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1 Introduction

A quantum logic is a mathematical representation of the set of all ran-
dom events of a physical experiment and is a σ-orthomodular lattice,
with a state. The quantum logic approach was introduced in [1] by
Birkhoff and Neumann. The entropy is a tool to measure the amount
of uncertainty in random events and has been applied in physics, com-
puter science, general systems theory, information theory, statistics, bi-
ology, chemistry, sociology and many other fields. We remind that if
P = {p1, ..., pn} ⊂ Rn is a probability distribution, then the Shannon
entropy of P [18] is defined as the number HS(P ) =

∑n
i=1 S(pi), where

S : [0, 1] → [0,∞) is the Shannon entropy function defined, for every
x ∈ [0, 1] by the formula:

S(x) =

{
−x log x if x ∈ (0, 1];

0 if x = 0.

Some extensions of Shannon entropy were presented as alternatives of
entropy measure. One of the entropy measures is R-norm entropy. As-
sume that P = {p1, ..., pn} is a probability distribution, then R-norm
entropy of P is introduced by Boekke and Lubbe in [2] as the number:

HR(P ) =
R

R− 1

(
1−

( n∑
i=1

pRi
) 1

R

)
,

for R ∈ (0, 1) ∪ (1,+∞). Some papers ([7, 8, 9, 10, 11, 12, 13, 14]) were
published about this information measure.
In ([3, 4, 5], [15, 16], [19]) using the notion of state of quantum logic, the
concepts of entropy and conditional entropy of partitions and dynamical
systems in quantum logics, have been defined and studied. The notion
of entropy in quantum logics is very useful in studying quantum infor-
mation theory [20] and has been applied in the isomorphism of quantum
dynamical systems. The concept of Kullback-Leibler divergence as the
distance measure between two probability distributions was introduced
in [12] which is a useful tool in many fields including physics, information
theory, machine learning, statistics, neuroscience, computer science, etc.
Recently, in [17] we studied the concept of R-norm entropy and R-norm
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divergence in a product MV-algebra. Note that the version of condi-
tional R-norm entropy studied in the present article is different with the
conditional version of R-norm entropy defined in [17]. The aim of this
paper is to study the R-norm entropy, conditional R-norm entropy and
R-norm divergence in quantum logics. We generalize some results of
the R-norm entropy and conditional R-norm entropy given in [2], to the
quantum logics.
The rest of the paper is structured as follows. In section 2, basic con-
cepts and facts are provided that will be used throughout this paper. In
section 3, R-norm entropy of partitions in quantum logics with respect
to a state s, is defined. We prove the concavity property for the notion of
R-norm entropy in quantum logics. We show that this information mea-
sure does not have the property of sub-additivity in a general. We also
define the notion of conditional R-norm entropy of partitions in quan-
tum logics and establish the monotonicity property for this conditional
version of R-norm entropy. We study R-norm entropy and conditional
R-norm entropy of s- independent partitions. In section 4, the concept
of R-norm divergence in quantum logics is defined and and examine their
properties. Especially, the convexity of R-norm divergence with respect
to states, is shown. Our results are summarized in the final section.

2 Basic Definitions

In this section, some basic concepts, notations and facts are presented
that will be useful in the next sections.

Definition 2.1. [16] A quantum logic QL is a σ-orthomodular lattice,
i.e., a lattice L (L,≤,∨,∧, 0, 1) with the smallest element 0 and the great-
est element 1, an operation ′ : L→ L such that the following properties
hold for all a, b, c ∈ L:
(i)(a

′
)
′

= a, a ≤ b⇒ b
′ ≤ a′;

(ii) Given any finite sequence (ai)i∈N, ai ≤ a
′
j, i 6= j, the join ∨i∈Nai

exists in L;
(iii)L is orthomodular: a ≤ b⇒ b = a ∨ (b ∧ a′).

In quantum logics we have a ∧ a′ = 0, and as a consequence of the
orthomodular law, we get a ∨ a′ = 1. (see [16]).
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Two elements a, b ∈ QL are called orthogonal if a ≤ b
′

and denoted
by a ⊥ b.

Definition 2.2. [16] Let L be a quantum logic. A map s : L→ [0, 1] is
a state if:
(i)s(1) = 1;
(ii) for a, b ∈ L with a ⊥ b, s(a ∨ b) = s(a) + s(b).

It may be observed that s(0) = 0, s is monotone and s(a
′
) = 1 −

s(a), a ∈ L.

Definition 2.3. [16] Let P = {a1, ..., an} be a finite set of elements of
a quantum logic. P is called to be ∨-orthogonal iff ∨ki=1ai ⊥ ak+1, for
k = 1, 2, ..., n− 1.

Definition 2.4. [16] Assume that L is a quantum logic. P = {a1, ..., an} ⊂
L is said to be a partition of L corresponding to a state s on L, (a par-
tition P of couple (L, s)) if:
(i)P is ∨-orthogonal;
(ii)s(∨ni=1ai) = 1.

Note that from Definition 2.2, we obtain
∑n

i=1 s(ai) = 1.

Definition 2.5. [4] Let P = {a1, a2, ..., an} and Q = {b1, b2, ..., bm} be
partitions of a couple (L, s). We say Q is a s-refinement of P, denoted
by P �s Q, if there exists a partition I(1), ..., I(n) of the set {1, ...,m}
such that ai = ∨j∈I(i)bj for every i = 1, ..., n.

Two partitions P and Q of a couple (L, s), are called s-independent
if s(a ∧ b) = s(a)s(b) for all a ∈ P, and b ∈ Q.

Definition 2.6. [16] Let {b1, ..., bm} be any partition of a couple (L, s),
and a ∈ L. The state s is said has Bayes’ property if

s(∨mj=1(a ∧ bj)) = s(a).

In this case we get

m∑
j=1

s(a ∧ bj) = s(a).
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Suppose P = {a1, ..., an} and Q = {b1, ..., bm} are two partitions of
(L, s). Then the common refinement of partitions is defined as P ∨Q =
{ai ∧ bj : ai ∈ P, bj ∈ Q}. If s has Bayes’ property, then P ∨Q is also a
partition of (L, s) [15].

In this paper, we will use the following known Minkowski inequality:
for R > 1, ( n∑

i=1

xRi

) 1
R

+

( n∑
i=1

yRi

) 1
R

≥
( n∑
i=1

(xi + yi)
R

) 1
R

,

and for 0 < R < 1,( n∑
i=1

xRi

) 1
R

+

( n∑
i=1

yRi

) 1
R

≤
( n∑
i=1

(xi + yi)
R

) 1
R

,

where x1, ..., xn, y1, ...yn are nonnegative numbers.
Furthermore, we will use the following known Jensen inequality: for a
real convex function ϕ, real numbers x1, x2, ..., xm in its domain and
non-negative real numbers a1, a2, ..., am with

∑n
i=1 ai = 1, it holds

ϕ

( m∑
j=1

aixi

)
≤

m∑
j=1

aiϕ(xi), (1)

and the inequality is reversed if ϕ is a real concave function.

3 R-norm Entropy of Partitions in Quantum
Logics

In this section, we define the notions of R-norm entropy and conditional
R-norm entropy of finite partitions on a quantum logic. We prove some
ergodic properties of the suggested measures. Especially, we prove the
concavity property of R-norm entropy of partitions on a quantum logic.
We also show that the R-norm entropy does not satisfy the property
of sub-additivity, in general. An example is presented to illustrate the
obtained results.
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We recall that, by a partition P of a couple (L, s) we mean that P
is a partition of L corresponding to the state s. We shall now define the
notion of R-norm entropy of partitions.

Definition 3.1. Let P = {a1, a2, ..., an} be a partition of a couple (L, s).
The R-norm entropy of P with respect to the state s is defined by:

Hs
R(P ) =

R

R− 1

(
1−

( n∑
i=1

s(ai)
R
) 1

R

)
,

for R ∈ (0, 1) ∪ (1,+∞).

Note that, we write s(ai)
R instesd of (s(ai))

R.

Remark 3.2. If P = {a1, a2, ..., an} is a partition of a couple (L, s),
then Hs

R(P ) ≥ 0, because:
for the case of 0 < R < 1, we have s(ai)

R ≥ s(ai), i = 1, 2, ..., n. There-

fore
∑n

i=1 s(ai)
R ≥

∑n
i=1 s(ai) = 1. It follows that

(∑n
i=1 s(ai)

R

) 1
R

≥

1. Since for 0 < R < 1, we have R
R−1 < 0, we get Hs

R(P ) = R
R−1

(
1 −(∑n

i=1 s(ai)
R
) 1

R

)
≥ 0. Now if R > 1, it holds that s(ai)

R ≤ s(ai), i =

1, 2, ..., n. Thus
∑n

i=1 s(ai)
R ≤

∑n
i=1 s(ai) = 1, and we conclud that(∑n

i=1 s(ai)
R

) 1
R

≤ 1. It follows that for R > 1, Hs
R(P ) = R

R−1

(
1 −(∑n

i=1 s(ai)
R
) 1

R

)
≥ 0.

Example 3.3. Let L be a quantum logic and a ∈ L, and let s be a state
such that s(a) = s(a′) = 1

2 . Then P = {a, a′} is a partition of (L, s). By
simple calculations we obtain:

Hs
R(P ) =

R

R− 1
(1− 2

1−R
R ).

In particular, if R = 2, then Hs
2(P ) = 2−

√
2.

In the following, we will use the symbol Γ to denote the family of all
states on quantum logics. It is easy to prove the following proposition.
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Proposition 3.4. If s, t ∈ Γ, then, for every real number λ ∈ [0, 1], λs+
(1− λ)t ∈ Γ.

In the following theorem, it is shown that the concavity of R-norm
entropy Hs

R(P ) as a function on Γ.

Theorem 3.5. Assume that s, t ∈ Γ, and P is a partition of (L, s), (L, t).
Then for every real number λ ∈ [0, 1], the following inequality holds:

λHs
R(P ) + (1− λ)Ht

R(P ) ≤ Hλs+(1−λ)t
R (P ).

Proof. Suppose P = {a1, a2, ..., an}. If put xi = λs(ai) and yi = (1 −
λ)t(ai), in the Minkowski inequality, then we obtain for R > 1,

λ

( n∑
i=1

s(ai)
R

) 1
R

+(1−λ)

( n∑
i=1

t(ai)
R

) 1
R

≥
( n∑
i=1

(λs(ai)+(1−λ)t(ai))
R

) 1
R

,

and for 0 < R < 1,

λ

( n∑
i=1

s(ai)
R

) 1
R

+(1−λ)

( n∑
i=1

t(ai)
R

) 1
R

≤
( n∑
i=1

(λs(ai)+(1−λ)t(ai))
R

) 1
R

.

Since
R

R− 1
> 0 for R > 1 and

R

R− 1
< 0 for 0 < R < 1, we get

λHs
R(P ) + (1− λ)Ht

R(P ) ≤ Hλs+(1−λ)t
R (P ).

�

Theorem 3.6. Let P = {a1, a2, ..., an} and Q = {b1, b2, ..., bm} be par-
titions of a couple (L, s), and P �s Q. Then Hs

R(P ) ≤ Hs
R(Q).

Proof. Since P �s Q, there exists a partition I(1), ..., I(n) of the set
{1, ...,m} such that ai = ∨j∈I(i)bj for every i = 1, ..., n. So from Defini-
tion 2.2, we have s(ai) =

∑
j∈I(i) s(bj). Then we obtain for R > 1 and

each i = 1, ..., n,

s(ai)
R =

( ∑
j∈I(i)

s(bj)

)R
≥
∑
j∈I(i)

s(bj)
R.
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Since I(1), ..., I(n) is a partition of the set {1, ...,m}, we have

n⋃
i=1

I(i) =
m⋃
j=1

{j}, ∀i, k ∈ {1, ..., n}, I(i) ∩ I(k) = ∅.

Thus
n∑
i=1

∑
j∈I(i)

s(bj)
R =

m∑
j=1

s(bj)
R.

Hence by the relation

s(ai)
R = (

∑
j∈I(i)

s(bj)
R)R ≥

∑
j∈I(i)

s(bj)
R

since the state s is nonnegative, we obtain

n∑
i=1

s(ai)
R ≥

n∑
i=1

∑
j∈I(i)

s(bj)
R =

m∑
j=1

s(bj)
R,

therefore
∑n

i=1 s(ai)
R ≥

∑m
j=1 s(bj)

R. Then

( n∑
i=1

s(ai)
R

) 1
R

≥
( m∑
j=1

s(bj)
R

) 1
R

,

hence we get

Hs
R(P ) =

R

R− 1

(
1−

( n∑
i=1

s(ai)
R
) 1

R

)

≤ R

R− 1

(
1−

( m∑
j=1

s(bj)
R
) 1

R

)
= Hs

R(Q).

If 0 < R < 1, then we have for every i = 1, ..., n,

s(ai)
R =

( ∑
j∈I(i)

s(bj)

)R
≤
∑
j∈I(i)

s(bj)
R,
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therefore
∑n

i=1 s(ai)
R ≤

∑m
j=1 s(bj)

R, then

( n∑
i=1

s(ai)
R

) 1
R

≤
( m∑
j=1

s(bj)
R

) 1
R

.

Since
R

R− 1
< 0, analogously as in the above we obtain the assertion.

�

Corollary 3.7. For two partitions P,Q of a quantum logic L corre-
sponding to a state s having Bayes’ property, we have:

Hs
R(P ∨Q) ≥ max{Hs

R(P ), Hs
R(Q)}.

Proof. Since P �s P ∨ Q, Q �s P ∨ Q, by the previous theorem, it
holds. �

If partitions P,Q are s-independent partitions of a quantum logic L
corresponding to a state s having Bayes’ property, then it is easy to see
that the Shannon entropy Hs(P ) as Hs(P ) = −

∑n
i=1 s(ai) log s(ai) of

partitions in (L, s) (defined in [16]) has additivity property, i.e.

Hs(P ∨Q) = Hs(P ) +Hs(Q).

In the case of R-norm entropy, we have the following property.

Theorem 3.8. Assume that P and Q are s-independent partitions of
a quantum logic L corresponding to a state s having Bayes’ property.
Then

Hs
R(P ∨Q) = Hs

R(P ) +Hs
R(Q)− R− 1

R
Hs
R(P ).Hs

R(Q).

Proof. Let P = {a1, a2, ..., an} and Q = {b1, b2, ..., bm}. By the assump-
tion, we have s(ai ∧ bj) = s(ai)s(bj) for i = 1, ..., n, j = 1, ...,m. Let us
calculate:

Hs
R(P ) +Hs

R(Q)− R− 1

R
Hs
R(P ).Hs

R(Q)

=
R

R− 1

(
1−

( n∑
i=1

s(ai)
R
) 1

R + 1−
( m∑
j=1

s(bj)
R
) 1

R

)
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+
R− 1

R
(

R

R− 1
)2
(
− 1 +

( n∑
i=1

s(ai)
R
) 1

R

)(
1−

( m∑
j=1

s(bj)
R
) 1

R

)

=
R

R− 1

(
1−

( n∑
i=1

s(ai)
R
) 1

R (
m∑
j=1

s(bj)
R
) 1

R

)

=
R

R− 1

(
1−

( n∑
i=1

m∑
j=1

(s(ai)s(bj))
R
) 1

R

)

=
R

R− 1

(
1−

( n∑
i=1

m∑
j=1

(s(ai ∧ bj)R
) 1

R

)
= Hs

R(P ∨Q).

�

Definition 3.9. Let P = {a1, a2, ..., an} and Q = {b1, b2, ..., bm} be
partitions of a couple (L, s). The conditional R-norm entropy of P given
Q with respect to state s is defined by:

Hs
R(P | Q) =

R

R− 1

(
1−

( m∑
j=1

s(bj)
n∑
i=1

(
s(ai ∧ bj)
s(bj)

)R
) 1

R

)
,

for R ∈ (0, 1) ∪ (1,+∞).

It is easy to see that, for two s-independent partitions P,Q of a cou-
ple (L, s), we get Hs

R(P | Q) = Hs
R(P ).

In the next theorem, we prove that the conditional R-norm entropy
Hs
R(P | Q) has the property of monotonicity.

Theorem 3.10. Let P and Q be partitions of a quantum logic L corre-
sponding to a state s having Bayes’ property. Then

Hs
R(P | Q) ≤ Hs

R(P ).

Proof. Since s has Bayes’ property, using Jensen’s inequality(1) we
obtain for R > 1,

m∑
j=1

s(bj)
(s(ai ∧ bj)

s(bj)

)R ≥ ( m∑
j=1

s(bj)
(s(ai ∧ bj)

s(bj)

))R
= s(ai)

R,



CONDITIONAL R-NORM ENTROPY AND R-NORM ... 11

and for 0 < R < 1,

m∑
j=1

s(bj)
(s(ai ∧ bj)

s(bj)

)R ≤ ( m∑
j=1

s(bj)
(s(ai ∧ bj)

s(bj)

))R
= s(ai)

R.

Then for R > 1,

( n∑
i=1

m∑
j=1

s(bj)
(s(ai ∧ bj)

s(bj)

)R) 1

R ≥
( n∑
i=1

s(ai)
R

) 1

R ,

and for 0 < R < 1,

( n∑
i=1

m∑
j=1

s(bj)
(s(ai ∧ bj)

s(bj)

)R) 1

R ≤
( n∑
i=1

s(ai)
R

) 1

R .

Since for R > 1, we have
R

R− 1
> 0, and for 0 < R < 1,

R

R− 1
< 0, by

the above last two inequalities we get Hs
R(P | Q) ≤ Hs

R(P ). �
The following example, shows that the R-norm entropy does not have

the property of sub-additivity in general. The results of Corollary 3.7
and Theorem 3.10 are illustrated in this example.

Example 3.11. Let ([0, 1],M) be a measurable space, where M is the
σ-algebra of all Borel subsets of [0, 1]. Suppose L is the family of all
M -measurable functions f : [0, 1]→ {0, 1}. Then QL = (L,≤,∨,∧,0,1)
with an operation ′ : L→ L is a quantum logic such that for all f, g ∈ L:
f ∨ g := min{f + g, 1}, f ∧ g := f.g, and f

′
:= 1 − f. Consider

s : L −→ [0, 1] defined by s(f) =
∫ 1
0 f(x)dx. Evidently, the sets P =

{f1, f2, f3} = {χ[0, 1
3
], χ( 1

3
, 2
3
], χ( 2

3
,1]} and Q = {g1, g2} = {χ[0, 1

2
], χ( 1

2
,1]}

are partitions of QL corresponding to the state s. The s-state values of
the corresponding elements of P and Q, are 1

3 ,
1
3 ,

1
3 , and 1

2 ,
1
2 respectively.

By simple calculations we obtain:

Hs
R(P ) =

R

R− 1

(
1−

( 3∑
i=1

s(fi)
R
) 1

R

)
=

R

R− 1

(
1− 3

1
R
−1),
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Hs
R(Q) =

R

R− 1

(
1−

( 2∑
j=1

s(gi)
R
) 1

R

)
=

R

R− 1

(
1− 2

1
R
−1),

Hs
R(P | Q) =

R

R− 1

(
1−

( 2∑
j=1

s(gj)
3∑
i=1

(
s(fi ∧ gj)
s(gj)

)R
) 1

R

)

=
R

R− 1

(
1−

(2 + 21−R

3

) 1
R

)
.

The join of P and Q is P ∨Q = {χ[0, 1
3
], χ( 1

3
, 1
2
], χ( 1

2
, 2
3
], χ( 2

3
,1],0} with

the s-state values 1
3 ,

1
6 ,

1
6 ,

1
3 , 0 of the corresponding elements. The R-

norm entropy of P ∨Q is obtained as:

Hs
R(P ∨Q) =

R

R− 1

(
1−

( 3∑
i=1

2∑
j=1

s(fi ∧ gj)R
) 1

R

)

=
R

R− 1

(
1−

(
2 + 21+R

) 1
R

6

)
.

It can be verified that:

Hs
R(P | Q) ≤ Hs

R(P ),

Hs
R(P ∨Q) ≥ max{Hs

R(P ), Hs
R(Q)}.

Elementary calculations show thatHs
1
2

(P )
.
= 0.586, Hs

1
2

(Q) = 2, Hs
3(Q)

.
=

0.555, Hs
3(P | Q)

.
= 0.137, Hs

1
2

(P ∨ Q)
.
= 2.886, Hs

3(P ∨ Q)
.
= 0.845. It

holds that Hs
3(P | Q) 6= Hs

3(P ∨Q)−Hs
3(Q). On the other hand it can

be seen that Hs
1
2

(P ∨Q) > Hs
1
2

(P )+Hs
1
2

(Q). This means that the R-norm

entropy Hs
R(P ) of order R ∈ (0, 1) does not satisfy the sub-additivity

property in general.
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4 R-norm Diveregence in Quantum Logics

In this section we introduce the concept of R-norm divergence of states in
quantum logics and prove some properties of this measure. The proposed
notion is an analogy of the concept R-norm divergence introduced by
Hooda and Sharma in [9].

Definition 4.1. Let P = {a1, ..., an} be a partition of two coupls (L, s)
and (L, t). The R-norm divergence of s, t is defined by:

DP
R(s ‖ t) =

R

R− 1

(( n∑
i=1

s(ai)
Rt(ai)

1−R) 1
R − 1

)
.

In the following theorem we show that the R-norm divergence of
states on quantum logics is always nonnegative. Using this result, we
obtain an information measure in computing of distance between two
states on quantum logics.

Theorem 4.2. Assume P = {a1, ..., an} is a partition of two coupls
(L, s) and (L, t). Then DP

R(s ‖ t) ≥ 0, with the equality if and only if
s(ai) = t(ai), for i = 1, ..., n.

Proof. By Jensen’s inequality (1) for R > 1, we have

1 =

( n∑
i=1

s(ai)
( t(ai)
s(ai)

))1−R
≤

n∑
i=1

s(ai)
( t(ai)
s(ai)

)1−R
=

n∑
i=1

s(ai)
Rt(ai)

1−R.

Consequently (
∑n

i=1 s(ai)
Rt(ai)

1−R)
1
R ≥ 1. Since

R

R− 1
> 0, we get

DP
R(s ‖ t) ≥ 0. For 0 < R < 1, we have

1 =

( n∑
i=1

s(ai)
( t(ai)
s(ai)

))1−R
≥

n∑
i=1

s(ai)
( t(ai)
s(ai)

)1−R
=

n∑
i=1

s(ai)
Rt(ai)

1−R.



14 M. H. ZARENEZHAD AND A. EBRAHIMZADEH

This applies that

(∑n
i=1 s(ai)

Rt(ai)
1−R

) 1
R

≤ 1. Since
R

R− 1
< 0, it

holds that DP
R(s ‖ t) ≥ 0.

If s(ai) = t(ai), for i = 1, ..., n, then (
∑n

i=1 s(ai)
Rt(ai)

1−R)
1
R = 1, there-

fore DP
R(s ‖ t) = 0. If DP

R(s ‖ t) = 0, then
t(ai)

s(ai)
= c, for i = 1, ..., n,

where c is constant, thus
∑n

i=1 s(ai) = c
∑n

i=1 t(ai), which implies that
c = 1. Hence s(ai) = t(ai), for i = 1, ..., n. �

In the following example it is shown that the R-norm divergence is
not symmetric, i.e., the equality DP

R(s ‖ t) = DP
R(t ‖ s) is not in a true

sense. Therefore it is not a metric necessarily.

Example 4.3. Let L be a quantum logic, and a ∈ L, then P = {a, a′}
is a partition. Let s, t be two states on L such that s(a) = 1

2 , s(a
′) = 1

2
and t(a) = 1

3 , t(a
′) = 2

3 , then

DP
R(s ‖ t) =

R

R− 1

((
(
1

2
)R(

1

3
)1−R + (

1

2
)R(

2

3
)1−R

) 1
R − 1

)
,

and

DP
R(t ‖ s) =

R

R− 1

((
(
1

3
)R(

1

2
)1−R + (

2

3
)R(

1

2
)1−R

) 1
R − 1

)
.

Now if R = 2, then we have

DA
2 (s ‖ t) =

3√
2
− 2 6= 2

√
10

3
− 2 = DA

2 (t ‖ s).

If R = 1
3 , then

DP
1
3

(s ‖ t) =
−(1 + 3

√
2)3

36
+

1

2
6= −( 3

√
2 + 1)3

24
+

1

2
= DP

1
3

(t ‖ s).

The result means that DP
R(s ‖ t) 6= DP

R(t ‖ s), in general.

The next theorem shows that the R-norm divergence is a convex
function on the family of states in a quantum logic.
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Theorem 4.4. Let P = {a1, ..., an} be a partition of coupls (L, s1),
(L, s2), (L, t). Then for any real number λ ∈ [0, 1], we have the following
inequality:

DP
R(λs1 + (1− λ)s2 ‖ t) ≤ λDP

R(s1 ‖ t) + (1− λ)DP
R(s2 ‖ t).

Proof. By the convexity of the function f(x) = xR, for R > 1, we have
for any ai, ( n∑

i=1

(
λs1(ai) + (1− λ)s2(ai)

)R
t(ai)

1−R
) 1

R

=

( n∑
i=1

(
(λs1(ai) + (1− λ)s2(ai))t(ai)

1−R
R
)R) 1

R

≤
( n∑
i=1

(
λs1(ai)t(ai)

1−R
R
)R) 1

R

+

( n∑
i=1

(
(1− λ)s1(ai)t(ai)

1−R
R
)R) 1

R

.

Since R
R−1 > 0, we get

DP
R(λs1 + (1− λ)s2 ‖ t) ≤ λDP

R(s1 ‖ t) + (1− λ)DP
R(s2 ‖ t).

For 0 < R < 1, by the concavity of the function f(x) = xR, we obtain
for each ai, ( n∑

i=1

(
λs1(ai) + (1− λ)s2(ai)

)R
t(ai)

1−R
) 1

R

=

( n∑
i=1

(
(λs1(ai) + (1− λ)s2(ai))t(ai)

1−R
R
)R) 1

R

≥
( n∑
i=1

(
λs1(ai)t(ai)

1−R
R
)R) 1

R

+

( n∑
i=1

(
(1− λ)s1(ai)t(ai)

1−R
R
)R) 1

R

.

and since R
R−1 < 0, we obtain

DP
R(λs1 + (1− λ)s2 ‖ t) ≤ λDP

R(s1 ‖ t) + (1− λ)DP
R(s2 ‖ t).

�
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Theorem 4.5. Suppose P = {a1, ..., an} is a partition of two coupls
(L, s), (L, t), such that t is uniform over P. Then, for the R-norm en-
tropy of P with respect to s, we have:

Hs
R(P ) =

R

R− 1

(
1− n

R− 1

−R
)
− n

R− 1

−R DP
R(s ‖ t).

Proof. Let P = {a1, ..., an}. Then t(ai) = 1
n , for i = 1, ..., n. We can

write:

DP
R(s ‖ t) =

R

R− 1

(( n∑
i=1

s(ai)
Rt(ai)

1−R) 1
R − 1

)

=

(
− n

R− 1

R

)
R

R− 1

(
−
( n∑
i=1

s(ai)
R
) 1

R + n

R− 1

−R
)

=

(
− n

R− 1

R

)
R

R− 1

(
1−

( n∑
i=1

s(ai)
R
) 1

R + n

R− 1

−R − 1

)

=

(
− n

R− 1

R

)
R

R− 1

(
1−

( n∑
i=1

s(ai)
R
) 1

R

)
+

R

R− 1

(
n

R− 1

R − 1

)

=

(
− n

R− 1

R

)
Hs
R(P ) +

R

R− 1

(
n

R− 1

R − 1

)
.

Thus

Hs
R(P ) =

R

R− 1

(
1− n

R− 1

−R
)
− n

R− 1

−R DP
R(s ‖ t).

�
By the concept of R-norm divergence of states on quantum logics,

we obtain an upper bound for the R-norm entropy in quantum logics
(see the following corollary).

Corollary 4.6. For any partition P = {a1, ..., an} of a coupl (L, s), it
holds

Hs
R(P ) ≤ R

R− 1

(
1− n

R− 1

−R
)
,



CONDITIONAL R-NORM ENTROPY AND R-NORM ... 17

with the equality if and only if s is uniform over the partition P.

Proof. Consider a state t on quantum logic L uniform over P, i.e., it
holds t(ai) = 1

n , for i = 1, 2, ..., n. Then by Theorem 4.5 we get:

DP
R(s ‖ t) = −n

R− 1

R Hs
R(P ) +

R

R− 1

(
n

R− 1

R − 1

)
.

Since DP
R(s ‖ t) ≥ 0, it holds the inequality:

Hs
R(P ) ≤ R

R− 1

(
1− n

R− 1

−R
)
.

On the other hand, DP
R(s ‖ t) = 0, if and only if s(ai) = t(ai), for i =

1, 2, ..., n. This means that the equality Hs
R(P ) =

R

R− 1

(
1− n

R− 1

−R
)

holds if and only if s(ai) = 1
n , for i = 1, ..., n. �

5 Conclusions

In this work we defined the notions of R-norm entropy, conditional R-
norm entropy and R-norm divergence in quantum logics. Sections 3, 4
include the obtained results.
In Section 3 we started with defining the concept of R-norm entropy of
order R ∈ (0, 1) ∪ (1,+∞) of partitions in a quantum logic and proved
this quantity is always nonnegative (see Remark 3.2). In Theorem 3.5,
the concavity of R-norm entropy Hs

R(P ) as a function on the family of
all states on a quantum logic was shown. After defining the conditional
R-norm entropy Hs

R(P | Q), we proved that, this measure information
has the property of monotonicity (see Theorem 3.10). The results of
Theorem 3.10 and Corollary 3.7 were demonstrated in this Example
3.11. In this example, we showed that the R-norm entropy Hs

R(P ) does
not satisfy the sub-additivity property in a true sense.
In Section 4, we defined the concept of R-norm divergence of states on a
quantum logic. It was shown (Theorem 4.2) that the R-norm divergence
of states is nonnegative; therefore we obtained a tool for computing of
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distance between two states in quantum logics. In Example 4.3, we
illustrated that the R-norm divergence is not symmetrical and so it is not
a metric in general. The convexity of R-norm divergence with respect to
states, was proved in Theorem 4.4. We obtained a relationship between
the R-norm divergence and R-norm entropy of partitions in quantum
logics (Theorem 4.5). In Corollary 4.6, using the results of this section,
an upper bound for the R-norm entropy of partitions was provided.
Since in the R-norm entropy formula is not used logarithms, calculations
with this formula are more convenient than Shannon entropy. Therefore
the suggested information measure can be used besides the Shannon
entropy of partitions in quantum logics as a measure the amount of
uncertainty in random events of a physical experiment.

Acknowledgements
This research has been extracted from a Research project and has been
supported financially by Zahedan Branch, Islamic Azad University.

References

[1] G. Birkhoff and J. Von Neumann, The logic of quantum mechanics,
Annals of Mathematics, 37 (1936), 8-23.

[2] D. E. Boekke and J. C. A. Van Der Lubbe, The R-Norm information
measure, Information and Control, 45 (1980), 136-155.

[3] A. Ebrahimzadeh, Conditional entropy of infinite partitions on
quantum logic, Journal of Mathematical Extension, 11 (2017), 67-
74.

[4] A. Ebrahimzadeh, logical entropy of quantum dynamical systems,
Open Physics, 14 (2016), 1-5.

[5] A. Ebrahimzadeh and Z. Eslami Giski, Entropy of quantum dy-
namical systems with infinite partitions, Italian Journal of Pure
and Applied Mathematics, 37 (2017), 157-164.

[6] A. Ebrahimzadeh and Z. Eslami Giski, Tsallis entropy of partitions
in quantum logics, International Journal of Theoretical Physics, 58
(2019), 672-686.



CONDITIONAL R-NORM ENTROPY AND R-NORM ... 19

[7] D. S. Hooda and A. Ram, Characterization of a generalized measure
of R-norm entropy, Caribbean Journal of Mathematics and Com-
puter Science, 8 (2002), 18-31.

[8] D. S. Hooda and D. K. Sharma, Generalized R-norm information
measures, Journal of the Applied Mathematics, Statistics and In-
formatics, 4 (2008), 153-168.

[9] D. S. Hooda and D. K. Sharma, Parametric R-norm directed-
divergence convex function, Infinite Dimensional Analy-
sis, Quantum Probability and Related Topics, 19 (2016),
DOI:10.1142/S0219025716500144.

[10] D.S. Hooda, and R. K. Bajaj, On generalized R-norm measures of
fuzzy information, Journal of the Applied Mathematics, Statistics
and Informatics, 4 (2008), 199-212.

[11] D. S. Hooda and D. Jain, Generalized R-Norm fuzzy information
measures, Journal of the Applied Mathematics, Statistics and In-
formatics, 7 (2011), 1-10.

[12] S. Kullback, R.A. Leibler, On information and sufficiency, Annals
of Mathematical Statistics, 22 (1951), 79-86.

[13] S. Kumar, Some more results on R-norm information measure,
Tamkang Journal of Mathematics, 40 (2009), 41-58.

[14] S. Kumar and A. Choudhary, Generalized parametric R-norm in-
formation measure, Trends in Applied Sciences Research, 7 (2012),
350-369.

[15] M. Khare and S. Roy, Conditional entropy and the rokhlin metric on
an orthomodular lattice with Bayessian state, International Journal
of Theoretical Physics, 47 (2008), 1386-1396.

[16] M. Khare and S. Roy, Entropy of quantum dynamical systems and
sufficient families in orthomodular lattices with Bayessian state,
Communications in Theoretical Physics, 50 (2008), 551-556.



20 M. H. ZARENEZHAD AND A. EBRAHIMZADEH

[17] D. Markechova and A. Ebrahimzadeh, R-norm entropy and R-
norm divergence in product MV-algebras, Soft Computing, (2019),
DOI:10.1007/s00500-018-03695-5.

[18] C.E. Shannon, A mathematical theory of communication, Bell
Systém Technical Journal, 27 (1948), 379-423.

[19] Z. Yue-Xu and M. Zhi-Hao, Conditional entropy of partitions on
quantum logic, Communications in Theoretical Physics, 48 (2007),
11-13.

[20] Y. D. Zhang, Principles of Quantum Information Physics, Science
press, Beijing, (2006) (in Chinese).

Mohammad Hossein Zarenezhad∗

Instructor of Mathematics
Department of Mathematics
Zahedan Branch, Islamic Azad University
Zahedan, Iran

E-mail: zarenezhad.m@iauzah.ac.ir

Abolfazl Ebrahimzadeh
Assistant Professor of Mathematics
Department of Mathematics
Zahedan Branch, Islamic Azad University
Zahedan, Iran

E-mail: a.ebrahimzade@iauzah.ac.ir


	1 Introduction
	2 Basic Definitions
	3 R-norm Entropy of Partitions in Quantum Logics
	4 R-norm Diveregence in Quantum Logics
	5 Conclusions
	References

