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1 Introduction

Finite mixture (FM) model is one the most considered statistical tools for
cluster analysis in dealing with the various datasets in the biological and social
sciences. Some recently applications of the FM model can be found biometrics
[30], genetics and medicine [37], marketing [45], pattern recognition problems
[39], and reliability studies [11], among the others. The probability distribution
function (PDF) of a random variable X distributed by the FM model is

f(x; Θ) =

g∑
i=1

πifi(x;θi),

where π = (π1, ..., πg)
> is a vector of mixing proportions (πi ≥ 0 and

∑g
i=1 πi =

1), fi(x;θi) is the mixing component for i = 1, ..., g, and Θ = (π1, ..., πg−1,
θ1, ...,θg) denotes the parameters set. Details of the FM models can be found
in [41, 26, 27, 13]. Recently, the interest of using skew distributions in the
FM model has been grown due to their flexibility. For instance, Jamalizadeh
[19] proposed the finite mixture of univariate scale-shape mixture of normal
distributions (FM-SSMN) and studied some of its characteristics and prop-
erties. Wang [44] extended the FM-SSMN distributions in to multivariate
version and showed that the new model can provide interesting contour plots.
Based on the other class of skew distribution, Naderi et al. [31, 32] intro-
duced the finite mixture of univariate and multivariate normal mean-mixture
of Birnbaum-Saunders distribution, respectively.

Although all aforementioned distributions provide straightforward plat-
form for data analysis, they are defined in the real line, R, and using the R
distributions for positive valued (life time) data may leads to boundary bias
problem [36, 32]. To cope with these datasets, Ali [3] introduced the FM
model based on the inverse Rayleigh distribution. Ali [3] used this model for
engineering processes and provided some properties of the proposed model.
One can also find the mixture of gamma, exponential, inverse Gaussian and
Weibull distributions in Wiper et al. [46, 21, 7, 20].

The Birnbaum-Saunders (BS) distribution [10] is one of most flexible life
models. Applications of the BS distribution have been recently used for data
analysis can be found in diverse fields such as econometrics Aslam and Kantam
[4], engineering Jamalizadeh et al. [18] and environmental analysis Moham-
madi et al. [29]. Theoretically, the random variable T generated from the
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linear transformation

T =
β

4

[
αX +

√
(αX)2 + 4

]2
, (1)

is said to follow the BS distribution, where α and β are the shape and scale
parameters, respectively, and X has a standard normal distribution, N(0, 1).
Although the main motivation of the BS distribution originally came from
the modeling material fatigue Birnbaum and Saunders [10], various extensions
of the BS distribution are proposed through the linear representation (1) to
accommodate strongly skewed and heavily tailed data. For instance, by re-
placing the standard normal variable X in (1) with other random variables,
Vilca-Labra et al . [43], Khosravi et al. [22] and Hashemi et al. [15], proposed
the skew-normal-BS (SN-BS), skew-t-BS (ST-BS) and skew-normal-t distribu-
tions, respectively. More recently, [16] also introduced Normal mean-variance
Lindley Birnbaum-Saunders distribution as an alternative model for analysing
positive financial datasets. Although, these generalized models may have not
physical meaning, as the BS distribution, they can be used to fit right-skewed
and non-negative datasets.

Recently, Negarestani et al. [34] exploited the definition of restricted skew
normal distribution to introduce a class of skewed model which can provide
wider range of skewness and kurtosis than the skew-normal and skew-t dis-
tributions. Calling the class of mean-mixture of normal (MMN) distribution,
Negarestani et al. [34] also studied the properties of new model and illustrated
its utility in regression and time series analyses. Owning the interesting prop-
erties of MMN model, the main objectives of this paper are as follows. 1)
We present a new extension of the BS distribution by considering the MMN
distribution as a core model in the representation (1). 2) Some interesting
properties of the new model, referred to as the MMN-BS henceforth, are stud-
ied. 3) Finally, we also propose a FM model based on the new extended BS
distribution for analyzing multi-modal datasets.

The outline of the paper is as follows. In Section 2, we establish the nota-
tions and outline some preliminary results. In Section 3 we discuss the main
results of the paper and some specification of the MMN-BS model. The finite
mixture of MMN-BS distributions along with its parameter estimation via an
EM-type algorithm are presented in Section 4. The utility of the proposed
model is illustrated in Sections 5 and 6 by considering two real datasets and
conducting two simulation studies. Some concluding remarks are finally given
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in Section 7.

2 Mean-mixtures of normal distribution

Let Z ba a normally distributed random variable with mean zero and variance
1, N(0, 1). Following Negarestani et al. [34], a random variable Y is in the
mean-mixture of normal family, Y ∼ MMN(µ, σ2, λ,ν), if it can be written as

Y = µ+ σ
(
δU + (1− δ2)1/2X

)
,

where δ = λ/
√

1 + λ2 and U is an arbitrary random variable, independent of
X, with cumulative distribution function (CDF) H(·;ν) or probability distri-
bution function (PDF) h(·;ν) which is indexed by a scalar or vector parameter
ν ∈ Rk. It can be seen that Y has the following hierarchical representation:

Y |(U = u) ∼ N(µ+ σδu, σ2(1− δ2)),
U ∼ h(0, 1;ν). (2)

Then, the pdf of Y ∼ MMN(µ, σ2, λ,ν) is given by

fMMN(y;µ, σ2, λ,ν) =

∫ +∞

−∞
φ(y;µ+ σδu, σ2(1− δ2)) dH(u;ν)

=

∫ +∞

−∞
φ(y;µ+ σδu, σ2(1− δ2))h(u;ν) du, y ∈ R,

(3)

where φ(·;µ, σ2) is the PDF of normal distribution with mean µ and variance
σ2. In the following, three spacial cases of the MMN model are introduced.

2.1 Convolution with truncated normal distribution

If U in the hierarchical representation (2) followed by the standard truncated
normal distribution lying within the truncated interval (0,+∞), denoted by
U ∼ TN(0, 1; (0,+∞)), then the random variable Y has a skew-normal distri-
bution [5], whose PDF can be given as

fSN(y;µ, σ2, λ) = 2φ(y, µ, σ2)Φ

(
λ
y − µ
σ

)
. (4)
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where Φ(·) is the CDF of N(0, 1). We will use the notation Y ∼ SN(µ, σ2, λ)
if Y has PDF (4).

Lemma 2.1. Suppose Y ∼ SN(µ, σ2, λ) and U ∼ TN(0, 1; (0,∞)). Then,
U |Y = y ∼ TN

(
µ, (1 + λ2)−1; (0,∞)

)
, where µ = wλ

/√
1 + λ2. Furthermore,

for k = 2, . . . ,

E(Uk|Y = y) =µE(Uk−1|Y = y) +
k − 1

1 + λ2
E(Uk−2|Y = y),

E(U |Y = y) =µ+
φ (λw)√

1 + λ2Φ (λw)
.

where w = (y − µ)/σ.

Proof. Details of proof can be found in [5]. �

2.2 Convolution with exponential distribution

The convected mean-mixture normal of exponential (MMNE) distribution can
be obtained by the hierarchical representation (2), if the random variable U
has a standard exponential distribution, then, the PDF of Y can be obtained
from (3) as

fMMNE(y;µ, σ2, λ) =

√
1 + λ2

σ|λ|
exp

{
−
√

1 + λ2

λ
w +

1

2λ2

}

Φ

(
λ
√

1 + λ2w − 1

|λ|

)
, y ∈ R;λ 6= 0

where w = (y − µ)/σ. In this case, we denote Y ∼ MMNE(µ, σ2, λ).

Lemma 2.2. If Y ∼ MMNE(µ, σ2, λ) and U ∼ E(1), Then, U |Y = y ∼
TN

(
µ, λ−2; (0,∞)

)
, where µ = w

√
1+λ2

λ − λ−2. Furthermore, for k = 1, 2, . . . ,

E(Uk|Y = y) =µE(Uk−1|Y = y) +
k − 1

λ2
E(Uk−2|Y = y),

E(U |Y = y) =µ+
φ (|λ|µ)

|λ|Φ (|λ|µ)
.

Proof. The proof can be found in Negarestani et al. [34]. �
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2.3 Convolution with mixture of exponential and half-normal
distributions

Here, we assume that the random variable U in (2) follows a mixture of the
exponential with mean 2 and the standard half-normal distributions with PDF

fU (u; ν) = ν
1

2
exp

{
−u

2

}
+ 2(1− ν)φ(u), u > 0, 0 < ν < 1.

The density of Y is then given by

fMMNEH(y;µ, σ2, λ, ν) =
ν
√

1 + λ2

2σ|λ|
exp

{
−
√

1 + λ2

2λ
w +

1

8λ2
}

Φ

(
λ
√

1 + λ2w − 1

|λ|

)
+ (1− ν)

2

σ
φ(w)Φ(λw), y ∈ R (5)

where µ ∈ R, σ2 > 0, and 0 < ν < 1. In this case, we denote Y ∼
MMNEH(µ, σ2, λ, ν).

Lemma 2.3. Let Y ∼ MMNEH(µ, σ2, λ, ν) and U has PDF (5). Then, the
conditional PDF of U , given Y = y is

fU |Y=y(u) = π(y)
φ
(
u;µ1, λ

−2)
Φ(|λ|µ1)

+ (1− π(y))
φ
(
u;µ2, (1 + λ2)−1

)
Φ(λz)

where µ1 = (λ
√

1 + λ2w − 1/2)
/
λ2, and µ2 = wλ/

√
1 + λ2,

π(y) =

√
1 + λ2ν

2σ|λ|fMMNEH(y;µ, σ2, λ, ν)
exp

{
−
√

1 + λ2

2λ
w +

1

8λ2

}
Φ(|λ|µ1).

Furthermore, for any y ∈ R, and k = 1, 2, . . . ,

E
(
Uk|Y = y

)
= π(y)E

(
V k
1

)
+ (1− π(y))E(V k

2 ),
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where V1 ∼ TN
(
µ1, λ

−2; (0,∞)
)
, V2 ∼ TN

(
µ2, (1 + λ2)−1; (0,∞)

)
and

E(V1) =µ1 +
φ (|λ|µ1)
|λ|Φ (|λ|µ1)

,

E(V k
1 ) = µ1E(V k−1

1 |Y = y) +
k − 1

λ2
E(V k−2

1 |Y = y), k ≥ 2,

E(V2) =µ2 +
φ (λz)

(1 + λ2)Φ (λz)
,

E(V k
2 ) = µ2E(V k−1

2 |Y = y) +
k − 1

1 + λ2
E(V k−2

2 |Y = y), k ≥ 2.

Proof. The proof can be found in Negarestani et al. [34]. �

3 The mean-mixtures of normal-Birnbaum-Saunders
distribution

Definition 3.1. A positive random variable T is said to have a MMN-BS
distribution if T has a linear relation with the MMN model as

T =
β

4

[
αY +

√
(αY )2 + 4

]2
(6)

where Y ∼ MMN(0, 1, λ,ν). The PDF and the corresponding CDF of T can
be presented by

fMMN-BS(t;α, β, λ,ν) = fMMN(a(t, α, β); 0, 1, λ,ν)A(t, α, β),

FMMN-BS(t;α, β, λ,ν) = FMMN(a(t, α, β); 0, 1, λ,ν)), t > 0, (7)

where FMMN(·) is the CDF of the standard (µ = 0, σ2 = 1) MMN distribution
and

a(t, α, β) =
1

α

(√
t

β
−
√
β

t

)
and A(t, α, β) =

t+ β

2α
√
t3β

.

The notation T ∼ MMN-BS(α, β, λ,ν) is used henceforth if T has PDF
(7). Fig. 1 shows a graphical illustration of the PDF (7) for two special cases
of MMN model and for β = 1 and different setting of parameters. It can
be observe that the MMN-BS distribution is an asymmetric and positively
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Figure 1: The density plots of the MMNE-BS (up) and MMNEH-BS (down)
distribution for various values of parameters with β = 1.

skewed distribution and can provide diverse degrees of skewness and kurtosis
which enable us to utilize it in order to model positive data. It is also clear
that the parameters λ and ν have substantial effects on its skewness and
kurtosis of the SN-BS (see [42]; for detail SN-BS), mean-mixture normal of
exponential-BS (MMNE-BS) and mean-mixture normal of exponential-half-
normal BS (MMNEH-BS) distributions.

To investigate the effects of shape parameters on the skewness and kurtosis,
the skewness and kurtosis of T can be obtained respectively as

γt =
µ3 − 3µ1µ2 + 2µ31

(µ2 − µ21)1.5
and κt =

µ4 − 4µ1µ3 + 6µ21µ2 − 3µ41
(µ2 − µ21)2

,
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where µr = E(T r) for r = 1, 2, 3, 4. The closed form of µr are provided in
Appendix A. Table 1 and 2 give the numerical value of γt and κt for the
MMNE-BS and MMNEH-BS distributions with different sets of parameter
values. It can be observed from these Tables that the MMN-BS family of
distributions can takes wider ranges of skewness and kurtosis as compared
with the BS, SN-BS and ST-BS distributions.

Table 1: Value of skewness and kurtosis based on moments of the
MMNEBS(α, β, λ) distribution when β = 1.

|λ| = 0.10 |λ| = 0.25
γt κt γt κt

α −λ λ −λ λ −λ λ −λ λ

0.40 1.1991 1.1739 2.3673 2.2545 1.2242 1.2309 2.4770 2.5575
0.50 1.4840 1.4395 3.5983 3.3573 1.5279 1.4946 3.8303 3.7146
0.75 2.1207 2.0102 7.1815 6.3808 2.2209 2.0413 7.9199 6.7108
1.00 2.6216 2.4367 10.7375 9.1701 2.7814 2.4301 12.1558 9.2837
1.25 2.9933 2.7413 13.7563 11.4118 3.2057 2.6969 15.8653 11.2403
1.50 3.2638 2.9570 16.1422 13.1159 3.5188 2.8804 18.8588 12.6644
2.00 3.6044 3.2197 19.3161 15.2516 3.9184 3.0796 22.9355 14.0077

|λ| = 0.50 |λ| = 0.75
0.40 1.2357 1.6756 2.5515 5.8180 1.2242 2.5360 2.5349 14.6000
0.50 1.5755 1.9941 4.0992 8.0149 1.6018 2.9379 4.2600 18.9943
0.75 2.3671 2.6047 9.0438 13.0219 2.4903 3.6134 10.0387 27.0506
1.00 3.0268 2.9922 14.4702 16.6274 3.2450 3.9014 16.6750 28.9705
1.25 3.5377 3.2198 19.4101 18.5227 3.8377 3.8318 22.8930 24.9290
1.50 3.9200 3.3034 23.4986 18.3337 4.2849 3.5326 28.1303 18.9983
2.00 4.4139 3.0925 29.2055 13.7152 4.8665 2.8173 35.5539 10.1241

|λ| = 1 |λ| = 2
0.40 1.2114 3.4686 2.4907 26.7954 1.2449 5.3426 2.4583 53.4120
0.50 1.6236 3.8938 4.3810 32.7632 1.7498 5.1274 4.9410 44.0425
0.75 2.6010 4.4305 10.9645 38.2974 2.9948 3.9147 14.4840 20.9382
1.00 3.4437 4.2781 18.8071 30.8258 4.1258 2.9923 27.0290 10.7827
1.25 4.1125 3.7694 26.3225 21.0925 5.0500 2.4275 39.7635 6.3796
1.50 4.6201 3.2364 32.7356 14.0882 5.7615 2.0726 50.9809 4.1822
2.00 5.2827 2.4468 41.9230 6.8264 6.6968 1.6871 67.4229 2.2166

Proposition 3.2. The stochastic representation of the MMN-BS distribution
is

T =
β

4

[
α(X + λU) +

√
(α(X + λU))2 + 4

]2
,
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Table 2: Value of skewness and kurtosis based on moments of the
MMNEHBS(α, β, λ, ν) distribution when β = 1.

ν = 0.2 ν = 0.5
γt κt γt κt

|λ| α −λ λ −λ λ −λ λ −λ λ

0.10 0.40 1.1983 1.1829 2.3645 2.3047 1.2048 1.1940 2.3922 2.3593
0.50 1.4838 1.4499 3.5971 3.4262 1.4948 1.4601 3.6540 3.4872
0.75 2.1218 2.0230 7.1885 6.4956 2.1461 2.0263 7.3636 6.5318
1.00 2.6239 2.4506 10.7561 9.3197 2.6621 2.4437 11.0865 9.2848
1.25 2.9967 2.7555 13.7866 11.5840 3.0471 2.7384 14.2725 11.4625
1.50 3.2680 2.9711 16.1826 13.3019 3.3282 2.9454 16.8041 13.0986
2.00 3.6097 3.2319 19.3720 15.4170 3.6834 3.1916 20.1931 15.0381

0.25 0.40 1.2108 1.4398 2.4423 4.4559 1.2108 1.6176 2.4531 5.6512
0.50 1.5174 1.7567 3.7926 6.4960 1.5308 1.9527 3.8685 8.0144
0.75 2.2154 2.4204 7.8897 11.8634 2.2639 2.6282 8.2488 13.8267
1.00 2.7793 2.8911 12.1458 16.4337 2.8616 3.0831 12.8895 18.3884
1.25 3.2064 3.2027 15.8784 19.4875 3.3174 3.3673 17.0119 21.1087
1.50 3.5216 3.3778 18.8941 20.5395 3.6552 3.5003 20.3697 21.4939
2.00 3.9240 3.3825 23.0070 17.8196 4.0880 3.3697 24.9853 17.0840

0.50 0.40 1.2008 3.6618 2.4960 40.2918 1.1675 3.8523 2.3913 35.8592
0.50 1.5512 4.4101 4.0404 55.2556 1.5465 4.4392 4.0360 45.7668
0.75 2.3579 5.6390 9.0244 78.2803 2.4206 5.2712 9.5176 57.5466
1.00 3.0275 5.8260 14.5288 70.7490 3.1512 5.2266 15.7400 48.7422
1.25 3.5464 5.3214 19.5613 51.6264 3.7202 4.6844 21.5195 34.6440
1.50 3.9351 4.6295 23.7398 35.4424 4.1477 4.0603 26.3608 23.8162
2.00 4.4383 3.4747 29.5951 17.1771 4.7019 3.0776 33.1924 12.0015

1.00 0.40 1.1911 9.2654 2.5535 177.5548 1.1331 6.9628 2.2944 92.0197
0.50 1.6227 9.2593 4.4887 157.4775 1.6038 6.7867 4.3741 78.3611
0.75 2.6307 7.4555 11.3219 84.4980 2.7103 5.3399 12.0072 40.0730
1.00 3.5003 5.7516 19.5641 46.7636 3.6720 4.1654 21.5092 22.1659
1.25 4.1948 4.5486 27.5481 28.4080 4.4426 3.4094 30.8606 14.0110
1.50 4.7249 3.6769 34.4185 18.1179 5.0311 2.8939 38.9664 9.6378
1.75 5.4210 2.5934 44.3478 8.1153 5.8025 2.2307 50.7295 5.1432

where X ∼ N(0, 1) and U have PDF h(u;ν), independently.

Proof. The proposition can be readily obtained throughout (1) and (6). �

Theorem 3.3. Some properties of the MMN-BS distribution are as follows:

1. The MMN-BS distribution contains the ordinary BS distribution as λ→



MIXTURE OF EXTENDED BIRNBAUM-SAUNDERS ... 11

0.

2. The random variable T distributed by MMN-BS(α, β, λ,ν) is degenerated
to β as α tends to zero.

3. If T ∼ MMN-BS(α, β, λ,ν), then

Y =
1

α

[√
T

β
−
√
β

T

]
∼ MMN(0, 1, λ,ν).

4. Let T ∼ MMN-BS(α, β, λ,ν). It can be easily shown that the hazard rate
function of T is

H(t) =
fMMN-BS(t;α, β, λ,ν)

1− FMMN(a(t, α, β); 0, 1, λ,ν)
.

Theorem 3.4. Let EBS Stands for the extended Birnbaum-Saunders distri-
bution [24]. Then, the hierarchical representation of T ∼ MMN-BS(α, β, λ,ν)
is given as

T |U = u ∼ EBS(α
√

1− δ2, β,− δu√
1− δ2

),

U ∼ h(u;ν).

Proof. The proof is completed by Bayes’ rule and some mathematical work.
�

Proposition 3.5. Let U ∼ TN(0, 1; (0,∞)) and T ∼ SN-BS(α, β, λ) with
PDF

fSN-BS(t;α, β, λ) = fSN(a(t, α, β); 0, 1, λ)A(t;α, β), t > 0.

Then, U |T = t ∼ TN
(
µ′, (1 + λ2)−1; (0,∞)

)
, where µ′ = a(t, α, β)λ

/√
1 + λ2.

Moreover, for k = 1, 2, . . . ,

E(Uk|T = t) = µ′E(Uk−1|T = t) +
k − 1

1 + λ2
E(Uk−2|T = t),

where

E(U |T = t) = µ′ +
φ (λa(t, α, β))√

1 + λ2Φ (λa(t, α, β))
.
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Proof. Details of proof can be found in [42]. �

Theorem 3.6. Let U ∼ E(1) and T ∼ MMNE-BS(α, β, λ) with PDF

fMMNE-BS(t;α, β, λ) = fMMNE(a(t, α, β); 0, 1, λ)A(t, α, β), t > 0. (8)

Then, U |T = t ∼ TN
(
µ′, λ−2; (0,∞)

)
, where µ′ = a(t, α, β)

√
1+λ2

λ − λ−2.
Moreover, for k = 2, . . . ,

E(Uk|T = t) = µ′E(Uk−1|T = t) +
k − 1

λ2
E(Uk−2|T = t),

where

E(U |T = t) = µ′ +
φ (|λ|µ′)
|λ|Φ (|λ|µ′)

.

Proof. From Lemma 2.2, we have T |U = u ∼ EBS(α
√

1− δ2, β,− δu√
1−δ2 ).

Using (8) and some algebraic factorization, the conditional pdf can be obtained
by applying Baye’s rule as

f(u|t) =
f(t, u)

f(t)
=
f(t|u)f(u)

f(t)

=

A(t, α, β)√
2π(1− δ2)

exp
{
− 1

2(1− δ2)
(
a(t, α, β)− λ√

1+λ2
u
)2}

e−u

A(t, α, β)
√
1+λ2

|λ| exp
{
−
√
1+λ2

λ a(t, α, β) + 1
2λ2

}
Φ
(
λ
√
1+λ2a(t,α,β)−1

|λ|

)

After some algebraic manipulations, the resulting conditional distribution of
U given T = t is given by

f(u|t) =
|λ| exp

{
− λ2

2

(
u− µ′

)2}
√

2πΦ (|λ|µ′)

Thus, the conditional distribution of U given T = t is TN
(
µ′, λ−2; (0,∞)

)
.

Based on some particular moments of the truncared normal distribution have
tractable forms, we have

E(Uk|T = t) = µ′E(Uk−1|T = t) +
k − 1

λ2
E(Uk−2|T = t), k = 2, 3, . . . ,
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where

E(U |T = t) = µ′ +
φ (|λ|µ′)
|λ|Φ (|λ|µ′)

.

�

Theorem 3.7. Let U has PDF (5) and T ∼ MMNEH-BS(α, β, λ, ν) with
PDF

fMMNEH-BS(t;α, β, λ, ν) = fMMNEH(a(t, α, β); 0, 1, λ, ν)A(t, α, β) t > 0.

Then, the PDF of conditional distribution U |T = t is

fU |T=t(u) = π(t)
φ
(
u;µ′1, λ

−2)
Φ(|λ|µ′1)

+ (1− π(t))
φ
(
u;µ′2,

1
1+λ2

)
Φ(λa(t, α, β)

,

where µ′1 = (λ
√

1 + λ2a(t, α, β)− 1/2)
/
λ2, and µ′2 = λa(t, α, β)

/√
1 + λ2,

π(t) =

√
1 + λ2νΦ(|λ|µ′1)

2|λ|fMMNEH(a(t, α, β); 0, 1, λ, ν)
exp

{
−
√

1 + λ2

2λ
a(t, α, β) +

1

8λ2

}
.

Furthermore, for any t ∈ R+, and k = 1, 2, . . . ,

E
(
Uk|T = t

)
= π(y)E

(
V k
1

)
+ (1− π(y))E(V k

2 ),

where V1 ∼ TN
(
µ′1, λ

−2; (0,∞)
)
, V2 ∼ TN

(
µ′2, (1 + λ2)−1; (0,∞)

)
and

E(V1) =µ′1 +
φ (|λ|µ′1)
|λ|Φ (|λ|µ′1)

,

E(V k
1 ) = µ′1E(V k−1

1 |T = t) +
k − 1

λ2
E(V k−2

1 |T = t), k ≥ 2,

E(V2) =µ′2 +
φ (λa(t, α, β))

(1 + λ2)Φ (λa(t, α, β))
,

E(V k
2 ) = µ′2E(V k−1

2 |T = t) +
k − 1

1 + λ2
E(V k−2

2 |T = t), k ≥ 2.
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Proof. Based on Theorm 3.6, the conditional pdf can be obtained by applying
Baye’s rule as

f(u|t) =
f(t, u)

f(t)
=
f(t|u)f(u)

f(t)

=

A(t, α, β)√
2π(1− δ2)

exp
{
− 1

2(1− δ2)
(
a(t, α, β)− λ√

1+λ2
u
)2}

A(t, α, β)fMMNEH(a(t, α, β); 0, 1, λ, ν)

×
(
ν

1

2
exp

{
−u

2

}
+ 2(1− ν)φ(u)

)

=

ν
2√

2π(1− δ2)
exp

{
− 1

2(1− δ2)
(
a(t, α, β)− λ√

1+λ2
u
)2}

e−
u
2

fMMNEH(a(t, α, β); 0, 1, λ, ν)

+

2(1− ν)√
2π(1− δ2)

exp
{
− 1

2(1− δ2)
(
a(t, α, β)− λ√

1+λ2
u
)2}

φ(u)

fMMNEH(a(t, α, β); 0, 1, λ, ν)

After some algebraic manipulations, the resulting conditional distribution of
U given T = t is given by

f(u|t) = π(t)
φ
(
u;µ′1, λ

−2)
Φ(|λ|µ′1)

+ (1− π(t))
φ
(
u;µ′2,

1
1+λ2

)
Φ(λa(t, α, β)

.

Thus, the conditional distribution of U given T = t is mixture of two truncated
normal with distributions V1 ∼ TN

(
µ′1, λ

−2; (0,∞)
)

and V2 ∼ TN
(
µ′2, (1 +

λ2)−1; (0,∞)
)
, respectively, and mixing parameter π(t). Based on some par-

ticular moments of the truncared normal distribution, the proof of conditional
expectation is straightforward. �

The above theorems are used in obtaining the complete log-likelihood and
conditional expectation for employing EM-type algorithm.

4 Finite mixture of mean-mixtures of normal
Birnbaum-Saunders

In this section, the maximum likelihood (ML) estimate of the finite mixture
of MMN-BS (FM-MMN-BS) distributions is obtained by implementing an
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EM-type algorithm Dempster et al. ([12]. For the sake of notation, let T =
(T1, . . . , Tn) be a vector of independent random samples identically arises from
a FM-MMN-BS distributions. Then, the pdf of Tj for j = 1, 2, . . . , n is

f(tj ,Θ) =

g∑
i=1

πifMMN-BS(tj ;θi), πi ≥ 0,

g∑
i=1

πi = 1, (9)

where Θ = (π,θ1, . . . ,θg) with θi = (αi, βi, λi, νi) and π = (π1, . . . , πg−1).
Define a set of latent component indicators Zj = (Z1j , . . . , Zgj)

> for each
j = 1, . . . , n, where Zrj = 1 if Tj arises from the component r and otherwise
zero. Therefore, it is convenient to assume Zj is followed by a multinomial
distribution with 1 trial and cell probabilities π1, . . . , πg, denoted by Zj ∼
M(1;π1, . . . , πg). This setting leads to obtain the hierarchical representation
of (9) as

Tj |Uj , Zij = 1 ∼ EBS(αi

√
1− δ2i , βi,−

δiuj√
1− δ2i

),

Uj ∼ H(u;νi),

Zij ∼M(1;πi, . . . , πg), (10)

where δi = λi/
√

1 + λ2i . Considering the observed data t = (t1, . . . , tn)>

and latent variables u = (u1, . . . , un) and Z = (Z1, . . . ,Zn), the hierarchical
representation (10) results the complete-data log-likelihood function of Θ,
ignoring constant values, as

`c(Θ|t,u,Z) =
n∑
j=1

g∑
i=1

Zij

{
log πi − log

(
αi

√
1− δ2i

)

+ log
( tj + βi√

βi

)
− 1

2(1− δ2i )
(a(tj , αi, βi)− δiuj)2 + log h(uj ;νi)

}
. (11)

To obtain the ML estimate of parameters involved in (11), the expecta-
tion conditional maximization (ECM; Meng and Rubin [28]) algorithm is used.
The ECM algorithm simplify the estimation procedure by breaking the maxi-
mization step into several conditional maximization (CM) steps and preserves
convergence properties of the EM approach. The ECM algorithm for ML
estimation of the FM-MMN-BS distributions proceeds as follows:
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• Initialization: Set a reasonable starting values for Θ, as Θ(k), for the
number of iteration k = 0. In our data analysis, the following procedure
for automatically generating Θ(0) is exploited:

1. Partition the data via the K-means algorithm and set ẑ
(0)
ij as the

resulting allocation membership. Then, for each cluster i, set π̂
(0)
i =∑n

j=1 ẑ
(0)
ij /n.

2. The initial value of shapes and scales parameters α̂
(0)
i and β̂

(0)
i can

be created by the modified moment estimates proposed by Ng et
al. [35] for the ith cluster.

3. The initial skewness λ̂
(0)
i ’s to be zero and relatively ν̂

(0)
i = 0.5.

• Expectation (E) step: In iteration k + 1, compute the so-called Q-
function, defined as the expected value of the complete-data log-likelihood
(11) with respect to the conditional distribution of U , Z given the ob-

served data t and Θ̂(k). Here, we need û
(k)
1ij = E(Uj |tj , Zij = 1, Θ̂(k)),

û
(k)
2ij = E(U2

j |tj , Zij = 1, Θ̂(k)), Ψ̂
(k)
ij = E

[
log h(uj ;ν)|tj , Zij = 1, Θ̂(k)

]
,

and the posterior probability of tj belong to the ith component of the
mixture as

ẑ
(k)
ij = E(Zij |tj , Θ̂(k)) =

π̂
(k)
i fMMN-BS(tj , θ̂

(k)
i )

f(tj , Θ̂(k))
.

These results in the Q-function written as

Q(Θ|Θ̂(k)) =

n∑
j=1

G∑
i=1

ẑij

{
log πi − log(αi)−

1

2
log(1− δ2i ) + log(

tj + βi√
βi

)

− 1

2(1− δ2i )
(a2(tj ;αi, βi)− 2a(tj , αi, βi)δiû1ij + δ2i û2ij) + Ψ̂

(k)
ij

}
.

• CM-steps: Maximizing Q-function with respect to the unknown param-
eters leads to the following CM steps.

CM1: Calculate π̂
(k+1)
i = n̂

(k)
i

/
n where n̂

(k)
i =

∑n
j=1 ẑ

(k)
ij .
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CM2: Update α̂
(k)
i and δ̂

(k)
i by

α̂2
(k+1)

i =

∑n
j=1 ẑ

(k)
ij η2(tj , β̂

(k)
i )∑n

j=1 ẑ
(k)
ij

+

[
1−

∑n
j=1 ẑ

(k)
ij û

(k)
2ij∑n

j=1 ẑ
(k)
ij

]
[∑n

j=1 ẑ
(k)
ij û

(k)
1ij η(tj , β̂

(k)
i )∑n

j=1 ẑ
(k)
ij û

(k)
2ij

]2
,

δ̂
(k+1)
i =

∑n
j=1 ẑ

(k)
ij û

(k)
1ij η(tj , β̂

(k)
i )

α̂
(k)
i

∑n
j=1 ẑ

(k)
ij û

(k)
2ij

,

where η(tj , β̂
(k)
i ) =

√
tj
/
β̂
(k)
i −

√
β̂
(k)
i

/
tj . Consequently, λ̂

(k+1)
i =

δ̂
(k+1)
i

/√
1− δ̂2(k+1)

i .

CM3: For the fixed α̂
(k+1)
i and δ̂

(k+1)
i , update β̂

(k+1)
i using β̂

(k+1)
i =

arg maxβi `β(Θ̂(k)), where

`β(Θ̂(k)) =

n∑
j=1

ẑij

{
log πi − log(αi)−

1

2
log(1− δ2i ) + log(

tj + βi√
βi

)

− 1

2(1− δ2i )
(a2(tj ;αi, βi)− 2a(tj , αi, βi)δiû1ij + δ2i û2ij) + Ψ̂

(k)
ij

}
.

CM3: The update of νi depends on the distribution of latent variable U

and can be obtained from ν̂i = arg maxν
∑n

j=1 ẑijΨ̂
(k)
ij .

4.1 Some practical implementation aspects

Remark 4.1. For the spacial cases considered in Section 3, the closed form of

the û
(k)
1ij and û

(k)
2ij can be obtained by Proposition 3.5, and Theorems 3.6 and

3.7. We also note both SN-BS and MMNE-BS distributions do not have extra
parameter ν, however, for the MMNEH-BS the explicit expression for Ψ

(k)
ij is

difficult to obtain. Thus, we recommend to use the expectation conditional
maximization either (ECME; Liu and Rubin [25]) algorithm by maximizing a
simpler constrained log-likelihood function constituted on the basis of (t,Z),
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in order to update ν̂
(k)
i . This yield to replace the following CML estimate of

νi

ν̂
(k+1)
i = arg max

νi


n∑
j=1

ẑij log fMMNEH-BS

(
tj ; α̂

(k+1)
i , β̂

(k+1)
i , λ̂

(k+1)
i , νi

) .

Remark 4.2. Stopping rule. The above E- and CM-steps of the ECM al-
gorithm are iterated until either the number of iterations exceeds the limit
(Kmax) or a convergence rule is satisfied. In our data analysis, Aitken accel-
eration Aitken [1] is used as a stopping criterion. Based on Aitken approach,

the algorithm is considered to have converged if the increment, `
(k+1)
∞ − `(k),

is less than a prescribed tolerance, ε, where the asymptotic estimate of the
log-likelihood is given as

`(k+1)
∞ =

`(k+2)`(k) − `(k+1)2

`(k+2) − 2`(k+1) + `(k)
,

and `(k) =
∑j

j=1 log
∑g

i=1 πifMMN-BS(tj ;θi) is a maximized log-likelihood at

kth iteration. In experimental study, we choose Kmax = 5000 and ε = 10−6.

Remark 4.3. Model selection and goodness of fit test. The most com-
monly used Akaike Information Criterion (AIC; Akaike [2]) and the Bayesian
Information Criterion (BIC; Schwarz [38]) are considered as the model com-
parison measures. These two criteria can be formulated by mcn − 2`(Θ̂),
where m is the number of free parameters and cn denotes the penalty term
that is cn = 2 for AIC and cn = log(n) for BIC. In general, the smaller the
values of these statistics, the better the fit to the data. We also apply the
Kolmogorov-Smirnov (KS;Smirnov [40]) test to assess the goodness-of-fit of
the fitted distributions. The KS test, defined theoretically as a distance be-
tween the empirical CDF and the estimated theoretical CDF for the model, is
a measure to understand how well the theoretical distribution fit the empirical
data.

4.2 Observed information-based standard errors

Following Basford et al. [8], we obtain the observed information matrix for
obtaining the standard error of ML estimate of parameters. Theoretically, the



MIXTURE OF EXTENDED BIRNBAUM-SAUNDERS ... 19

outer product of the gradient (score) vectors defined as a relatively simple way
to approximate the observed information matrix, is given by

Îe =

n∑
j=1

ŝj ŝ
T
j , (12)

where for the complete-data log-likelihood of the individual observation, `c(Θ |
tj , uj , zj),

ŝj =
∂f(tj ; Θ)

∂Θ
= E

[
∂`cj(Θ | tj , uj , zj)

∂Θ

∣∣∣tj] , j = 1, . . . , n.

For the FM-MMN-BS distributions, we have

`cj(Θ|tj , uj ,Zj) =

G∑
i=1

Zij

{
log πi − log(αi

√
1− δ2i ) + log(

tj + βi√
βi

)

− 1

2(1− δ2i )
(a(tj , αi, βi)− δiuj)2 + log h(uj ;νi)

}
. (13)

Thus, each gradient vector ŝj = (ŝj,π1 , . . . , ŝj,πG−1 , ŝj,α1 , . . . , ŝj,αG , ŝj,β1
, . . . ŝj,βG , ŝj,λ1 , . . . , ŝj,λG , ŝj,ν1 , . . . , ŝj,νG) consists the following elements

ŝj,πi =
ẑij
π̂i
−
ẑGj
π̂G

,

ŝj,αi = ẑij

(
−1

α̂i
+

1

α̂3
i (1− δ̂2i )

( tj
β̂r

+
β̂r
tj
− 2
)
− δ̂i

α̂2
i (1− δ̂2i )

η
(
tj , β̂i

)
û1ij

)
,

ŝj,λi =ẑij

(
λ̂i

1 + λ̂2i
− λ̂ia2(tj , α̂i, β̂i)− λ̂iû2ij −

1

(1 + λ̂2i )
1.5
û1ija(tj , α̂i, β̂i)

)
,

ŝj,βi =ẑij

(
−1

2β̂i
− 1

2α̂2
i (1− δ̂2i )

( 1

tj
− tj

β̂2i

)
+

1

tj + β̂i
+

δ̂iû1ij

2β̂iα̂i(1− δ̂2i )
(√

tj/β̂i +

√
β̂i/tj

))
,

ŝj,νi =E

(
∂ log f(u;ν)

∂ν
| tj , Zij = 1, Θ̂

)
.
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Figure 2: The standard box plot, adjusted box-plot and TTT plot for Enzyme
data.

where ẑij , û1ij and û2ij are the conditional expectations evaluated at Θ̂. As
a result, the standard error of parameters are obtained as the square roots of
the diagonal elements of the inverse of (12).

5 Real Data Analysis

5.1 Enzyme data

In order to illustrate the utility of the proposed FM-MMN-BS distributions to
the real dataset, the Enzyme data is considered. The Enzyme data analyzed
previously by Bechtel [9] is related to the enzymatic activity in the blood.
Each point of the 245 observations represent the metabolism of carcinogenic
substances. Bechtel [9] concluded that the mixture of two right-skewed dis-
tributions is suitable for analyzing these Enzyme data that can be seen from
the TTT plot presented in figure 2. Moreover, the adjusted box-plot indicate
drown in figure 2 that some atypical observations are available on the left tail.
These motivate us to fit two-component FM of Weibull (FM-Weibull), FM
of gamma (FM-gamma), FM of BS (FM-BS), and mixture of Length-biased
BS and BS distributions (LBBS) and mixture of Length-biased BS and BS
distributions with the same parameters (LBSBS) proposed in Balakrishnan et
al. [6], and tree subclasses of FM-MMN-BS distributions.



MIXTURE OF EXTENDED BIRNBAUM-SAUNDERS ... 21

Table 3: ML estimates with their standard error and KS distances with their

associated p-values for the considered mixture models fitted to the Enzyme dataset.

FM-Weibull FM-gamma FM-BS LBBS LBSBS FM-MMNE-BS FM-MMNEH-BS FM-SN-BS
parameter MLE SE MLE SE MLE SE MLE SE MLE SE MLE SE MLE SE MLE SE

π 0.444 0.013 0.349 0.011 0.629 0.031 0.450 0.028 0.417 0.026 0.624 0.009 0.624 0.012 0.627 0.021
α1 1.288 0.020 0.674 0.025 0.533 0.032 0.365 0.034 1.038 0.084 0.327 0.014 0.310 0.011 0.573 0.062
β1 1.145 0.296 0.022 0.012 0.175 0.007 0.171 0.007 0.216 0.012 0.258 0.013 0.257 0.010 0.140 0.017
λ1 – – – – – – – -1.227 0.172 -1.095 0.186 0.533 0.091
α2 2.681 0.193 0.039 0.016 0.319 0.025 1.274 0.114 1.038 0.084 0.242 0.009 0.227 0.017 0.476 0.050
β2 0.184 0.039 8.182 0.039 1.274 0.043 0.213 0.044 0.216 0.012 1.005 0.035 1.006 0.044 0.901 0.105
λ2 – – – – – – – 0.953 0.130 0.808 0.188 1.229 0.773
ν – – – – – – – – – 0.364 0.015 –

`max -71.741 -76.735 -59.168 -71.091 -115.899 -43.220 -44.674 -47.370
AIC 153.482 163.47 128.336 152.182 237.798 100.41 105.34 108.74
BIC 170.988 180.976 145.842 169.688 248.302 124.92 133.35 133.248
KS 0.117 0.125 0.053 0.111 0.151 0.036 0.047 0.043
p-value 0.004 0.003 0.507 0.005 < 0.001 0.923 0.650 0.742

By applying the EM-type algorithm to the considered model, we obtain ML
estimates, maximized log-likelihood values (`max) and corresponding AIC and
BIC. Results summarized in Table 3 show that the FM-MMN-BS distributions
provides a highly improved fit to the data over the others. It can be seen that
the subclasses of FM-MMNBS models yields quite smaller standard errors
for the ML parameter estimates over the other distributions. This means
that the FM-MMN-BS distributions allows to produce more precise estimates
for this data example. Moreover, the results of KS test depicted in Table
3 reveals that the p-value of the FM-MMNE-BS model is significantly grater
than the FM-Weibull, FM-gamma, FM-BS, LBBS and LBSBS, FM-MMNEH-
BS and FM-SN-BS models, which strongly suggests that the Enzyme data
follow a mixture of FM-MMNE-BS distributions. This outperformance of FM-
MMNE-BS distributions can be observe form figure 3 which present graphical
visualization of the fitted densities and the PP-plots of the three best fitted
models.

5.2 South Pole data

In the second real data example, the monthly average carbon dioxide read-
ings gathered by the Earth System Research Laboratory of the U.S. National
Oceanic and Atmospheric Administration is used. The dataset that is available
in the Stat2Data package of R, is collected from 1988 to 2016 at the South Pole
and originally contains five variables average carbon dioxide, Years, Month,
Atmospheric carbon dioxide level (CO2) and Time interval.

We fit the FM-BS, FM-gamma and FM-weibull, and three sub-model of
the FM-MMN-BS distribution to the data by ranging g = 1 to 3. Table 4
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Figure 3: Histogram of the Enzyme data overlaid with six fitted two component

mixture densities, and pp-plot of the three best models.

shows the `max, the number of free parameters (m), AIC and the BIC values.
It is observed form the AIC and BIC that the two-component FM-MMNEH-
BS distributions outperforms the other models. Table 5 reports the parameter
estimates of the best chosen models along with their standard errors. Result
of KS test strongly suggests that the considered data follow a mixture of
FM-MMNEH-BS distributions. This outperformance of the FM-MMNEH-
BS distributions can be observe form the histogram of data and the relative
PP-plots for the three best fitted models in figure 4.
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Table 4: Estimation performance of models fitted to the South Pole data.

Model g m `max AIC BIC

FM-gamma 1 2 -1488.52 2981.07 2988.79
2 5 -1453.12 2916.24 2935.50
3 8 -1412.55 2841.10 2871.92

FM-weibull 1 2 -1441.86 2887.72 2895.42
2 5 -1430.11 2870.22 2889.48
3 8 -1408.41 2832.82 2863.64

FM-BS 1 2 -1442.89 2889.78 2897.49
2 5 -1399.70 2809.41 2828.67
3 8 -1389.19 2794.39 2823.20

FM-SN-BS 1 3 -1439.36 2884.72 2896.28
2 7 -1397.58 2809.15 2836.12
3 11 -1386.89 2795.79 2838.16

FM-MMNE-BS 1 3 -1439.36 2884.72 2896.28
2 7 -1389.72 2793.45 2820.42
3 11 -1383.48 2788.96 2831.33

FM-MMNEH-BS 1 4 -1438.73 2885.46 2900.87
2 9 -1382.17 2782.34 2817.01
3 14 -1382.41 2792.82 2846.75

6 Simulation Study

6.1 Finite sample properties of ML estimates

The first simulation experiment is conducted aiming at verifying finite sam-
ple properties of ML estimates. In each 500 trails, artificial samples from
three-component FM-SN-BS, FM-MMNE-BS and FM-MMNEH-BS distribu-
tions are generated through applying the stochastic representation in (6). For
each model four sample sizes n 100, 200, 500 and 1000 is considered. The true
parameters are reported in Tables 7 and 8. For each synthetic data set of the
FM-SN-BS, FM-MMNE-BS and FM-MMNEH-BS models, the corresponding
model is fitted using the ECM algorithm and the parameter estimates are
obtained. Then, the average values, standard deviations (Std), absolute bias
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Table 5: ML parameter estimates with their standard error and the KS distances

together with its corresponding p-values for the four considered mixture models fitted

to the South Pole data for g = 2.

FM-BS FM-MMNE-BS FM-MMNEH-BS FM-SN-BS
parameter MLE SE MLE SE MLE SE MLE SE

π 0.713 0.140 0.557 0.086 0.612 0.104 0.718 0.081
α1 0.032 0.012 0.028 0.009 0.037 0.011 0.033 0.011
β1 378.809 21.860 381.904 10.278 391.709 18.291 378.721 15.819
λ1 – – 0.445 0.084 0.425 0.095 -0.980 0.133
α2 0.010 0.001 0.052 0.006 0.049 0.010 0.010 0.002
β2 354.793 17.420 350.498 9.783 356.807 19.580 354.764 12.746
λ2 – – 5.034 0.981 4.942 1.088 -0.118 0.082
ν1 – – – – 0.626 0.096 –
ν2 – – – – 0.603 0.110 –

KS 0.062 0.035 0.032 0.055
p-value 0.412 0.940 0.980 0.469

(AB) and the mean squared error (MSE) of ML estimates are computed, where

AB =
1

500

500∑
j=1

∣∣θ̂(j) − θtrue∣∣ and MSE =
1

500

500∑
j=1

(
θ̂(j) − θtrue

)2
,

in which θ̂(j) is the ML estimate of θtrue obtained from the j-th replicate. The
numerical results are reported in Tables 6, 7 and 8. It can be observed that
these three Tables that the mean of parameter estimates are very closed to the
true values and the increase of sample size leads to have small value of Std. As
can be expected, the AB and MSE values approach zero as the sample size n
increases and tends to zero, showing empirically the asymptotic unbiasedness
and the consistency of the ML estimates obtained via the ECM algorithm.

6.2 Comparison of fitting and clustering performance

In this simulation study, we suppose that X in representation (1) is followed by
the normal inverse Gaussian (NIG) distribution and generate three-component
mixture data form it. It is noted that random sample from the NIG distribu-
tion with parameter (µ, σ2, λ, χ, ψ) can be generated from

µ+Wλ+
√
WZ,
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Figure 4: Histogram of the South Pole data overlaid with four fitted two-component

mixture densities and pp-plot of the three best fitted models.

where Z ∼ N(0, σ2) and W , independently of Z, is followed by the generalized
inverse Gaussian (GIG) distribution with parameter (−0.5, χ, ψ). Details on
GIG distribution can be found in Good [14]. The NIG model can provide a
reasonable platform for generating asymmetric data with the desired level of
skewness and leptokurtosis. By setting µ = 0 and σ = 1, the three-component
mixture data is generated by using the presumed parameters

π1 = 2/7, π2 = 2/7, π3 = 3/7, ψ1 = 5, ψ2 = 7, ψ3 = 5, χ1 = 4,

χ2 = 8, χ3 = 6, α1 = 0.5, α2 = 1, α3 = 2.5, β1 = 2, β2 = 2, β3 = 1.

In each replication, we fit the proposed FM-Weibull, FM-gamma, FM-SN-
BS, FM-MMNE-BS, FM-MMNEH-BS and FM-BS models to the generated
data and obtain AIC and BIC as the model performance criteria and adjusted
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Table 6: Mean, Std, AB and MSE for EM estimates over 500 samples from
the FM-SN-BS model (true parameter in pretenses).

n Measure α1(1) α2(1) α3(3) β1(2) β2(4) β3(3) λ1(2.6) λ2(1.4) λ3(1.8) π1(0.4) π2(0.3)

100 Mean 0.9578 0.8991 2.8772 1.9978 3.9797 2.9547 2.5725 1.3299 1.7715 0.4627 0.2543
Std 0.2127 0.3963 0.5981 0.1980 0.3805 0.5690 0.0920 0.1528 0.3386 0.1820 0.1570
AB 0.0422 0.1009 0.1228 0.0022 0.0203 0.0453 0.0275 0.3999 0.7715 0.1627 0.1505
MSE 0.0461 0.1641 0.3656 0.0384 0.1423 0.3194 0.0090 0.1828 0.7076 0.1569 0.1341

200 Mean 0.9759 0.9460 2.9457 2.0168 4.0353 3.0493 2.5790 1.4032 1.7558 0.4558 0.2677
Std 0.1605 0.2787 0.4228 0.1215 0.2421 0.3818 0.0657 0.1127 0.2627 0.1652 0.1410
AB 0.0241 0.0540 0.0543 0.0168 0.0353 0.0493 0.0210 0.4032 0.7558 0.1558 0.1392
MSE 0.0258 0.0790 0.1781 0.0147 0.0587 0.1453 0.0047 0.1750 0.6388 0.1396 0.1256

500 Mean 0.9962 0.9939 3.0028 2.0106 4.0191 2.0383 2.5937 1.4102 1.7577 0.4353 0.2806
Std 0.0935 0.1628 0.2353 0.0825 0.1529 0.2274 0.0383 0.0620 0.1545 0.1463 0.1295
AB 0.0038 0.0061 0.0028 0.0106 0.0191 0.0383 0.0063 0.4102 0.7577 0.1133 0.1351
MSE 0.0086 0.0260 0.0543 0.0068 0.0233 0.0522 0.0015 0.1721 0.5975 0.1295 0.1207

1000 Mean 0.9935 0.9858 2.9841 2.0057 4.0190 2.0369 2.5958 1.4080 1.7879 0.4227 0.2889
Std 0.0598 0.1041 0.1601 0.0561 0.1035 0.1548 0.0311 0.0430 0.0946 0.1265 0.1124
AB 0.0065 0.0142 0.0159 0.0127 0.0190 0.0369 0.0042 0.4080 0.7879 0.0927 0.1268
MSE 0.0036 0.0108 0.0254 0.0032 0.0109 0.0248 0.0012 0.1682 0.6295 0.1066 0.1149

rank index (AIR; Hubert and Arabie [17]) as a clustering performance measure.
Table 9 summarizes the fitting results averaged over 300 trials and the average
ARI values. From the table, the FM-MMNE-BS distribution provides the best
overall fit in terms of AIC or BIC and an improved classification accuracy
(ARI=0.856 and =0.824).

7 Conclusion

This paper has introduced a new extension of the BS distribution as well
as its finite mixture model, called FM-MMN-BS distributions. We present
the hierarchical stochastic representation of the FM-MMN-BS distribution
for implementing a feasible and effective ECM algorithm to obtain the ML
estimate of parameters. The asymptotic information matrix is also derived
by offering an information-based approach. Numerical results illustrated in
Section 5 indicate that the FM-MMN-BS model can be well suited to the
experimental data. By conducting two simulation studies, the finite sample
properties of the ML estimates as well as the ability of the FM-MMN-BS
distributions for clustering heterogeneous right-skewed and heavy tails data are
examined. Numerical results of simulation 2 suggest that the proposed FM-
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Table 7: Mean, Std, AB and MSE for EM estimates over 500 samples from
the FM-MMNE-BS model (true parameter in pretenses).

n Measure α1(1) α2(1) α3(3) β1(2) β2(4) β3(3) λ1(2.6) λ2(1.4) λ3(1.8) π1(0.4) π2(0.3)

100 Mean 0.9734 0.9354 2.9051 2.0212 3.9813 2.9704 2.5767 1.4216 1.7505 0.4482 0.2619
Std 0.2144 0.4104 0.6061 0.1953 0.3618 0.5479 0.0924 0.2404 0.3198 0.1933 0.1751
AB 0.0266 0.0646 0.0949 0.0212 0.0197 0.0596 0.0233 0.0316 0.0705 0.1805 0.1693
MSE 0.0462 0.1710 0.3728 0.0378 0.1300 0.2974 0.0090 0.1808 0.0950 0.2017 0.1632

200 Mean 0.9798 0.9558 2.9358 2.0143 4.0198 3.0357 2.5800 1.4170 1.7531 0.4374 0.2710
Std 0.1594 0.2876 0.4292 0.1410 0.2587 0.3933 0.0623 0.2037 0.2457 0.1828 0.1517
AB 0.0202 0.0442 0.0642 0.0143 0.0168 0.0457 0.0200 0.0270 0.0531 0.1632 0.1522
MSE 0.0256 0.0839 0.1865 0.0197 0.0665 0.1544 0.0042 0.1763 0.0669 0.1721 0.1457

500 Mean 0.9829 0.9886 2.9742 2.0106 4.0149 3.0381 2.5929 1.4155 1.7728 0.4220 0.2770
Std 0.0947 0.1707 0.2527 0.0824 0.1549 0.2302 0.0385 0.1910 0.1403 0.1733 0.1462
AB 0.0071 0.0114 0.0358 0.0106 0.0149 0.0381 0.0071 0.0155 0.0328 0.1498 0.1378
MSE 0.0089 0.0290 0.0635 0.0068 0.0240 0.0539 0.0015 0.1682 0.0368 0.1425 0.1390

1000 Mean 0.9948 0.9893 2.9887 2.0094 4.0103 3.0328 2.5934 1.4105 1.7818 0.4183 0.2835
Std 0.0639 0.1141 0.1794 0.0596 0.1139 0.1709 0.0305 0.1476 0.0988 0.1404 0.1294
AB 0.0062 0.0097 0.0213 0.0094 0.0123 0.0328 0.0066 0.0105 0.0218 0.1353 0.1263
MSE 0.0040 0.0129 0.0319 0.0036 0.0131 0.0300 0.0010 0.1407 0.0209 0.1377 0.1362

Table 8: Mean, Std, AB and MSE for EM estimates over 500 samples from
the FM-MMNEH-BS model (true parameter in pretenses).

n Measure α1(1) α2(1) α3(3) β1(2) β2(4) β3(3) λ1(2.6) λ2(1.4) λ3(1.8) ν(0.4) π1(0.4) π2(0.3)

100 Mean 1.2682 1.5464 3.7745 2.5537 4.5902 3.6550 2.5335 1.3551 1.7466 0.4734 0.4557 0.2471
Std 0.4082 0.8144 1.2181 0.2510 0.5081 0.7444 0.1076 0.1554 0.3167 0.2443 0.1709 0.1570
AB 0.0382 0.0664 0.0745 0.0537 0.0402 0.0550 0.0335 0.0951 0.0966 0.2034 0.1862 0.1557
MSE 0.0472 0.1263 0.2247 0.0690 0.1443 0.0878 0.0215 0.0800 0.0662 0.0219 0.1933 0.1736

200 Mean 1.2320 1.4670 3.7008 2.5092 4.3098 3.4845 2.5592 1.3710 1.7517 0.4626 0.4306 0.2681
Std 0.4409 0.8678 1.3165 0.2019 0.3973 0.5883 0.0718 0.0966 0.1955 0.2420 0.1691 0.1514
AB 0.0320 0.0570 0.0608 0.0392 0.0298 0.0445 0.0208 0.0610 0.0817 0.1126 0.1770 0.1347
MSE 0.0364 0.0840 0.1280 0.0531 0.0881 0.0604 0.0151 0.0701 0.0489 0.0182 0.1765 0.1685

500 Mean 1.1065 1.2169 3.3266 2.3207 4.2337 3.3585 2.5674 1.3743 1.7608 0.4543 0.4231 0.2713
Std 0.1622 0.3213 0.4794 0.1277 0.2549 0.3721 0.0404 0.0656 0.1402 0.1225 0.1556 0.1344
AB 0.0265 0.0369 0.0466 0.0207 0.0137 0.0385 0.0126 0.0543 0.0568 0.0943 0.1563 0.1258
MSE 0.0294 0.0493 0.0844 0.0373 0.0429 0.0362 0.0116 0.0597 0.0244 0.0132 0.1502 0.1411

1000 Mean 1.0953 1.1874 3.2788 2.1190 4.1425 3.2696 2.5796 1.3855 1.7695 0.4223 0.4188 0.2865
Std 0.1175 0.2335 0.3509 0.0949 0.1815 0.2660 0.0316 0.0478 0.0951 0.0955 0.1330 0.1275
AB 0.0153 0.0274 0.0308 0.0120 0.0125 0.0296 0.0104 0.0355 0.0295 0.0623 0.1230 0.1081
MSE 0.0178 0.0291 0.0597 0.0283 0.0294 0.0137 0.0110 0.0287 0.0182 0.0118 0.1232 0.1293
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Table 9: Performance of various BS type models fitted in simulation 2. (m
is the number of free parameters)

Model `max m AIC BIC ARI

FM-gamma -503.70 8 1023.40 1057.12 0.682
FM-Weibull -491.13 8 998.26 1031.98 0.726
FM-BS -462.33 8 940.66 974.38 0.788
FM-SN-BS -441.39 11 904.78 951.14 0.802
FM-MMNE-BS -430.15 11 882.30 928.66 0.856
FM-MMNEH-BS -428.73 14 885.46 944.46 0.824

MMNE-BS and FM-MMNEH-BS models can outperform the well established
alternatives in providing better density estimation and an improvement in the
clustering.

Appendix A

Let T ∼ MMN-BS(α, β, λ, ν) and Y ∼ MMN(0, 1, λ, ν). In order to calculate
skewness and kurtosis of T , by (6) and simple mathematical work, we have

E(T ) =
1

2
βα2E(Y 2) + 1 +

1

2
αβV1,

E(T 2) =
1

2
β2α4E(Y 4) + 1 + α2β(1 + β)E(Y 2) + αβV1 +

1

2
α3β2V3,

E(T 3) =1 +
1

2
β3α6E(Y 6) +

1

2
α5β3V5 +

3

2
α4β2(β + 1)E(Y 4)

+
3

2
α3β2(β + 1)V3 + 3α2β(β +

3

2
)E(Y 2) +

3

2
αβV1,

E(T 4) =1 +
1

4
β4α8E(Y 8) +

1

2
β4α7V7 + β3α6(

3

2
+ β)E(Y 6)

+ β3α5(2 + β)V5 + β2α4(3 + 4β + β2)E(Y 4)

+ 2α3β2(1 + β)V3 + 6α2β2E(Y 2),
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where Vr = E(Y r
√
α2Y 2 + 4), for r = 1, 3, 5, 7 which are calculated numeri-

cally. Furthermore, since Y |U = u ∼ N(δu, 1− δ2), we have

E(Y 2) =δ2E(U2) + 1− δ2,
E(Y 4) =δ4E(U4) + 6δ2E(U3) + 3(1− δ2)2,
E(Y 6) =δ6E(U6) + 15δ4E(U5) + 45δ2E(U4) + 15(1− δ2)3,
E(Y 8) =δ8E(U8) + 28δ6E(U7) + 210δ4E(U6) + 420δ2E(U5) + 105(1− δ2)4,

where E(U r) is obtain by U ∼ TN(0, 1; (0,∞)), U ∼ E(1) and U has PDF (5)
for SN-BS, MMNE-BS and MMNEH-BS, respectively.
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