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Abstract. In the present world, there are many two-stage systems
which provide information of inputs, outputs and intermediate measures
which are imprecise, such as, (stochastic, fuzzy, interval etc). In these
conditions, a two-stage data envelopment analysis or a (two-stage DEA
method) cannot evaluate the efficiencies of these systems. In several
two-stage systems, the simultaneous presence of stages is necessary for
the final product. Hence, in this paper, we shall propose the stochas-
tic multiplicative model and the deterministic equivalent, to measure
the efficiencies of these systems, primarily, in the presence of stochastic
data, under the constant returns to scale (CRS) assumption, by using
the non-compensatory property of the multiplication operator.Then, we
will use the reparative property of the additive operation to propose the
additive models as well as the deterministic equivalents, to calculate the
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efficiencies of two-stage systems, in presence of stochastic data, under
the constant returns to scale (CRS) and variable returns to scale (VRS)
assumptions. This is to illustrate that a simultaneous presence of the
stages is not necessary for the final product and one stage compen-
sates the shortcomings of another stage. Likewise, we shall convert
each of these deterministic equivalents to quadratic programming prob-
lems. Based on the proposed stochastic models, the whole system is
efficient if and only if, the first and the second stages are efficient. Ul-
timately, in the proposed multiplicative model, we will illustrate the
proposed multiplicative model, by employing the data of the Taiwanese
non-life insurance companies, which has been extracted from the extant
literature.

Keywords and Phrases: Data Envelopment Analysis, Efficiency, Two
stage system, Stochastic Data, Multiplier Form, Additive Form.

1 Introduction

DEA is a non-parametric mathematical approach that evaluates the effi-
ciency and the performance of decision making units (DMUs). Initially,
DEA was presented by Charnes, Cooper, and Rhodes their first pro-
posed model was called CCR [2]. Then onwards, many models have
been proposed, that measure the efficiency of DMUs, by considering
DMUs, as ‘black box systems. In variety of applications, data may
not be precise such as, stochastic data. Stochastic DEA (SDEA) was
presented, so as to measure the efficiency of black box systems in the
presence of stochastic data, by extending the classical DEA. In this field,
some researchers rendered the Stochastic models (see examples [5], [6],
[11] and [12]). These authors considered the envelopment form of DEA
models and proposed the stochastic DEA models by utilizing the chance
constrained programming method. In addition, Mirbolouki et al. [15]
also utilized the chance constrained programming method and offered
a stochastic DEA model, based on the multiplier form of DEA, which
measures the stochastic efficiency of black box systems. To do this, they
solved two problems, (the existing equivalent constraints and the ran-
dom variable in the objective function). In real applications, there are
systems with an internal structure such as, network systems. Hence, a
group of DEA models was presented in order to assess the efficiency of
these systems. These models were called Network DEA (NDEA) models
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(see examples [1], [3], [4], [7], [9], [8], [10], [14], [13] and [16]). The special
factor of these network systems is their two-stage system. Therefore, in
this paper, we will combine SDEA and NDEA to propose the stochastic
multiplicative and additive models that measure the stochastic efficiency
of two-stage systems in presence of stochastic data. Note, that in the
proposed multiplicative model, a simultaneous presence of stages, is nec-
essary in the final product and the shortcoming (default) of one stage
is not compensated by another stage. Moreover, it models the overall
efficiency of the system in the mathematical average of the efficiencies
of the stages. In this case, the first and the second stages present and
evaluateing the overall efficiency. This paper is organized as follows: In
section 2, firstly, we review production possibility sets Tc, Tv. Then,
we briefly review the Kao and Hwang [9] and Chen et al. [3] models
that measure the efficiency of two-stage systems. In section 3, firstly we
propose the structure of stochastic efficiency of the two-stage systems
in presence of stochastic data. Then, we apply the chance-constrained
programming method on the Kao and Hwang [9] model and determine
corresponding deterministic equivalent form; and also, the stochastic
versions of Chen et al. [3] models including the deterministic equiva-
lents, which are given. In section 4, the introduced stochastic models
are illustrated in the form of a case-study in relative to 10 Taiwanese
non-life insurance companies. Finally, section 5 presents our conclusions
and future research directions.

2 Preliminaries

In this section, two production possibility sets are presented. Then, in
order to measure the CRS and VRS efficiency of two-stage systems, the
multiplicative and additive models are introduced.

2.1 Production possibility sets

Consider n DMUs where each DMUj(j = 1, . . . , n) consume m inputs
xij(i = 1, . . . ,m) to produce s outputs yrj(r = 1, . . . , s). Production
Possibility Sets Tc, Tv are defined as follows regarding the prevalence of
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CRS and VRS assumptions of the production technology, respectively:

Tc =

{
(x, y)

∣∣∣∣ n∑
j=1

λjxj ≤ x,
n∑

j=1

λjyj ≥ y, λj ≥ 0, j = 1, . . . , n

}

Tv =

{
(x, y)

∣∣∣∣ n∑
j=1

λjxj ≤ x,
n∑

j=1

λjyj ≥ y,
n∑

j=1

λj = 1, λj ≥ 0,

j = 1, . . . , n

}

2.2 Two-stage DEA models

In this subsection, firstly, we briefly present the models to evaluate the
CRS and VRS efficiency of two-stage systems with deterministic data
that were presented by Kao and Hwang [9] and Chen et al. [3]. Let
us assume that there are n DMUs with a two-stage structure. Each
DMUj (j = 1, . . . , n) in the stage 1 consumes m input xij(i = 1, . . . ,m)
to produce D intermediate measure zdj(d = 1, . . . , n). Then, stage 2,
uses D intermediate measure zdj(d = 1, . . . , n) to generate s output
yrj(r = 1, . . . , s). The structure of a two-stage system is shown in Figure
1.

Kao and Hwang [9] presented the following model that measures the
overall efficiency of the system and the efficiency of stages under the
CRS assumption simultaneously:

Es
o = max

s∑
r=1

uryro

s.t.
m∑
i=1

vixio = 1

s∑
r=1

uryrj −
D∑

d=1

wdzdj ≤ 0, j = 1, . . . , n (1)

D∑
d=1

wdzdj −
m∑
i=1

vixij ≤ 0, j = 1, . . . , n

ur, wd, vi ≥ 0 r = 1, . . . , s d = 1, . . . , D i = 1, . . . ,m
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xij zdj yrj
Stage1 Stage2

Figure 1. Two-stage system

If (u∗, v∗, w∗) is an optimal solution of this model,, we have:

Es
o =

s∑
r=1

u∗ryro

m∑
i=1

v∗i xio

, EI
o =

D∑
d=1

w∗dzdo

m∑
i=1

v∗i xio

, EII
o =

s∑
r=1

u∗ryro

D∑
d=1

w∗dzdo

.

That Es
o , EI

o , EII
o indicates the overall efficiency of the system and

efficiency of the first and second stages respectively.

Theorem 2.1. DMUo is overall efficient if and only if EI
o = EII

o = 1.

Proof. Refer to [9] �
Their proposed model cannot measure the VRS efficiency of two-

stage systems. Chen et al. [3] proposed the models that calculate the
overall efficiency of the system and efficiency of the stages under CRS
and VRS. The following model is presented to measure the CRS effi-
ciency of two-stage systems by Chen et al. [3]:

E(chen−CRS)s
o = max w1

D∑
d=1

wdzdo

m∑
i=1

vixio

+ w2

s∑
r=1

uryro

D∑
d=1

wdzdo

s.t.

s∑
r=1

uryrj −
D∑

d=1

wdzdj ≤ 0, j = 1, . . . , n (2)

D∑
d=1

wdzdj −
m∑
i=1

vixij ≤ 0, j = 1, . . . , n

ur, wd, vi ≥ 0 r = 1, . . . , s d = 1, . . . , D i = 1, . . . ,m
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Note that

w1 = (

m∑
i=1

vixio)/(

m∑
i=1

vixio +

D∑
d=1

wdzdo),

w2 = (

D∑
d=1

wdzdo)/(

m∑
i=1

vixio +

D∑
d=1

wdzdo)

are defined as Proportion of the aggregate input of stage 1 and stage 2 to
the aggregate input of the whole system and demonstrate contribution
of the performance of stages 1, 2. Actually, our argument is that the
importance of a stage as measured by its weight.
Therefore, model (2) can be converted into the following form:

E(chen−CRS)s
o = max

s∑
r=1

uryro +
D∑

d=1

wdzdo

s.t.

m∑
i=1

vixio −
D∑

d=1

wdzdo = 1

s∑
r=1

uryrj −
D∑

d=1

wdzdj ≤ 0, j = 1, . . . , n (3)

D∑
d=1

wdzdj −
m∑
i=1

vixij ≤ 0, j = 1, . . . , n

ur, wd, vi ≥ 0 r = 1, . . . , s d = 1, . . . , D i = 1, . . . ,m

If (u∗, v∗, w∗) is an optimal solution of this model, we have:

E(chen−CRS)s
o =

s∑
r=1

u∗ryro +
D∑

d=1

w∗dzdo

m∑
i=1

v∗i xio +
D∑

d=1

w∗dzdo

, EI
o =

D∑
d=1

w∗dzdo

m∑
i=1

v∗i xio

,

EII
o =

s∑
r=1

u∗ryro

D∑
d=1

w∗dzdo

.
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E
(chen−CRS)s
o , EI

o , EII
o indicates the overall efficiency of the system

and efficiency of the first and second stages respectively. We also have

E
(chen−CRS)s
o = w1E

I
o +w2E

II
o . And also, Chen et al. [3], also suggested

a model to compute the efficiency of a two-stage system under the VRS
assumption. Their proposed model is as follows:

E(chen−V RS)s
o = max w1

D∑
d=1

wdzdo + u01

m∑
i=1

vixio

+ w2

s∑
r=1

uryro + u02

D∑
d=1

wdzdo

s.t.

s∑
r=1

uryrj −
D∑

d=1

wdzdj + u02 ≤ 0, j = 1, . . . , n

D∑
d=1

wdzdj −
m∑
i=1

vixij + u01 ≤ 0, j = 1, . . . , n (4)

ur, wd, vi ≥ 0 r = 1, . . . , s d = 1, . . . , D i = 1, . . . ,m

u01, u02 free

By applying w1, w2 in this model, the following model is obtained:

E(chen−V RS)s
o = max

s∑
r=1

uryro +

D∑
d=1

wdzdo + u01 + u02

s.t.

m∑
i=1

vixio +

D∑
d=1

wdzdo = 1

s∑
r=1

uryrj −
D∑

d=1

wdzdj + u02 ≤ 0, j = 1, . . . , n (5)

D∑
d=1

wdzdj −
m∑
i=1

vixij + u01 ≤ 0, j = 1, . . . , n

ur, wd, vi ≥ 0 r = 1, . . . , s d = 1, . . . , D i = 1, . . . ,m

u01, u02 free

After solving this model, the overall efficiency of the system and effi-

ciency of the stage 1, 2 (E
(chen−V RS)s
o , EI

o , E
II
o ) can be determined as
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follows:

E(chen−V RS)s
o =

s∑
r=1

u∗ryro +
D∑

d=1

w∗dzdo + u01 + u02

m∑
i=1

v∗i xio +
D∑

d=1

w∗dzdo

, EI
o =

D∑
d=1

w∗dzdo + u01

m∑
i=1

v∗i xio

,

EII
o =

s∑
r=1

u∗ryro + u02

D∑
d=1

w∗dzdo

.

Therefore, the relationship between E
(chen−V RS)s
o , EI

o , EII
o can be de-

fined as follows: E
(chen−V RS)s
o = w1E

I
o + w2E

II
o .

3 Stochastic Efficiency of Two-Stage Systems

In many situations, the input, intermediate product and output vec-
tors might be stochastic variables. Therefore, in this case, providing
a stochastic model is necessary, in order to measure the efficiency of
two-stage systems under CRS and VRS assumptions. Suppose we have
n DMUs with a two-stage structure; corresponding to the first stage
DMUj(j = 1, . . . , n), x̃j , z̃j are the random inputs and intermediate
measures vectors. Then, the second stage, consumes these intermediate
measures to produce the random output vector ỹj . without losing gener-
ality, we presume that all components of inputs, intermediate measures
and output s have a normal distribution:

x̃ij ∼ N(xij , σ
2
ij), ỹrj ∼ N(yrj , σ

2
rj), z̃dj ∼ N(zdj , σ

2
dj)

Wherein, xij , yrj , zdj (i = 1, . . . ,m r = 1, . . . , s d = 1, . . . , D) are
vectors of the expected values of inputs, intermediate measures and out-
puts of DMUj(j = 1, . . . , n).

3.1 Stochastic efficiency of the multiplicative model

In this subsection, we will initially propose a stochastic model of Kao
and Hwang [9], using the multiplicative model. Then, the deterministic
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equivalent of the proposed model will be provided. The stochastic model
that measures the efficiencies of the two-stage systems under CRS can
be described as follows:

Ẽs
o = max

s∑
r=1

urỹro

s.t. p

{
m∑
i=1

vix̃io = 1

}
≥ (1− α)

p

{
s∑

r=1

urỹrj −
D∑

d=1

wdz̃dj ≤ 0

}
≥ (1− α), j = 1, . . . , n (6)

p

{
D∑

d=1

wdz̃dj −
m∑
i=1

vix̃ij ≤ 0

}
≥ (1− α), j = 1, . . . , n

ur, wd, vi ≥ 0 r = 1, . . . , s d = 1, . . . , D i = 1, . . . ,m

In this model, p means probability. indicates the level of error that is
predetermined. In the objective function of model [4], there is random
variable and we also have the following expression in the first constraint
of model [4] which is wrong:

p

{
m∑
i=1

vix̃io = 1

}
= 0 ≥ (1− α)⇒ α ≥ 1

For solving these problems, firstly we introduce an alternative form of
the model (1). Note that we can replace the objective function of the
model (1) by:

max k

s.t.

s∑
r=1

urỹio ≥ k
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Therefore, the following model is obtained:

Ẽs
o = max k

s.t.
s∑

r=1

urỹro ≥ k

m∑
i=1

vix̃io = 1

s∑
r=1

urỹrj −
D∑

d=1

wdz̃dj ≤ 0, j = 1, . . . , n

D∑
d=1

wdz̃dj −
m∑
i=1

vix̃ij ≤ 0, j = 1, . . . , n

ur, wd, vi ≥ 0 r = 1, . . . , s d = 1, . . . , D i = 1, . . . ,m

(7)

However, the mentioned approximation error has not been remedied.
Hence, we replace the first constraint by

∑m
i=1 vix̃io ≤ 1. Therefore,

the following model can be constructed as an alternative form of the
proposed model (7):

Ẽs′
o = max k

s.t.

s∑
r=1

urỹro ≥ k

m∑
i=1

vix̃io ≤ 1

s∑
r=1

urỹrj −
D∑

d=1

wdz̃dj ≤ 0, j = 1, . . . , n

D∑
d=1

wdz̃dj −
m∑
i=1

vix̃ij ≤ 0, j = 1, . . . , n

ur, wd, vi ≥ 0 r = 1, . . . , s d = 1, . . . , D i = 1, . . . ,m

(8)

Note that the models (7) and (8) have equal objective values. Hence,
we have the following theorem:
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Theorem 3.1. In the models (7) and (8) we have: Ẽs
o = Ẽs′

o .

Proof. Suppose S, S′ indicate the feasible regions related to the models
(7) and (8) respectively. Note that S ⊆ S′ and k ≤

∑m
i=1 vix̃io ≤ 1.

Since this is a maximization problem, in optimal solution we have k =∑m
i=1 vix̃io = 1. Hence, in optimality solutions of model (8) satisfy in

the constraints of the model (7) and the proof is complete. �
Now, we apply chance constrained problem and proposed the following
stochastic model of model (8):

Ẽs′
o = max k

s.t. p

{
s∑

r=1

urỹro ≥ k

}
≥ (1− α)

p

{
m∑
i=1

vix̃io ≤ 1

}
≥ (1− α)

(9)

p

{
s∑

r=1

urỹrj −
D∑

d=1

wdz̃dj ≤ 0

}
≥ (1− α), j = 1, . . . , n

p

{
D∑

d=1

wdz̃dj −
m∑
i=1

vix̃ij ≤ 0

}
≥ (1− α), j = 1, . . . , n

ur, wd, vi ≥ 0 r = 1, . . . , s d = 1, . . . , D i = 1, . . . ,m

3.1.1 Deterministic equivalent of model (9)

In this subsection, we will exhibit a deterministic equivalent of model
(9) using Cooper et al. [5]. Firstly, consider the following constraint:

p

{
m∑
i=1

vix̃io ≤ 1

}
≥ (1− α).

In order to achieve the equality constraint, we define ζ1 ≥ 0 as an
external slack:

p

{
s∑

r=1

uiỹro ≥ k

}
= (1− α) + ζ1.
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Thus, there is S1 ≥ 0 such that,

p

{
s∑

r=1

urỹro − k ≥ s1

}
= (1− α).

Note that ζ1 = 0 if and only if s1 = 0. By also, by defining ζ2 ≥ 0 as an
external slack, we have

p

{
m∑
r=1

vrx̃io ≤ 1

}
= (1− α) + ζ2.

Hence there is s2 ≥ 0 such that

p

{
m∑
i=1

vix̃io ≤ 1 + s2

}
= (1− α).

Corresponding to other constraints, we suppose there are s3j , s4j ≥ 0
such that

p

{
s∑

r=1

urỹrj −
D∑

d=1

wdz̃dj ≤ s3j

}
= (1− α), j = 1, . . . , n

p

{
D∑

d=1

wdz̃dj −
m∑
i=1

vix̃ij ≤ s4j

}
= (1− α), j = 1, . . . , n

Now, we set:

E(x̃ij) = xij , E(ỹrj) = yrj , E(z̃dj) = zdj ,

E(

s∑
r=1

urỹro − k) =

s∑
r=1

uryro − k

Hence: p

{
s∑

r=1
urỹro − k ≥ s1

}
= (1− α) conclude that

p

{
s∑

r=1

u∗r ỹro − k

}
≤ s1 = α.
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Thus,

p


(

s∑
r=1

urỹro − k)− (
s∑

r=1
uryro − k)√

var(
s∑

r=1
urỹro − k)

≤
s1 −

(
s∑

r=1
uryro − k

)
√

var

(
s∑

r=1
urỹro − k

)
 = α

(10)

By considering Φ as standard normal distribution function, we recall
that p(Z̃ ≤ z) = α ⇒ Φ(z) = α ⇒ Φ−1(α) = z Hence, (10) can be
converted to

s1 − (
s∑

r=1
uryro − k)√

var(
s∑

r=1
urỹro − k)

= Φ−1(α).

In order to simplify, we denote

(σo(k, u))2 = var(
s∑

r=1

urỹro − k) =
s∑

r=1

s∑
r′=1

urur′cov(ỹro, ỹr′o)

(σI(k, v))2 = var(1−
m∑
i=1

vix̃io) = var(

m∑
i=1

vix̃io)

=
m∑
i=1

m∑
i′=1

vivi′cov(x̃io, x̃i′o)

(σj(w, u))2 = var(

D∑
d=1

wdz̃dj −
s∑

r=1

urỹrj) =

s∑
r=1

s∑
r′=1

urur′cov(ỹrj , ỹr′j)

+

D∑
d=1

D∑
d′=1

wdwd′cov(z̃dj , z̃d′j)− 2cov(
D∑

d=1

wdz̃dj ,
s∑

r=1

urỹrj)
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(σ′j(v, w))2 = var(
m∑
i=1

vix̃ij −
D∑

d=1

wdz̃dj) =
D∑

d=1

D∑
d′=1

wdwd′cov(z̃dj , z̃d′j)

+

m∑
i=1

m∑
i′=1

vivi′cov(x̃ij , x̃i′j)− 2cov(

m∑
i=1

vix̃ij ,

D∑
d=1

wdz̃dj)

Therefore,

s1 − (
s∑

r=1
uryro − k)

σo(k, u)
= Φ−1(α). By applying the same ap-

proach for other constraints, the deterministic equivalent form of model
(9) will be as follows:

Ẽs′
o = max k

s.t.
s∑

r=1

uryro − k + Φ−1(α)σo(k, u) = s1

m∑
i=1

vixio − Φ−1(α)σI(k, v) + s2 = 1

s∑
r=1

uryrj −
D∑

d=1

wdzdj − Φ−1(α)σj(w, u) + s3j = 0 j = 1, . . . , n

(11)D∑
d=1

wdzdj −
m∑
i=1

vixij − Φ−1(α)σ′j(v, w) + s4j = 0 j = 1, . . . , n

ur, wd, vi ≥ 0 r = 1, . . . , s d = 1, . . . , D i = 1, . . . ,m

s3j , s4j ≥ 0 j = 1, . . . , n

s1, s2 ≥ 0

Note that this model is a nonlinear programming. Thus, by following
the Cooper et al. [5] model, we transform this model to a quadratic pro-
gramming problem. For this purpose we use the non-negative variables
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λ, λ′, λj , λ
′
j and obtain the quadratic programming problem as follows:

Ẽs′
o = max k

s.t.

s∑
r=1

uryro − k + Φ−1(α)λ− s1 = 0

m∑
i=1

vixio − Φ−1(α)λ′ + s2 = 1

s∑
r=1

uryrj −
D∑

d=1

wdzdj − Φ−1(α)λj + s3j = 0 j = 1, . . . , n

D∑
d=1

wdzdj −
m∑
i=1

vixij − Φ−1(α)λ′j + s4j = 0 j = 1, . . . , n

λ2 =
s∑

r=1

s∑
r′=1

urur′cov(ỹro, ỹr′o)

(12)
λ′

2
=

m∑
i=1

m∑
i′=1

vivi′cov(x̃io, x̃i′o)

λ2j =
s∑

r=1

s∑
r′=1

urur′cov(ỹrj , ỹr′j) +
D∑

d=1

D∑
d′=1

wdwd′cov(z̃dj , z̃d′j)

− 2cov(
D∑

d=1

wdz̃dj ,
s∑

r=1

urỹrj)

λ′
2

j =
D∑

d=1

D∑
d′=1

wdwd′cov(z̃dj , z̃d′j) +
m∑
i=1

m∑
i′=1

vivi′cov(x̃ij , x̃i′j)

− 2cov(

m∑
i=1

vix̃ij ,

D∑
d=1

wdz̃dj)

ur, wd, vi ≥ 0 r = 1, . . . , s d = 1, . . . , D i = 1, . . . ,m

λ, λ′, λj , λ
′
j , s3j , s4j ≥ 0 j = 1, . . . , n

s1, s2 ≥ 0
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Theorem 3.2. For α ∈ (0, 0.5] if (u∗r , w
∗
d, v
∗
i , λ
∗, λ′

∗
, λ∗j , λ

′∗
j , s

∗
1, s
∗
2, s
∗
3j , s

∗
4j)

is an optimal solution, we have 0 < Ẽs′ ≤ 1.

Proof. If α ∈ (0, 0.5], then Φ−1(α) ≤ 0. In each optimal solution, we
have: 

s∑
r=1

u∗ryrj −
D∑

d=1

w∗dzdj ≤ 0

D∑
d=1

w∗dzdj −
m∑
i=1

v∗i xij ≤ 0

⇒
s∑

r=1

u∗ryrj −
m∑
i=1

v∗i xij ≤ 0

And also, based on the constraints
s∑

r=1
u∗ryro ≥ k,

m∑
i=1

v∗i xio ≤ 1 of model

(12) the proof is complete. �
Now for α ∈ (0, 0.5] and any optimal solution (u∗r , w

∗
d, v
∗
i , λ
∗, λ′

∗
, λ∗j ,

λ′∗j , s
∗
1, s
∗
2, s
∗
3j , s

∗
4j) of model (12), the overall efficiency as well as the

efficiency of the first and the second stages are defined as:

Ẽs′
o =

s∑
r=1

u∗ryro

m∑
i=1

v∗i xio

, ẼI
o =

D∑
d=1

w∗dzdo

m∑
i=1

v∗i xio

, ẼII
o =

s∑
r=1

u∗ryro

D∑
d=1

w∗dzdo

.

Thus, we have: Ẽs′
o = ẼI

o · ẼII
o .

Lemma 3.3. For α ∈ (0, 0.5] and each DMUo, we have: 0 < ẼI
o ≤ 1,

0 < ẼII
o ≤ 1.

Proof. In any optimal solution (u∗r , w
∗
d, v
∗
i , λ
∗, λ′

∗
, λ∗j , λ

′∗
j , s

∗
1, s
∗
2, s
∗
3j , s

∗
4j)

of the model (12), for j = o, we have

s∑
r=1

u∗ryro −
D∑

d=1

w∗dzdo − Φ(−1)(α)λ∗o + s∗3o = 0,

D∑
d=1

w∗dzdo −
m∑
i=1

v∗i xio − Φ(−1)(α)λ′
∗
o + s∗4o = 0.

And also, we know that

Φ(−1)(α), λ∗o, λ
′∗
o ≥ 0, S∗3o, s

∗
4o ≥ 0
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Thus, in any optimal solution, we have:

s∑
r=1

u∗ryro −
D∑

d=1

w∗dzdo ≤ 0,
D∑

d=1

w∗dzdo −
m∑
i=1

v∗i xio ≤ 0

These constraints mean that 0 < ẼI
o ≤ 1, 0 < ẼII

o ≤ 1 and the proof is
complete. �

Lemma 3.4. For α ∈ (0, 0.5], DMUo, is stochastic overall efficient
under the model (12) if and only if the first and the second stages are
stochastic efficient, i.e. Ẽs′

o = 1 if and only if ẼI
o = ẼII

o = 1.

Proof. Suppose Ẽs′
o = 1, i.e

s∑
r=1

u∗ryro =
m∑
i=1

v∗i xio. And also, for

α ∈ (0, 0.5], we have

s∑
r=1

u∗ryro −
D∑

d=1

w∗dzdo ≤ 0,
D∑

d=1

w∗dzdo −
m∑
i=1

v∗i xio ≤ 0

Therefore, we conclude that ẼI
o = ẼII

o = 1. Conversely, if ẼI
o = ẼII

o = 1,
the proof is obvious. �

3.2 Stochastic efficiency of additive models

In this subsection, the stochastic versions of the additive models will be
presented in the presence of stochastic data. Then, the deterministic
equivalent forms of these stochastic models are obtained. The proposed
model of the previous section are unable to calculate the efficiency of
a two-stage system under VRS assumption. Thereby, by following the
Chen et al. [3] model we provide the stochastic models that measure
the efficiency of the two-stage systems under CRS and VRS assumptions
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respectively. Our proposed models are as follows:

Ẽ(chen−CRS)s
o = max

s∑
r=1

urỹro +
D∑

d=1

wdz̃do

s.t. P

{
m∑
i=1

vix̃io +
D∑

d=1

wdz̃do = 1

}
≥ (1− α)

P

{
s∑

r=1

urỹrj −
D∑

d=1

wdz̃dj ≤ 0

}
≥ (1− α), j = 1, . . . , n (13)

P

{
D∑

d=1

wsz̃dj −
m∑
i=1

vix̃ij ≤ 0

}
≥ (1− α), j = 1, . . . , n

ur, wd, vi ≥ 0 r = 1, . . . , s d = 1, . . . , D i = 1, . . . ,m

Ẽ(chen−V RS)s
o = max

s∑
r=1

urỹro +

D∑
d=1

wdz̃do + u01 + u02

s.t. P

{
m∑
i=1

vix̃io +

D∑
d=1

wdz̃do = 1

}
≥ (1− α)

P

{
s∑

r=1

urỹrj −
D∑

d=1

wdz̃dj + u02 ≤ 0

}
≥ (1− α), j = 1, . . . , n

(14)

P

{
d∑

d=1

wdz̃dj −
m∑
i=1

vix̃ij + u01 ≤ 0

}
≥ (1− α), j = 1, . . . , n

ur, wd, vi ≥ 0 r = 1, . . . , s d = 1, . . . , D i = 1, . . . ,m

u01, u02 free

Note that in these models, p means probability. The amount of α is pre-
determined that determines the level of error. In the objective functions
of models (13) and (14) where there is a random variable and we also
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have the following expression which is wrong

p

{
m∑
i=1

v∗i xio +
D∑

d=1

w∗dzdo = 1

}
= 0 ≥ (1− α)⇒ α ≥ 1

Thus, similar to the approach of the subsection (3-1), we presented the
following models:

E(chen−CRS)s
o = max k

s.t.

s∑
r=1

uryro +

D∑
d=1

wdzdo ≥ k

m∑
i=1

vixio −
D∑

d=1

wdzdo = 1

s∑
r=1

uryrj −
D∑

d=1

wdzdj ≤ 0, j = 1, . . . , n (15)

D∑
d=1

wdzdj −
m∑
i=1

vixij ≤ 0, j = 1, . . . , n

ur, wd, vi ≥ 0 r = 1, . . . , s d = 1, . . . , D i = 1, . . . ,m

E(chen−V RS)s
o = max k

s.t.
s∑

r=1

uryro +
D∑

d=1

wdzdo + u01 + u02 ≥ k

m∑
i=1

vixio +
D∑

d=1

wdzdo = 1

s∑
r=1

uryrj −
D∑

d=1

wdzdj + u02 ≤ 0, j = 1, . . . , n

(16)D∑
d=1

wdzdj −
m∑
i=1

vixij + u01 ≤ 0, j = 1, . . . , n

ur, wd, vi ≥ 0 r = 1, . . . , s d = 1, . . . , D i = 1, . . . ,m

u01, u02 free



20 S. ESFIDANI et al.

Now, the alternative form of the models (3) and (5), can be written as
follows:

E(chen−CRS)s′
o = max k

s.t.
s∑

r=1

uryro +
D∑

d=1

wdzdo ≥ k

m∑
i=1

vixio −
D∑

d=1

wdzdo ≤ 1

s∑
r=1

uryrj −
D∑

d=1

wdzdj ≤ 0, j = 1, . . . , n (17)

D∑
d=1

wdzdj −
m∑
i=1

vixij ≤ 0, j = 1, . . . , n

ur, wd, vi ≥ 0 r = 1, . . . , s d = 1, . . . , D i = 1, . . . ,m

E(chen−V RS)s′
o = max k

s.t.
s∑

r=1

uryro +
D∑

d=1

wdzdo + u01 + u02 ≥ k

m∑
i=1

vixio +
D∑

d=1

wdzdo ≤ 1

s∑
r=1

uryrj −
D∑

d=1

wdzdj + u02 ≤ 0, j = 1, . . . , n (18)

D∑
d=1

wdzdj −
m∑
i=1

vixij + u01 ≤ 0, j = 1, . . . , n

ur, wd, vi ≥ 0 r = 1, . . . , s d = 1, . . . , D i = 1, . . . ,m

u01, u02 free

Theorem 3.5. For models (15) and (17) (and also, for models (16)
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and (18)), we have E
(chen−CRS)s
o = E

(chen−CRS)s′
o ( and E

(chen−V RS)s
o =

E
(chen−V RS)s′
o ).

Proof. The proof is similar to the proof of theorem 3.1. �
Hence, the stochastic versions of the models (17) and (18) are as

follows:

Ẽs(chen−CRS)s′
o = max k

s.t. P

{
s∑

r=1

urỹro +

D∑
d=1

wdz̃do ≥ k

}
≥ (1− α)

P

{
m∑
i=1

vix̃io +
D∑

d=1

wdz̃do ≤ 1

}
≥ (1− α)

(19)

P

{
s∑

r=1

urỹrj −
D∑

d=1

wdz̃dj ≤ 0

}
≥ (1− α), j = 1, . . . , n

P

{
D∑

d=1

wdz̃dj −
m∑
i=1

vix̃ij ≤ 0

}
≥ (1− α), j = 1, . . . , n

ur, wd, vi ≥ 0, r = 1, . . . , s d = 1, . . . , D i = 1, . . . ,m

Ẽs(chen−V RS)s′
o = max k

s.t. P

{
s∑

r=1

urỹro +

D∑
d=1

wdz̃do + u01 + u02 ≥ k

}
≥ (1− α)

P

{
m∑
i=1

vix̃io +
D∑

d=1

wdz̃do ≤ 1

}
≥ (1− α)

(20)

P

{
s∑

r=1

urỹrj −
D∑

d=1

wdz̃dj + u02 ≤ 0

}
≥ (1− α), j = 1, . . . , n

P

{
D∑

d=1

wdz̃dj −
m∑
i=1

vix̃ij + u01 ≤ 0

}
≥ (1− α), j = 1, . . . , n

ur, wd, vi ≥ 0, r = 1, . . . , s d = 1, . . . , D i = 1, . . . ,m

u01, u02 free
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3.2.1 Deterministic equivalent of model (19)

In this subsection, we obtain the deterministic equivalent of model (19).
By using the similar procedure, the deterministic equivalent form of
model (19) is as follows:

Ẽ(chen−CRS)s′
o = max k

s.t.
s∑

r=1

uryro +
D∑

d=1

wdzdj − k + Φ−1(α)σo(k, u, w) = s′1

m∑
i=1

vixio +

D∑
d=1

wdzdj − Φ−1(α)σI(k, v, w) + s′2 = 1

s∑
r=1

uryrj −
D∑

d=1

wdzdj − Φ−1(α)σj(w, u) + s′3j = 0 j = 1, . . . , n

(21)

D∑
d=1

wdzdj −
m∑
i=1

vixij − Φ−1(α)σ′j(v, w) + s′4j = 0 j = 1, . . . , n

ur, wd, vi ≥ 0, r = 1, . . . , s d = 1, . . . , D i = 1, . . . ,m

s′3j , s
′
4j ≥ 0 j = 1, . . . , n

s′1, s
′
2 ≥ 0

That:

(σo(k, u, w))2 = var(

s∑
r=1

urỹro +

D∑
d=1

wdz̃do − k)

=

s∑
r=1

s∑
r′=1

urur′cov(ỹro, ỹr′o) +

D∑
d=1

D∑
d′=1

wdwd′cov(z̃do, z̃d′o)

+ 2cov((

s∑
r=1

urỹro), (

D∑
d=1

wdz̃do − k))
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(σI(k, v, w))2 = var(1− (
m∑
i=1

vix̃io +
D∑

d=1

wdz̃do))

= var(
m∑
i=1

vix̃io +
D∑

d=1

wdz̃do) =
m∑
i=1

m∑
i′=1

vivi′cov(x̃io, x̃i′o)

+

D∑
d=1

D∑
d′=1

wdwd′cov(z̃do, z̃d′o) + cov(

m∑
i=1

vix̃io,

D∑
d=1

wdz̃do)

(σj(w, u))2 = var(
D∑

d=1

wdz̃dj −
s∑

r=1

uryrj) =
s∑

r=1

s∑
r′=1

urur′cov(ỹrj , ỹr′j)

+
D∑

d=1

D∑
d′=1

wdwd′cov(z̃dj , z̃d′j)− 2cov(
D∑

d=1

wdz̃dj ,
s∑

r=1

urỹro)

(σ′j(w, u))2 = var(
m∑
i=1

vix̃ij −
D∑

d=1

wdz̃dj) =
D∑

d=1

D∑
d′=1

wdwd′cov(z̃dj , z̃d′j)

+

m∑
i=1

m∑
i′=1

vivi′cov(x̃ij , x̃i′j)− 2cov(

m∑
i=1

vix̃ij ,

D∑
d=1

wdz̃dj)

This model is a nonlinear programming. In order to convert this model
to a quadratic programming problem, the non-negative variables are γ,
γ′, γj , γ

′
j . Therefore Therefore the following quadratic programming

problem is obtained:
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Ẽ(chen−CRS)s′
o = max k

s.t.

s∑
r=1

uryro +

D∑
d=1

wdzdo − k + Φ−1(α)γ − s′1 = 0

m∑
i=1

vixio +
D∑

d=1

wdzdo − Φ−1(α)γ′ + s′2 = 1

s∑
r=1

uryrj −
D∑

d=1

wdzdj − Φ−1(α)γj + s′3j = 0 j = 1, . . . , n

D∑
d=1

wdzdj −
m∑
i=1

vixij − Φ−1(α)γ′j + s′4j = 0 j = 1, . . . , n

(22)

γ2 =
s∑

r=1

s∑
r′=1

urur′cov(ỹro, ỹr′o) +
D∑

d=1

D∑
d′=1

wdwd′cov(z̃do, z̃d′o)

+ 2cov((
s∑

r=1

urỹro), (
D∑

d=1

wdz̃do − k))

γ′
2

=

m∑
i=1

m∑
i′=1

vivi′cov(x̃io, x̃i′o) +

D∑
d=1

D∑
d′=1

wdwd′cov(z̃do, z̃d′o)

+ cov(

m∑
i=1

vix̃io,

D∑
d=1

wdz̃do)

γ2j =
s∑

r=1

s∑
r′=1

urur′cov(ỹrj , ỹr′j) +
D∑

d=1

D∑
d′=1

wdwd′cov(z̃dj , z̃d′j)

− 2cov(
D∑

d=1

wdz̃dj ,
s∑

r=1

urỹrj)

γ′
2

j =

D∑
d=1

D∑
d′=1

wdwd′cov(z̃dj , z̃d′j) +

m∑
i=1

m∑
i′=1

vivi′cov(x̃ij , x̃i′j)

− 2cov(

m∑
i=1

vix̃ij ,

D∑
d=1

wdz̃dj)

ur, wd, vi ≥ 0 r = 1, . . . , s d = 1, . . . , D i = 1, . . . ,m

γj , γ
′
j , s
′
3j , s

′
4j ≥ 0 j = 1, . . . , n

s′1, s
′
2, γ, γ

′ ≥ 0
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Theorem 3.6. For α ∈ (0, 0.5], if (u∗r , w
∗
d, v
∗
i , γ
∗, γ′

∗
, γ∗j , γ

′∗
j , s

′∗
1 , s

′∗
2 , s

′∗
3j ,

s′
∗
4j) be an optimal solution of model (22), we have 0 < Ẽ

(chen−CRS)s′
o ≤

1.

Proof. The proof is similar to the proof of Theorem 3.2. �
Now, if (u∗r , w

∗
d, v
∗
i , γ
∗, γ′

∗
, γ∗j , γ

′∗
j , s

′∗
1 , s

′∗
2 , s

′∗
3j , s

′∗
4j) is an optimal solution

of model (22), for j = o, the efficiency of the first and the second stages
are defined:

ẼI
o =

D∑
d=1

w∗dzdo/
m∑
i=1

v∗i xio, Ẽ
II
o =

s∑
r=1

u∗ryro/
D∑

d=1

w∗dzdo.

Therefore, there is λ ∈ (0, 1) that Ẽ
(chen−CRS)s′
o = λẼI

o + (1− λ)ẼII
o .

Lemma 3.7. For α ∈ (0, 0.5] and each DMUo, we have: 0 < ẼI
o ≤ 1,

0 < ẼII
o ≤ 1.

Proof. The proof is similar to the proof of lemma 3.3. �

Lemma 3.8. For α ∈ (0, 0.5], DMUo is stochastic overall efficient un-
der the model (18) if and only if, the first and the second stages are

stochastic efficient, i.e. Ẽ
(chen−V RS)s′
o = 1 if and only if, ẼI

o = ẼII
o = 1.

Proof. The proof is similar to the proof of lemma 3.4. �
By applying the aforementioned manner to the model (14), the deter-
ministic equivalent form of this model can be obtained as follows that is
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a nonlinear programming:

Ẽ(chen−V RS)s′
o = max k

s.t.

s∑
r=1

uryro +

D∑
d=1

wdzdo + u01 + u02 − k

+ Φ−1(α)σo(k, u, w, u01, u02) = s′′1

m∑
i=1

vixio +

D∑
d=1

wdzdo − Φ−1(α)σI(k, v, w) + s′′2 = 1

s∑
r=1

uryrj −
D∑

d=1

wdzdj − Φ−1(α)σj(w, u, u02) + s′′3j = 0, (23)

j = 1, . . . , n

D∑
d=1

wdzdj −
m∑
i=1

vixij + u01 − Φ−1(α)σ′j(v, w, u01) + s′′4j = 0,

j = 1, . . . , n

ur, wd, vi ≥ 0, r = 1, . . . , s d = 1, . . . , D i = 1, . . . ,m

s′′3j , s
′′
4j ≥ 0, j = 1, . . . , n

s′′1, s
′′
2 ≥ 0

u01, u02 free

We use the non-negative variables η, η′, ηj , η
′
j ≥ 0 in order to achieve a

quadratic programming problem. Therefore the quadratic programming
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problem is as follows:

Ẽ(chen−V RS)s′
o = max k

s.t.

s∑
r=1

uryro +

D∑
d=1

wdzdo + u01 + u02 − k + Φ−1(α)η = s′′1

m∑
i=1

vixio +
D∑

d=1

wdzdo − Φ−1(α)η′ + s′′2 = 1

s∑
r=1

uryrj −
D∑

d=1

wdzdj + u02 − Φ−1(α)ηj + s′′3j = 0 j = 1, . . . , n

(24)D∑
d=1

wdzdj −
m∑
i=1

vixij + u01 − Φ−1(α)η′j + s′′4j = 0 j = 1, . . . , n

η2 =
s∑

r=1

s∑
r′=1

urur′cov(ỹro, ỹr′o) +
D∑

d=1

D∑
d′=1

wdwd′cov(z̃do, z̃d′o)

+ 2cov((
s∑

r=1

urỹro + u01 + u02), (
D∑

d=1

wdz̃do − k))

η′
2

=

m∑
i=1

m∑
i′=1

vivi′cov(x̃io, x̃i′o) +

D∑
d=1

D∑
d′=1

wdwd′cov(z̃do, z̃d′o)

+ cov(

m∑
i=1

vix̃io,

D∑
d=1

wdz̃do)

η2j =
s∑

r=1

s∑
r′=1

urur′cov(ỹrj , ỹr′j) +
D∑

d=1

D∑
d′=1

wdwd′cov(z̃dj , z̃d′j)

− 2cov(
D∑

d=1

wdz̃dj ,
s∑

r=1

urỹrj + u02)

η′
2

j =

D∑
d=1

D∑
d′=1

wdwd′cov(z̃dj , z̃d′j) +

m∑
i=1

m∑
i′=1

vivi′cov(x̃ij , x̃i′j)

− 2cov(

m∑
i=1

vix̃ij ,

D∑
d=1

wdz̃dj − u01)

ur, wd, vi ≥ 0 r = 1, . . . , s d = 1, . . . , D i = 1, . . . ,m

η, η′, ηj , η
′
j , s
′′
3j , s

′′
4j ≥ 0 j = 1, . . . , n

s′′1, s
′′
2,≥ 0

u01, u02 free
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After solving this model for α ∈ (0, 0.5] , we define the efficiencies of the
system as follows:

Ẽ(chen−V RS)s′
o =

s∑
r=1

u∗ryro +
D∑

d=1

w∗dzdo + u∗01 + u∗02

m∑
i=1

v∗i xio +
D∑

d=1

w∗dzdo

ẼI
o =

D∑
d=1

w∗dzdo + u∗02

m∑
i=1

v∗i xio

, ẼII
o =

s∑
r=1

u∗ryro + u∗01

D∑
d=1

w∗dzdo

.

Wherein Ẽ
(chen−V RS)s′
o , ẼI

o , ẼII
o indicate the stochastic overall efficiency

and the stochastic efficiency of stage 1, 2 respectively. Therefore, there

is λ ∈ (0, 1) that Ẽ
(chen−V RS)s′
o = λẼI

o + (1− λ)ẼII
o .

Lemma 3.9. For α ∈ (0, 0.5] and each DMUo, we have: 0 < ẼI
o ≤ 1,

0 < ẼII
o ≤ 1.

Proof. The proof is similar to the proof of lemma 3.3. �

Lemma 3.10. For α ∈ (0, 0.5], DMUo is stochastic overall efficient
under the model (22) if and only if the first and the second stages are

stochastic efficient, i.e. Ẽ
(chen−V RS)s′
o = 1 if and only if ẼI

o = ẼII
o = 1.

Proof. The proof is similar to the proof of lemma 3.10. �
Finally, we note that the results of the efficiency of the system and
stages are in range (0, 1] in all of the proposed stochastic models for
α ∈ (0, 0.5]. If α ∈ (0.5, 1), it is probable that efficiencies are negative
or greater than 1. It must be noted that in many cases models (12),
(22) and (24) have multiple optimal solutions. Thus, in these models,
the overall efficiency decomposition will not be distinctive. Hence, we
are unable to compare the efficient stages of different DMUs together in
each model. Therefore, by following the Kao and Hwang [9] approach,
we presume that the efficiency of stage1, is the most important stage
from the point of view of the decision maker (DM) and compute the
maximum efficiency of stage 1, while the overall efficiency of system
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is unchanged. Then, we calculate the maximum efficiency of stage 2,
while the efficiency of stage 1 and the overall efficiency of system are
unchanged.

4 Case Study

In this section, we will illustrate the deterministic equivalent form of
the proposed stochastic model (9) for 10 Taiwanese non-life insurance
companies with data for the years 2000, 2001 and 2002. (Extracted
from Kao and Hwang [10]). Each company has a two-stage structure.
Table 1, shows the inputs, intermediate measures and outputs which
we utilized to illustrate the proposed models. And also, the expected
values, variance and covariance of inputs and outputs and intermediate
products of 10 Taiwanese non-life insurance companies over 3 years (
2000, 2001, 2002) are reported in the Tables 2, 3, 4.

Table 1. Case-Study Data

Inputs Intermediate outputs
measures

Operating Direct written Underwriting
expenses premiums profit (Y1)

(X1) (Z1)

Insurance Reinsurance Investment
expenses premiums profit

(X2) (Z2) (Y2)

4.1 Results of model (12)

Table 5 shows the obtained efficiencies of model (12). The results com-
puted by GAMS software and have been summarized in Table 5, by
assuming α = 0.45. In Table 5, first column renders the digit of each.
The stochastic efficiency of stages 1 and 2 including the overall efficiency
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Table 2. Expected values of inputs and outputs and intermediate prod-
ucts

DMU x1 x2 z1 z2 y1 y2
1 609.144 331.84067 3555.58433 434.71933 497.68233 308.54633

2 692.59867 685.96133 4836.93887 932.00267 1604.134 525.65567

3 685.96133 1746.196 17973.607 955.91233 1785.40433 227329567

4 1302.60233 431.97567 4748.43367 691.696 1250.30433 245.712

5 1882.52467 893.47933 8437.897 461.48067 1527.24733 314.55

6 643.68967 623.28767 3913.41267 266.801 832.955 254.061

7 1242.916 303.727 4489.91633 535.016 1126.69433 486.38433

8 1074.35133 310.51767 4990.15433 405.27133 1343.47533 190.75167

9 596.62933 329.95067 2580.06167 223.407 716.62667 84.879

10 687.394 557.275 3790.80967 220.83467 1201.766 128.18767

Table 3. Variance of DMUs

DMU V (x1) V (x2) V (y1) V (y2) V (z1) V (z2)

1 1784.26994 300.79361 671.52486 4936.03845 202064.75133 2099.73017

2 758.33795 1515.54017 51205.23591 41687.23591 125265.48223 2242.89558

3 9351.92953 2555.45268 216152.29449 549621.14553 3209601.78055 18868.09631

4 525.14956 29565.33416 72211.44903 18234.64829 179858.90393 141630.42004

5 21.50215 2141.8848 34081.27578 2457.04398 219670.39097 20606.32184

6 472.97451 11829.12608 127696.23112 5485.46206 189680.52738 2492.09949

7 3573.21137 25569.13235 116044.055 36413.60875 612679.9989 14489.4648

8 259 2028.876 48031.09782 7807.63465 120665.5085 1242.68069

9 954.6386 350.10067 21321.09776 507.10401 51477.83656 4398.47299

10 1242.916 303.727 36299.7866 3550.70277 612679.9989 2339.72772

Table 4. Covariance of DMUs

DMU C(x1, z1) C(x2, z1) C(x1, z2) C(x2, z2) C(y1, z1) C(y2, z1) C(y1, z2) C(y2, z2)

1 −1142.123 5087.865 984.4877 386.31060 −7343.44307 20612.57991 −641.112633 −18576.79194

2 −39770.723 −1107737.842 867.58313 885.19702 −51455.15378 −47494.62574 7130.72663 107891.8135

3 114936.28 60335.36 −7245.75694 −3392.15646 3209601.78055 −884800.1054 −18314.19532 53085.30383

4 5751.3461 −17373.886 −5588.3328 41217.20638 −50161.00695 −38165.55747 67314.5018 190560.3478

5 1388.28367 12031.667 −26409.12516 −3602.5339 33647.48797 −4924.38931 9771.87462 −81285.01944

6 2961.5767 43358.164 −380.79257 1927.14580 144285.4787 −26263.10335 9080.46352 291571.539

7 −14675.617 −36341.814 953.167494 12713.63501 65148.36857 −6119.64696 −5523.15373 −138352.2662

8 3613.9758 10156.61 −92.181387 −704.81939 21500.52459 14275.4333 3053.65983 17504.65016

9 −3385.12503 5067.92167 1668.0860 74583.117 33195.77192 −3275.72559 1463.72892 −26429.05463

10 71786.02378 32579.81545 4262.26277 1860.79293 36804.03399 −24800.49433 909473.1086 189365.5732

are listed in the columns 2 and 3 and 4 of Table 5, all of DMUs are in-
efficient. Between the inefficient, with scores of 0.54, 0.11 have the best
and the lowest overall efficiency. It is efficient in stage 2. The highest
efficiency belongs to stage 1 and in stage 2 with scores of 0.94 and 0.65,
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Table 5. Stochastic efficiency obtained from model (12)

Efficiency of stage 1 Efficiency of stage 2 Overall efficiency
DMU

1 0.94 0.4 0.37

2 0.72 0.59 0.43

3 0.54 1 0.54

4 0.8 0.24 0.19

5 0.49 0.23 0.11

6 0.37 0.59 0.22

7 0.46 0.26 0.12

8 0.38 0.65 0.25

9 0.47 0.34 0.16

10 0.55 0.46 0.25

respectively. In stage 1 and 2, showing efficiency scores of 0.37 and 0.23
have the lowest efficiency.

5 Conclusion

In practice, there are many systems with internal structures such as
network systems. NDEA is employed to evaluate the performance of
the network systems in presence of deterministic data. A special dis-
tinction of network systems are their two-stage systems denoting the
first stage which consumes the inputs to produce the intermediate mea-
sures, then these intermediate measures deploy to generate the outputs
of the second stage. In practice, the observations of inputs, interme-
diate measures, and outputs are imprecise and they can be considered
as stochastic data. Hence, SDEA is a useful method for measuring the
efficiency of black box systems with stochastic data. Mirbolouki et al.
[15] proposed a stochastic model that evaluates the efficiency of a black
box system based on a multiplier form of DEA. Therefore, in this paper,



32 S. ESFIDANI et al.

by using the non-compensatory property of the multiplication operator
and the compensatory property of the additive operator, we extended
NDEA and SDEA models and proposed the SNDEA models for com-
puting the stochastic efficiencies of the two-stage systems, in presence of
stochastic data, based on multiplicative and additive models. Then, for
our proposed stochastic models, we obtained the deterministic equiva-
lent forms and converted these deterministic forms into the quadratic
programming problems. Likewise, we showed that the obtained efficien-
cies of these models are positive for α ∈ (0, 0.5]. The proposed model
(12) is illustrated on a set of data for 10 Taiwanese non-life insurance
companies in the years 2000, 2001 and 2002, which were studied by Kao
and Hwang [9] utilizing the GAMS software. For future study, this work
can be extended to non- radial DEA models for measuring the efficiency
of a two-stage system in presence of stochastic data and ranking them
in cases where weakness of efficiencies for α ∈ (0.5, 1) are not witnessed.
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