses of the qf will be developed in the next.

2.2 Asymptotic properties

Let us now investigate the asymptotic properties of the functions F (x),
f(x) and h(x). As G(x)→ 0, by using the equivalence (1−ya)b ∼ 1−bya
when y → 0, we have

F (x) ∼ π

2
bG(x)a, f(x) ∼ π

2
abg(x)G(x)a−1, h(x) ∼ π

2
abg(x)G(x)a−1.

As G(x)→ 1, by using cos(y) ∼ 1− y2/2 when y → 0, we have

F (x) ∼ 1− π2

8
[1−G(x)a]2b, f(x) ∼ π2

4
abg(x)[1−G(x)a]2b−1,

h(x) ∼ 2abg(x)[1−G(x)a]−1.

The convergence and limits of f(x) and h(x) can not be determined in
full generality; they depend on a, b and the definition of G(x) (and g(x)
a fortiori).
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2.3 Critical points

Any critical point of f(x), say x0, satisfies the following equation:

[log(f(x))′ |x=x0= 0, i.e.,

g′(x0)

g(x0)
+ (a− 1)

g(x0)

G(x0)
− (b− 1)

ag(x0)G(x0)a−1

1−G(x0)a

− π

2
abg(x0)G(x0)a−1[1−G(x0)a]b−1 cot

(π
2

[1−G(x0)a]b
)

= 0. (5)

By investigating the sign of τ = [log(f(x))′′ |x=x0 , we can determine the
nature of x0; it corresponds to a maximum point if τ < 0, a minimum
point if τ > 0 and a point of inflection if τ = 0.

Similarly, any critical point of h(x), say x∗, satisfies the following
equation: [log(h(x))′ |x=x∗= 0, i.e.,

g′(x∗)

g(x∗)
+ (a− 1)

g(x∗)

G(x∗)
− (b− 1)

ag(x∗)G(x∗)
a−1

1−G(x∗)a

+
π

2
abg(x∗)G(x∗)

a−1[1−G(x∗)
a]b−1×[

cot
(π

4
[1−G(x∗)

a]b
)
− cot

(π
2

[1−G(x∗)
a]b
)]

= 0. (6)

Also, the sign of θ = [log(h(x))′′ |x=x∗ is informative concerning the
nature of x∗.

2.4 Linear representations

Here, some linear representations for F (x) and f(x) are determined. It
follows from the series expansion of the cosine function that

F (x) = cos
(π

2
[1−G(x)a]b

)
=

+∞∑
k=0

(−1)k

(2k)!

π2k

22k
[1−G(x)a]2bk.

Furthermore, the generalized binomial formula gives

[1−G(x)a]2bk =

+∞∑
`=0

(
2bk

`

)
(−1)`G(x)a`,
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where
(

2bk
`

)
= 2bk(2bk − 1) . . . (2bk − `+ 1)/`!. We immediately deduce

the following linear representation for F (x):

F (x) =
+∞∑
`=0

a`G(x)a`, a` = (−1)`
+∞∑
k=0

(−1)k

(2k)!

π2k

22k

(
2bk

`

)
. (7)

Upon differentiation, we obtain the following linear representation for
f(x):

f(x) =
+∞∑
`=1

a`[a`g(x)G(x)a`−1]. (8)

Thus, some mathematical properties of the sine Kumaraswamy-G family
of distributions can be derived from these expansions and the properties
of the exp-G family of distributions.

Alternatively, one can investigate linear representations for F (x) and
f(x) in terms of the sf related to G(x), i.e., SG(x) = 1 − G(x). This
can be more useful if SG(x) is more tractable than G(x). By using the
generalized binomial formula, we have

G(x)a` =
+∞∑
m=0

(
a`

m

)
(−1)mSG(x)m.

It follows from (7) that

F (x) =
+∞∑
m=0

bmSG(x)m, bm = (−1)m
+∞∑
`=0

(
a`

m

)
a`. (9)

Upon differentiation, we obtain the following linear representation for
f(x):

f(x) =

+∞∑
m=1

b∗m
[
mg(x)SG(x)m−1

]
, b∗m = −bm. (10)

Applications of (9) and (10) will be proposed in Section 3 for a given
cdf G(x).
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2.5 Moments

Hereafter, it is supposed that all the presented quantities exist (integral,
sum. . . ), and that the exchange of the integral and sum signs is valid.

Let r be an integer. Then, the r-th moment of the sine Kumaraswamy-
G family of distributions is given by

µ′r =

∫ +∞

−∞
xrf(x)dx

=

∫ +∞

−∞
xr
π

2
abg(x)G(x)a−1[1−G(x)a]b−1 sin

(π
2

[1−G(x)a]b
)
dx.

By applying the change of variable x = Q(y), where Q(y) denotes the
qf expressed as (4), we get

µ′r =

∫ 1

0
Q(y)rdy =

∫ 1

0

QG
[1−

{
2

π
arccos(y)

}1/b
]1/a

r dy.
This integral may be not expressed simply with standard integral tech-
niques. However, in most of the cases, for given G(x), a, b and r, it can
be evaluated numerically by the use of a modern mathematical software.

Alternatively, linear representations of µ′r can be derived to (8) or
(10), according to the definition of G(x). Indeed, by using (8), we have

µ′r =

+∞∑
`=1

a`

∫ +∞

−∞
xr
[
a`g(x)G(x)a`−1

]
dx

=
+∞∑
`=1

a`

∫ 1

0

[
a`ya`−1QG(y)r

]
dy.

Similarly, by using (10), we obtain

µ′r =

+∞∑
m=1

b∗m

∫ +∞

−∞
xr
[
mg(x)SG(x)m−1

]
dx

=

+∞∑
m=1

b∗m

∫ 1

0

[
mym−1QG(1− y)r

]
dy. (11)
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Especially, the mean is given by µ = µ′1 and the variance is defined by
σ2 = µ′2 − µ2. Also, the r-th central moment is given by

µr =

∫ +∞

−∞
(x− µ)rf(x)dx =

r∑
k=0

(
r

k

)
(−1)k(µ′1)kµ′r−k

and the r-th descending factorial moment is given as

µ′(r) =

∫ +∞

−∞
x(x− 1)(x− r + 1)f(x)dx =

r∑
k=0

ssti(r, k)µ′k,

where ssti(r, k) denotes the Stirling number of the first kind defined by
ssti(r, k) = (1/k!)[x(x−1) . . . (x−r+1)](k) |x=0. We end this subsection
by mentioning that the moment generating function can be obtained by
invoking arguments similar to those used for µ′r.

2.6 Skewness and kurtosis

In the context of distributions, let us recall that the skewness corre-
sponds to the asymmetry and the kurtosis corresponds to the tailedness.
A useful skewness measure is

CS =
µ3

µ
3/2
2

=
µ′3 − 3µ′2µ+ 2µ3

σ3
. (12)

Also, a kurtosis measure is

CK =
µ4

µ2
2

=
µ′4 − 4µ′3µ+ 6µ′2µ

2 − 3µ′4
σ4

. (13)

If the moments do not exist (mainly depending on the definition of
G(x)), we can envisage measures of skewness and kurtosis depending on
the qf given by (4). For instance, for a skewness measure, we can use
the Bowley skewness defined by

B =
Q(3/4) +Q(1/4)− 2Q(2/4)

Q(3/4)−Q(1/4)
.

See [11]. For a kurtosis measure, we can use the Moors kurtosis defined
by

M =
Q(3/8)−Q(1/8) +Q(7/8)−Q(5/8)

Q(6/8)−Q(2/8)
.

Details and applications on them can be found in [15].
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2.7 Incomplete mean and consorts

Let t ∈ R. The incomplete mean of the sine Kumaraswamy-G family of
distributions is given as

µ∗(t) =

∫ t

−∞
xf(x)dx

=

∫ t

−∞
x
π

2
abg(x)G(x)a−1[1−G(x)a]b−1 sin

(π
2

[1−G(x)a]b
)
dx.

Equivalently, we have

µ∗(t) =

∫ cos(π2 [1−G(t)a]b)

0

QG
[1−

{
2

π
arccos(y)

}1/b
]1/a

r dy.
For given G(x), a, b and t, this integral can be evaluated numerically.
Alternatively, we can use the linear representation given by (8) and

(10). Indeed, by using (8), we have

µ∗(t) =

+∞∑
`=1

a`

∫ t

−∞
x
[
a`g(x)G(x)a`−1

]
dx

=
+∞∑
`=1

a`

∫ G(t)

0

[
a`ya`−1QG(y)

]
dy.

Similarly, by using (10), we obtain

µ∗(t) =
+∞∑
m=1

b∗m

∫ t

−∞
x
[
mg(x)SG(x)m−1

]
dx

=

+∞∑
m=1

b∗m

∫ 1

SG(t)

[
mym−1QG(1− y)

]
dy.

From these expressions, several probabilistic quantities involving µ∗(t)
can be expressed. This is the case for the mean deviation about the
mean expressed as

δ1 =

∫ +∞

−∞
|x− µ|f(x)dx = 2µF (µ)− 2µ∗(µ)

= 2µ cos
(π

2
[1−G(µ)a]b

)
− 2µ∗(µ).
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One can also mention the mean deviation about the median given by
δ2 =

∫ +∞
−∞ |x−M |f(x)dx = µ− 2µ∗(M), the mean residual life given by

m(t) = [1 − µ∗(t)]/S(t) − t, the mean waiting time defined by M(t) =
t− µ∗(t)/F (t), the Bonferroni curve specified by B(y) = µ∗(Q(y))/(yµ)
with y ∈ (0, 1) and the Lorenz curve given by L(y) = µ∗(Q(y))/µ with
y ∈ (0, 1).

2.8 Probability weighted moments

Let r and s be two integers. We now investigate the (r, s)-th probability
weighted moment of the sine Kumaraswamy-G family of distributions
defined by

µ′r,s =

∫ +∞

−∞
xrF (x)sf(x)dx

=

∫ +∞

−∞
xr
[
cos
(π

2
[1−G(x)a]b

)]s π
2
abg(x)G(x)a−1[1−G(x)a]b−1×

sin
(π

2
[1−G(x)a]b

)
dx.

Note that µ′r,0 = µ′r. Such probability weighted moments naturally
appear in the determination of the moments of the order statistics, as
we will see later. Another expression of µ′r,s is given by

µ′r,s =

∫ 1

0
ys

QG
[1−

{
2

π
arccos(y)

}1/b
]1/a

r dy.

For given G(x), a, b, r and s, this integral can be evaluated numeri-
cally.

Alternatively, one can also investigate a linear representation for µ′r,s
in terms of (raw) moments. Indeed, by applying a result established by
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[8, Paragraph 0.314], we have

F (x)s+1 =
[
cos
(π

2
[1−G(x)a]b

)]s+1

=

[
+∞∑
k=0

(−1)k

(2k)!

π2k

22k
[1−G(x)a]2bk

]s+1

=
+∞∑
k=0

cs,k[1−G(x)a]2bk,

where cs,0 = 1 and, for any k ≥ 1,

cs,k =
1

k

k∑
`=1

[`(s+ 2)− k]
(−1)`

(2`)!

π2`

22`
cs,k−`.

The generalized binomial formula gives

[1−G(x)a]2bk =
+∞∑
`=0

(
2bk

`

)
(−1)`G(x)a`.

So,

F (x)s+1 =

+∞∑
`=0

ds,`G(x)a`, ds,` = (−1)`
+∞∑
k=0

cs,k

(
2bk

`

)
.

Hence, by differentiation, we have

F (x)sf(x) =
+∞∑
`=1

d∗s,`

[
a`g(x)G(x)a`−1

]
, d∗s,` =

ds,`
s+ 1

.

Therefore,

µ′r,s =
+∞∑
`=1

d∗s,`

∫ +∞

−∞
xr
[
a`g(x)G(x)a`−1

]
dx

=
+∞∑
`=1

d∗s,`

∫ 1

0

[
a`ya`−1QG(y)r

]
dy. (14)
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In terms of SG(x), by using the generalized binomial formula, we have

F (x)s+1 =
+∞∑
m=0

es,mSG(x)m, es,m = (−1)m
+∞∑
`=0

ds,`

(
α`

m

)
.

Hence, by differentiation, we have

F (x)sf(x) =
+∞∑
m=1

e∗s,m
[
mg(x)SG(x)m−1

]
, e∗s,m = −

es,`
s+ 1

.

So,

µ′r,s =
+∞∑
m=1

e∗s,m

∫ +∞

−∞
xr
[
mg(x)SG(x)m−1

]
dx

=
+∞∑
m=1

e∗s,m

∫ 1

0

[
mym−1QG(1− y)r

]
dy. (15)

2.9 Order statistics

Here, we focus on the order statistics related to the sine Kumaraswamy-
G family of distributions. Let X1, . . . , Xn be random sample having the
sine Kumaraswamy-G cdf given as (2) and Xi:n be the i-th order statis-
tic, i.e., the i-th random variable such that, by arranging X1, . . . , Xn

in increasing order, we have X1:n ≤ X2:n ≤ . . . ≤ Xn:n. The complete
theory about order statistics can be found in [6]. In particular, in our
mathematical context, the cdf of Xi:n is obtained as

Fi:n(x) =
n!

(i− 1)!(n− i)!

n−i∑
k=0

(−1)k

k + i

(
n− i
k

)
F (x)k+i

=
n!

(i− 1)!(n− i)!

n−i∑
k=0

(−1)k

k + i

(
n− i
k

)[
cos
(π

2
[1−G(x)a]b

)]k+i
,

x ∈ R.
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The corresponding pdf is specified by

fi:n(x) =
n!

(i− 1)!(n− i)!

n−i∑
k=0

(−1)k
(
n− i
k

)
f(x)F (x)k+i−1

=
n!

(i− 1)!(n− i)!
f(x)F (x)i−1S(x)n−i

=
n!

(i− 1)!(n− i)!
2n−i−1πabg(x)G(x)a−1[1−G(x)a]b−1×

sin
(π

2
[1−G(x)a]b

) [
cos
(π

2
[1−G(x)a]b

)]i−1
×[

sin
(π

4
[1−G(x)a]b

)]2(n−i)
.

Several kinds of moments can be obtained from fi:n(x). In particular,
the r-th moment of Xi:n is given by

µor = E(Xr
i:n) =

∫ +∞

−∞
xrfi:n(x)dx.

It can be calculated at least numerically for given G(x), a, b and r.
Alternatively, it can be expressed via the probability weighted moments
given by (14). Indeed, we have

µor =

∫ +∞

−∞
xrfi:n(x)dx

=
n!

(i− 1)!(n− i)!

n−i∑
k=0

(−1)k
(
n− i
k

)∫ ∞
−∞

xrf(x)F (x)k+i−1dx

=
n!

(i− 1)!(n− i)!

n−i∑
k=0

(−1)k
(
n− i
k

)
µ′r,k+i−1. (16)

Again, this integral can be evaluated numerically.

3 The sine Kumaraswamy exponential distribu-
tion

This section is devoted to a special member of the sine Kumaraswamy-G
family of distributions called the sine Kumaraswamy exponential (SKE)
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distribution.

3.1 Definition and main functions

As indicated by its name, the SKE distribution is the member of the sine
Kumaraswamy-G family of distributions defined with the exponential
distribution with parameter λ > 0 as baseline. Hence, it is characterized
by the cdf in (2) with the baseline cdf G(x) = 1− e−λx, x > 0, i.e.,

F (x) = cos
(π

2
[1− (1− e−λx)a]b

)
, x > 0. (17)

One can remark that, for a = b = 1, we have F (x) = cos
(
(π/2)e−λx

)
,

the cdf of the SE distribution introduced by [12].
The pdf corresponding to (17) is given by

f(x) =
π

2
abλe−λx(1− e−λx)a−1[1− (1− e−λx)a]b−1×

sin
(π

2
[1− (1− e−λx)a]b

)
, x > 0. (18)

The related sf is obtained as

S(x) = 2
[
sin
(π

4
[1− (1− e−λx)a]b

)]2
, x > 0.

Also, the corresponding hrf is

h(x) =
π

2
abλe−λx(1− e−λx)a−1[1− (1− e−λx)a]b−1×

cot
(π

4
[1− (1− e−λx)a]b

)
, x > 0

and the corresponding chrf is defined by

Ω(x) = − log(2)− 2 log
[
sin
(π

4
[1− (1− e−λx)a]b

)]
, x > 0.

The related qf is given by

Q(y) = − 1

λ
log

1−

[
1−

{
2

π
arccos(y)

}1/b
]1/a

 , y ∈ (0, 1). (19)

Median, quartiles and octiles can be derived, as well as other results.
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3.2 Some properties

All the properties exhibited in Section 2 for the general sine Kumaraswamy-
G family of distributions can be applied for the SKE distribution with
the functions G(x) = 1 − e−λx, x > 0, g(x) = λe−λx and QG(y) =
−(1/λ) log(1− y), y ∈ (0, 1). The most significant of them, with numer-
ical illustrations, are presented below.

As x→ 0, we have

F (x) ∼ π

2
bλaxa, f(x) ∼ π

2
abλaxa−1, h(x) ∼ π

2
abλaxa−1.

We can remark that, if a < 1, we have f(x) → +∞, if a = 1, we have
f(x)→ (π/2)bλ, and if a > 1, we have f(x)→ 0. The same limits hold
for h(x).

As x→ +∞, we have

F (x) ∼ 1− π2

8
a2be−2bλx, f(x) ∼ π2

4
bλa2be−2bλx, h(x) ∼ 2abλ.

Therefore, for all the values of the parameters, we have f(x) → 0 and
h(x)→ 2abλ.

By using (5) and (6), any critical point of f(x), say x0, satisfies the
following equation:

− λ2 + (a− 1)
λe−λx0

1− e−λx0
− (b− 1)

aλe−λx0(1− e−λx0)a−1

1− (1− e−λx0)a

− π

2
abλe−λx0(1− e−λx0)a−1[1− (1− e−λx0)a]b−1×

cot
(π

2
[1− (1− e−λx0)a]b

)
= 0

and any critical point of h(x), say x∗, satisfies the following equation:

− λ2 + (a− 1)
λe−λx∗

1− e−λx∗
− (b− 1)

aλe−λx∗(1− e−λx∗)a−1

1− (1− e−λx∗)a

+
π

2
abλe−λx∗(1− e−λx∗)a−1[1− (1− e−λx∗)a]b−1×[

cot
(π

4
[1− (1− e−λx∗)a]b

)
− cot

(π
2

[1− (1− e−λx∗)a]b
)]

= 0.



THE SINE KUMARASWAMY-G FAMILY OF DISTRIBUTIONS 17

They can be evaluated numerically. We illustrate the shapes of f(x) and
h(x) in Figure 1 for selected values of a, b and λ.

(a) (b)
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Figure 1: Plots of some (a) SKE pdfs and (b) SKE hrfs for selected
values of a, b and λ.

Also, by (10), we can express f(x) as an infinite linear combinations
of exponential pdfs, i.e.,

f(x) =
+∞∑
m=1

b∗m[mλe−λmx], x > 0.

Let r be an integer. Then, the r-th moment of the SKE distribution
exists. It can be expressed by an integral as in (11) or as the following
linear representation:

µ′r =
+∞∑
m=1

b∗m

∫ +∞

0
xr[mλe−λmx]dx = λ−rΓ(r + 1)

+∞∑
m=1

b∗mm
−r,

where Γ(x) =
∫ +∞

0 ux−1e−udu (the gamma function). Also, one can
remark that Γ(r + 1) = r!. Table 1 presents the numerical values of
the moments of order 1, 2, 3 and 4, the variance σ2, the coefficient of
skewness CS and the coefficient of kurtosis CK defined by (12) and
(13), respectively, for selected values of a, b and λ.
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Table 1: Some moments, variance, skewness and kurtosis of X for the
SKE distribution for the following selected parameters values in order
(a, b, λ); (i): (1, 2, 5), (ii): (3, 2, 5), (iii): (1.5, 1, 5) (iv): (1.5, 0.5, 0.5) (v):
(5, 6, 0.5) and (vi): (30, 6, 0.5).

(i) (ii) (iii) (iv) (v) (vi)

µ′1 0.1984 0.0974 0.0742 0.2809 10.7531 1.3342
µ′2 0.05637 0.0128 0.2613 2575.5120 126.3263 1.8944
µ′3 0.02077 0.0020 0.4247 172252.4 1599.5430 2.8323
µ′4 0.0094 0.0004 0.0005 0.9924 21625.63 4.4266
σ2 0.0169 0.0033 0.0049 0.1823 10.6944 0.1141
CS 1.2845 1.00650 1.8457 3.1944 0.3182 0.0014
CK 5.5791 4.4545 8.1281 18.6453 3.1172 2.8808

From Table 1, we observe that the considered measures can take
wide ranges of values, illustrating the flexibility of the SKE distribution
on these aspects.

Other kinds of moments can be expressed. For instance, for t ≥ 0,
the r-th incomplete moment of the SKE distribution is given as

µ∗r(t) =

+∞∑
m=1

b∗m

∫ t

0
xr[mλe−λmx]dx = λ−r

+∞∑
m=1

b∗mm
−rγ(r + 1, λmt),

where γ(x, t) =
∫ t

0 u
x−1e−udu (the lower incomplete gamma function).

Similarly, by using (15), the r-th probability weighted moment of
the SKE distribution is

µ′r,s =

+∞∑
m=1

e∗s,m

∫ +∞

0
xr[mλe−λmx]dx = λ−rΓ(r + 1)

+∞∑
m=1

e∗s,mm
−r.

Finally, we mention that all the results on order statistics presented in
Subsection 2.9 can be applied, with the use of the probability weighted
moments to express the (raw) moments of the i-th order statistic, as
described in (16).
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4 Estimation, simulation and applications

In this section, we investigate the SKE model governed by the cdf given
by (17) (and the pdf given by (18)).

4.1 Estimation

We now examine the estimation of the parameters a, b and λ of the
SKE model by using the maximum likelihood method, ensuring nice
convergence properties of the obtained estimates called the maximum
likelihood estimates (MLEs). Among others, they can be used to con-
struct approximate confidence intervals for a, b and λ and test statistics.
The essential of the method adapted to the SKE distribution is presented
below. Let x1, . . . , xn be n independent observations from the SKE dis-
tribution with parameters a, b and λ. Then, the likelihood function for
the vector of parameters Θ = (a, b, λ)> is defined by

L(Θ) =
n∏
i=1

f(xi)

=
(π

2
abλ
)n n∏

i=1

e−λxi(1− e−λxi)a−1[1− (1− e−λxi)a]b−1×

sin
(π

2
[1− (1− e−λxi)a]b

)
.

Applying the logarithmic transformation, the corresponding log-likelihood
function is given by

`(Θ) = log [L(Θ)] = n log
(π

2

)
+ n log(a) + n log(b) + n log(λ)− λ

n∑
i=1

xi

+ (a− 1)

n∑
i=1

log
(

1− e−λxi
)

+ (b− 1)

n∑
i=1

log
[
1− (1− e−λxi)a

]
+

n∑
i=1

log
[
sin
(π

2
[1− (1− e−λxi)a]b

)]
.
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Then, the related score vector is obtained as U(Θ) = (Ua(Θ), Ub(Θ), Uλ(Θ))>

with

Ua(Θ) =
∂

∂a
`(Θ) =

n

a
+

n∑
i=1

log
(

1− e−λxi
)

− (b− 1)
n∑
i=1

(1− e−λxi)a log(1− e−λxi)
1− (1− e−λxi)a

− π

2
b

n∑
i=1

(1− e−λxi)a log(1− e−λxi)[1− (1− e−λxi)a]b−1×

cot
(π

2
[1− (1− e−λxi)a]b

)
,

Ub(Θ) =
∂

∂b
`(Θ) =

n

b
+

n∑
i=1

log
[
1− (1− e−λxi)a

]
+
π

2

n∑
i=1

[1− (1− e−λxi)a]b log
[
1− (1− e−λxi)a

]
×

cot
(π

2
[1− (1− e−λxi)a]b

)
and

Uλ(Θ) =
∂

∂λ
`(Θ) =

n

λ
−

n∑
i=1

xi + (a− 1)

n∑
i=1

xie
−λxi

1− e−λxi

− a(b− 1)

n∑
i=1

xie
−λxi(1− e−λxi)a−1

1− (1− e−λxi)a

− π

2
ab

n∑
i=1

xie
−λxi(1− e−λxi)a−1[1− (1− e−λxi)a]b−1×

cot
(π

2
[1− (1− e−λxi)a]b

)
.

The MLEs of a, b and λ, denoted by â, b̂ and λ̂, respectively, satisfy
the system of equations: U(Θ̂) = (0, 0, 0)>, with Θ̂ = (â, b̂, λ̂)>. There
are no closed forms for these estimates. However, they can be obtained
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numerically with efficient iterative algorithms (see [17]). Under regu-
larity conditions, the underlying distribution of Θ̂ can be approximated
by a 3 dimensional normal distribution with mean Θ and covariance
matrix given as J(Θ)−1 |Θ=Θ̂, where J(Θ) = −∂2`(Θ)/∂Θ∂ΘT . Then,
for h ∈ {a, b, λ}, an approximate confidence interval for h at the level
100(1− ω)% is given by

CIh = [ĥ− zωsĥ, ĥ+ zωsĥ], (20)

where sĥ is the square-root of the diagonal element of J(Θ̂)−1 at the
same position as h corresponding to the standard error (SE) of h and
zω = QZ(1− ω/2), where QZ(x) is the qf of a standard normal random
variable Z. Note that, for ω = 0.05, we have zω = 1.959964 and for
ω = 0.01, we have zω = 2.575829.

The likelihood ratio (LR) statistic for testing goodness-of-fit of the
SKE model with its sub-models can also be described. Thus, we can
consider hypotheses of the form: H0 : Θ = Θ0 versus H1 : Θ 6= Θ0,
where Θ0 denotes a vector of 3 fixed values. In this case, the LR statistic
is given by

LR = 2[`(Θ̂)− `(Θ0)], (21)

where Θ̂0 contains the MLEs of a, b and λ under H0. Then, if H0

is assumed to be true, the subjacent distribution of LR converges in
distribution to a random variable K following the chi square distribution
with r degrees of freedom, where r is equal to the difference between the
number of parameters estimated in the general case and the number of
parameters estimated under H0. The corresponding p-value is defined
by

p = P(K > LR). (22)

In our study, it is useful to check if the SKE model is superior in fitting
to the SE model defined with the cdf F (x) = cos

(
(π/2)e−λx

)
, x > 0,

for a given data set.

4.2 Simulation

The following result in distribution holds. For a random variable U
following the uniform distribution on the unit interval, by using the qf
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given by (19), the random variable X defined by

X = Q(U) = − 1

λ
log

1−

[
1−

{
2

π
arccos(U)

}1/b
]1/a


follows the SKE distribution with parameters a, b and λ. Based on this
result, we can simulate data distributed following the SKE distribution.
Here, we use this result to evaluate the performance of the MLEs of the
SKE parameters via a graphical Monte Carlo simulation study. All the
computations are done by using the software R. We generate N = 3000
samples samples of size n = 20, 40, ..., 500 from the SKE distribution
with true parameters values I: a = 2.5, b = 5, λ = 1.5, II: a = 2.5,
b = 3, λ = 1.5 and III: a = 2.5, b = 5.5, λ = 3. We also calculate the
mean square error (MSE) of the MLEs empirically. For h ∈ {a, b, λ}, we
consider the empirical MSE corresponding to h defined by

MSEh =
1

N

N∑
i=1

(ĥi − h)2,

where ĥi denotes the MLE of h determined at the i-th repetition of the
simulation. The obtained results are given in Figures 2, 3 and 4.
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Figure 2: The MSE plots for the selected parameter values I for the
SKE distribution, i.e., a = 2.5, b = 5, λ = 1.5.
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Figure 3: The MSE plots for the selected parameter values II for the
SKE distribution, i.e., a = 2.5, b = 3, λ = 1.5.
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Figure 4: The MSE plots for the selected parameter values III for the
SKE distribution, i.e., a = 2.5, b = 5.5, λ = 3.

In each figure, we observe that, when the sample size increases, the
empirical MSEs tend to zero in all cases. This is consistent with the
subjacent theory of the MLEs.

4.3 Applications

In this subsection, the flexibility of the SKE model is shown by means
of two real data sets. Also, the SKE model is compared with the four
competitive models listed in Table 2. The following standard statis-
tics are used: −̂̀ where ̂̀ denotes the maximized log-likelihood, AIC
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(Akaike information criterion), BIC (Bayesian information criterion),
CVM (Cramér-von Mises), AD (Anderson-Darling) and KS (Kolmogorov-
Smirnov), consistent Akaike information criterion (CAIC), and Hannan-
Quinn information criterion (HQIC). All the computations are done by
using the software R.

Table 2: The considered competitive models of the SKE model.

Model Reference

Kumaraswamy Weibull (KW) [5]
Beta Weibull (BW) [13]
CS transformation of exponential (CS1E) [3]
Exponential (E) Standard

The first application uses a real data set given by [9]. It consists of
thirty successive values of March precipitation (in inches) in Minneapo-
lis/St Paul. The data are: 0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43,
3.37, 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, 0.59, 0.81, 2.81,
1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.90, 2.05.

The second data set represents the tensile strength data measured
in GPa for single carbon fibers. It is from [18]. The data are: 0.312,
0.314, 0.479, 0.552, 0.700, 0.803, 0.861, 0.865, 0.944, 0.958, 0.966, 0.997,
1.006, 1.021, 1.027, 1.055, 1.063, 1.098, 1.140, 1.179, 1.224, 1.240, 1.253,
1.270, 1.272, 1.274, 1.301, 1.301, 1.359, 1.382, 1.382, 1.426, 1.434, 1.435,
1.478, 1.490, 1.511, 1.514, 1.535, 1.554, 1.566, 1.570, 1.586, 1.629, 1.633,
1.642, 1.648, 1.684, 1.697, 1.726, 1.770, 1.773, 1.800, 1.809, 1.818, 1.821,
1.848, 1.880, 1.954, 2.012, 2.067, 2.084, 2.090, 2.096, 2.128, 2.233, 2.433,
2.585, 2.585.

Analysis of data set 1. For data set 1, descriptive statistics are
given in Table 3. In particular, we see that the subjacent distribution
of this data set is left-skewed (skewness estimated to 1.0866) with a
non-negligible tail (kurtosis estimated to 1.2068). Table 4 provides the
values of goodness-of-fit measures for the SKE model and other fitted
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models. We see that the SKE model has the lowest statistics, indicating
that it provides a better fit to the considered competitors. The MLEs
and their corresponding SEs (in parentheses) are listed in Table 5. The
probability-probability (P-P), quantile-quantile (Q-Q), empirical proba-
bility density function (epdf) and empirical cumulative density function
(ecdf) plots of the SKE are shown in Figure 5. In each case, a nice fit
is observed, indicating that the SKE model is appropriate for the anal-
ysis of data set 1. To complete this analysis, we provide in Table 6 the
approximation confidence intervals of the parameters of the SKE model
(see (20)). The levels 95% and 99% are considered. Finally, a LR test
with the hypotheses: H0 : a = b = 1 versus H1 : a 6= 1 or b 6= 1, is per-
formed in Table 7 (the formulas (21) and (22) are used). The p-value,
which is based on the chi-square distribution with 2 degree of freedom,
satisfies p-value < 0.0001. This shows the importance of the parameters
a and b in terms of fit for data set 1 in comparison to the former SE
model.

Table 3: Some descriptive statistics for data set 1.

Statistics N Mean Median Variance skewness kurtosis

Data set 1 30 1.6750 1.4700 1.0012 1.0866 1.2068

Table 4: Goodness-of-fit measures for data set 1.

Model −̂̀ AIC BIC CAIC HQIC KS CVM AD

SKE 36.8774 81.1549 85.3585 82.0780 82.4997 0.0635 0.0112 0.1041

KW 37.9766 83.9533 89.5581 85.5533 85.7463 0.0681 0.0148 0.1065

BW 38.0700 84.1400 89.7448 85.7400 85.9330 0.0631 0.0144 0.1045

CS1E 41.8522 89.7045 93.9081 90.6276 91.0493 0.0964 0.0702 0.4887

E 45.4743 92.9480 94.3499 93.0916 93.3970 0.2351 0.0195 0.1086
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Table 5: MLEs and SEs (in parentheses) for data set 1.

Model Estimates

SKE 3.7201 0.3802 1.5250

(a, b, λ) (0.6010) (0.1086) (0.2959)

KW 2.8788 0.1685 2.9571 1.4502

(a, b, α, β) (1.4350) (0.0467) (0.1595) (0.1688)

BW 0.3536 0.8078 4.4861 5.5074

(a, b, α, β) (2.7762) (0.9862) (9.9203) (2.1934)

CS1E 0.8412 9.7350 0.5383

(α, θ, λ) (1.3128) (1.5192) (0.0865)

E 0.5969

(λ) (0.1089)
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Figure 5: P-P, Q-Q, epdf and ecdf plots of the SKE distribution for
data set 1.
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Table 6: Confidence intervals for the parameters of the SKE model for
data set 1.

CI a b λ

95% [2.5421 4.4989] [0.1673 0.5930] [0.9450 2.1049]
99% [2.1695 5.2706] [0.1000 0.6603] [0.7615 2.2884]

Table 7: LR test for data set 1.

Idea H0 LR p-value

SKE versus SE [12] a = b = 1 17.1938 < 0.001 (***)

Analysis of data set 2. For data set 2, we adopt the same method-
ology to the one used for the analysis of data set 1. Thus, some descrip-
tive statistics are presented in Table 8. Since the estimated skewness
is close to zero, the subjacent distribution is near symmetric around its
mean. The values of the goodness-of-fit measures for the SKE model
and other fitted models are collected in Table 9, whereas the MLEs and
their corresponding SEs are listed in Table 10. Again, we see that the
SKE model has the lowest statistics, indicating that it is statistically
superior to the competitors. The P-P, Q-Q, epdf and ecdf plots of the
SKE are presented in Figure 6. We see nice fits, indicating that the SKE
model is a good choice for the analysis of data set 2. Then, we provide
the approximation confidence intervals of the parameters of the SKE
model in Table 11, for the levels 95% and 99%. Finally, a LR test with
the hypotheses: H0 : a = b = 1 versus H1 : a 6= 1 or b 6= 1, is performed
in Table 12. The p-value satisfies p-value < 0.0001, indicating that the
SKE model is again preferable to the SE model.
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Table 8: Some descriptive statistics for data set 2.

Statistics N Mean Median Variance skewness kurtosis

Data set 2 69 1.4513 1.4780 0.2451 -0.02821 -0.05927

Table 9: Goodness-of-fit measures for data set 2.

Model −̂̀ AIC BIC CAIC HQIC KS CVM AD

SKE 48.1311 104.2624 110.9647 104.6316 106.9214 0.0455 0.0211 0.1977

KW 48.7684 105.5368 114.4733 106.1618 109.0822 0.0475 0.0226 0.1984

BW 48.8954 105.7908 114.7272 106.4158 109.3362 0.0480 0.0256 0.2217

CS1E 49.5405 105.0810 111.7833 105.4502 107.7400 0.0487 0.0279 0.1989

E 94.7013 191.4026 193.6367 191.4623 192.2890 0.3622 0.1238 0.8712
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Figure 6: P-P, Q-Q, epdf and ecdf plots of the SKE distribution for
data set 2.
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Table 10: MLEs and SEs (in parentheses) for data set 2.

Model Estimates

SKE 3.5848 50.6984 0.2100

(a, b, λ) (0.5853) (4.0734) (0.1626)

KW 0.7268 0.1621 1.0308 3.5369

(a, b, α, β) (0.0052) (0.0186) (0.0218) (0.0086)

BW 0.3585 3.7827 0.7813 5.7953

(a, b, α, β) (2.0367) (1.2916) (0.4105) (2.5127)

CS1E 0.0916 10.7578 0.2785

(α, θ, λ) (1.0176) (11.6449) (0.0276)

E 0.5969

(λ) (0.1089)

Table 11: Confidence intervals for the parameters of the SKE model
for data set 2.

CI a b λ

95% [2.4376 4.3433] [42.7146 58.6822] [0 0.5286]
99% [2.0747 5.0948] [40.1890 61.2077] [0 0.6295]

5 Conclusions

In the last decade, the trigonometric families of distributions have re-
ceived a lot of attention, mainly thanks to their flexible properties in
terms of fitting a wide variety of real data sets. In this study, we explore
a natural extension of the sine-G family of distributions, called the sine
Kumaraswamy-G family of distributions. We investigate its main math-
ematical properties, including asymptotes, quantile function, linear rep-
resentations of the cumulative distribution and probability density func-
tions, moments, skewness and kurtosis, incomplete moments, probability
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Table 12: LR test for data set 2.

Idea H0 LR p-value

SKE versus SE [12] a = b = 1 93.1404 < 0.001 (***)

weighted moments and order statistics. Then, a special focus is done on
the sine Kumaraswamy exponential distribution, a notable member of
this family. After presenting its mathematical features, we study the
ability of the related model in the fitting of data sets. The maximum
likelihood method is used to estimate the unknown parameters and a
simulation study gives numerical guarantees of their performance. Ap-
plications to two practical data sets are presented in detail, showing that
the proposed model outperforms some strong well-established competi-
tors in the literature. We hope that the sine Kumaraswamy-G family of
distributions and the related perspective of models may attract wider
applications in statistics in various areas.
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